
Basic Rates Package

TARMS Inc.

September 07, 2000

TARMS Inc. http://www.tarms.com

http://www.tarms.com

Copyright c
2000 TARMS Inc.

Permission is hereby granted, free of charge, to any person obtaining a
copy of this model and associated documentation files (the “Model”),
to deal in the Model without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Model, and to permit persons to whom the
Model is furnished to do so, subject to the following conditions:

1. The origin of this model must not be misrepresented; you must
not claim that you wrote the original model. If you use this
Model in a product, an acknowledgment in the product
documentation would be appreciated but is not required.
Similarly notification of this Model’s use in a product would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and
must not be misrepresented as being the original software.

3. This notice, including the above copyright notice shall be
included in all copies or substantial portions of the Model.

THE MODEL IS PROVIDED “AS IS”, WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS
OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE MODEL OR THE USE OR
OTHER DEALINGS IN THE MODEL.

Typeset in LATEX.

Contents

1 Use Cases 10
1.1 Simple Interest Rate. 10
1.2 Compound Interest Rate. 10
1.3 Continuous Interest Rate. 10
1.4 Interest Rate. 11
1.5 Discount Factor. 11
1.6 FX Rate . 11
1.7 FX Forward Rate. 11
1.8 FX Cross Rate. 12
1.9 FX Spot Rate. 12
1.10 Bond Price . 12
1.11 Futures Price. 13
1.12 Option Premium. 13
1.13 Commodity Price. 13
1.14 Volatility . 13
1.15 Premium. 14
1.16 Yield Curve . 14
1.17 Exchange Rate Curve. 14
1.18 Implied (FX) Yield Curve. 14
1.19 Implied (Yield) Exchange Rate Curve. 15
1.20 Cross Exchange Rate Curve. 15
1.21 Market Yield Curve. 15
1.22 Premium Shifted Yield Curve. 15
1.23 Premium Curve. 16
1.24 Implied Curve. 16
1.25 Market Exchange Rate Curve. 16
1.26 Market Curve. 17
1.27 Volatility Smile Curve . 17
1.28 Volatility Surface . 17

2 Interfaces 17
2.1 ActualRateParameter. 17

2.1.1 Relationships. 18
2.1.2 Operations . 18

2.2 BasicRateCurveTree. 18
2.2.1 Relationships. 19
2.2.2 Operations . 19

2.3 BasicRateCurveNode. 19

1

2.3.1 Relationships. 19
2.3.2 Operations . 19

2.4 BasicRateCurveSegment. 20
2.4.1 Relationships. 20
2.4.2 Operations . 21

2.5 FormalRateParameter. 22
2.5.1 Relationships. 22
2.5.2 Operations . 22

2.6 LogicalRateDateFormalParameter. 23
2.6.1 Relationships. 23
2.6.2 Operations . 24

2.7 LogicalRateParameterRegion. 24
2.7.1 Relationships. 24
2.7.2 Operations . 24

2.8 Interval . 25
2.8.1 Relationships. 25

2.9 Price. 25
2.9.1 Relationships. 25
2.9.2 Operations . 25

2.10 PointRate . 26
2.10.1 Relationships. 27
2.10.2 Operations. 27

2.11 BasicPointRate. 28
2.11.1 Relationships. 29

2.12 CrossPointRate. 29
2.12.1 Relationships. 29
2.12.2 Operations. 29

2.13 QuotationMethod. 29
2.13.1 Relationships. 30
2.13.2 Operations. 30

2.14 Rate . 32
2.14.1 Relationships. 32
2.14.2 Operations. 32

2.15 RateCurve. 33
2.15.1 Relationships. 33
2.15.2 Operations. 33

2.16 BasicRateCurve. 34
2.16.1 Relationships. 34
2.16.2 Operations. 34

2.17 ImpliedRateCurve. 34

2

2.17.1 Relationships. 35
2.17.2 Operations. 35

2.18 RateDerivationSpecifier. 36
2.18.1 Relationships. 36

2.19 BasicRateDerivationSpecifier. 36
2.19.1 Relationships. 36
2.19.2 Operations. 36

2.20 ImpliedRateDerivationSpecifier. 37
2.20.1 Relationships. 37
2.20.2 Operations. 37

2.21 RateFunctionSpecifier. 38
2.21.1 Relationships. 38
2.21.2 Operations. 38

2.22 RateDefinitionSpecifier. 39
2.22.1 Relationships. 40
2.22.2 Operations. 40

2.23 RateName. 41
2.23.1 Relationships. 42
2.23.2 Operations. 42

2.24 RatePiece. 42
2.24.1 Relationships. 42
2.24.2 Operations. 43

2.25 RateQuote. 43
2.25.1 Relationships. 43
2.25.2 Operations. 44

2.26 RateSource. 44
2.26.1 Relationships. 45
2.26.2 Operations. 45

3 Service Interfaces 45
3.1 RateConstructor. 45

3.1.1 Relationships. 46
3.1.2 Operations . 46

3.2 RateNameCoder. 46
3.2.1 Relationships. 47
3.2.2 Operations . 47

3.3 RateNameDecoder. 47
3.3.1 Relationships. 48
3.3.2 Operations . 48

3

4 Classes 48
4.1 ActualRateParameterModel. 48

4.1.1 Relationships. 49
4.1.2 Attributes. 49

4.2 BasicPointRateModel. 49
4.2.1 Relationships. 49
4.2.2 Attributes. 49
4.2.3 Operations . 49

4.3 BasicRateCurveModel. 50
4.3.1 Relationships. 50
4.3.2 Attributes. 50

4.4 BasicRateCurveNodeModel. 50
4.4.1 Relationships. 50
4.4.2 Operations . 51

4.5 BasicRateCurveSegmentModel. 51
4.5.1 Relationships. 51
4.5.2 Attributes. 51

4.6 BasicRateDerivationSpecifierModel. 52
4.6.1 Relationships. 52
4.6.2 Attributes. 52
4.6.3 Operations . 52

4.7 FormalRateParameterModel. 52
4.7.1 Relationships. 52
4.7.2 Attributes. 53

4.8 ImpliedRateCurveModel. 53
4.8.1 Relationships. 53
4.8.2 Attributes. 53
4.8.3 Operations . 53

4.9 IntervalModel . 54
4.9.1 Relationships. 54

4.10 ClosedClosedIntervalModel. 54
4.10.1 Relationships. 54
4.10.2 Attributes. 54
4.10.3 Operations. 55

4.11 ClosedInfiniteIntervalModel. 55
4.11.1 Relationships. 55
4.11.2 Attributes. 55
4.11.3 Operations. 55

4.12 ClosedOpenIntervalModel. 55
4.12.1 Relationships. 55

4

4.12.2 Attributes. 55
4.12.3 Operations. 56

4.13 InfiniteClosedIntervalModel. 56
4.13.1 Relationships. 56
4.13.2 Attributes. 56
4.13.3 Operations. 56

4.14 InfiniteInfiniteIntervalModel . 56
4.14.1 Relationships. 56
4.14.2 Operations. 56

4.15 InfiniteOpenIntervalModel. 57
4.15.1 Relationships. 57
4.15.2 Attributes. 57
4.15.3 Operations. 57

4.16 OpenClosedIntervalModel. 57
4.16.1 Relationships. 57
4.16.2 Attributes. 57
4.16.3 Operations. 58

4.17 OpenInfiniteIntervalModel. 58
4.17.1 Relationships. 58
4.17.2 Attributes. 58
4.17.3 Operations. 58

4.18 OpenOpenIntervalModel. 58
4.18.1 Relationships. 58
4.18.2 Attributes. 58
4.18.3 Operations. 59

4.19 RateNameModel. 59
4.19.1 Relationships. 59
4.19.2 Attributes. 59

4.20 RatePieceModel. 59
4.20.1 Relationships. 59
4.20.2 Attributes. 59

4.21 RateQuoteModel. 60
4.21.1 Relationships. 60
4.21.2 Attributes. 60
4.21.3 Operations. 60

4.22 RateSourceModel. 61
4.22.1 Relationships. 61
4.22.2 Attributes. 61

4.23 RateSourceReferenceDataModel. 61
4.23.1 Relationships. 61

5

4.24 RectangularRegionModel. 61
4.24.1 Relationships. 62

5 Exceptions 62
5.1 RateConstructorException. 62

5.1.1 Operations . 62
5.2 RateConversionException. 62

5.2.1 Operations . 62
5.3 RateNameException. 63

5.3.1 Operations . 63
5.4 RateQuotationException. 63

5.4.1 Operations . 63
5.5 RateSpecificationException. 64

5.5.1 Operations . 64

6 Associations 64
6.1 constructor . 66
6.2 region . 66
6.3 sources . 66
6.4 quotation method. 66
6.5 rate source. 66
6.6 decoding. 66
6.7 encoding. 66
6.8 model . 67
6.9 constructor . 67
6.10 inside . 67
6.11 outside. 67
6.12 quotes. 67
6.13 intervals. 67
6.14 intervals. 67
6.15 formalParameter. 68
6.16 quotationMethod. 68

List of Figures

1 Class Diagram— Example Rates. 69
2 Class Diagram— Example Operator Rates. 70
3 Class Diagram— Example Curves and Surfaces. 71
4 Class Diagram— Logical Rates. 72

6

5 Class Diagram— Quotation Methods. 73
6 Class Diagram— Point Rates. 74
7 Class Diagram— Derivation Methods. 75
8 Class Diagram— Curves and Surfaces. 76
9 Class Diagram— Regions. 77

List of Tables

1 Rate Name Codes. 41
2 Basic Rates— Associations. 64
2 . . . continued. 65

Package Description

Rates represent two aspects of financial modeling. In the first instance, they repre-
sent the transformation of an amount of one commodity into an amount of another
commodity. In the second instance, they represent the price that someone is will-
ing to exchange a good for. These aspects are related, but reflect two different
functions of rates: the first is to express an amount of one commodity in terms of
another, the second is to act as a quotation mechanism.

There are also entities that are traditionally regarded as rates, but which rep-
resent the transformation of rates into other rates. For example, volatilities can be
used to transform an underlying price into an optional price. As another example,
premiums transform a rate into another rate of the same kind, with a different price.

The basic rates package covers a number of areas: point rates, rate curves (a
generalized term that is applied to any n-dimensional rate curve) quotation mecha-
nisms, derivation mechanisms, components, pieces, . . .1

Components

A rate supplied by the marketplace may have severalcomponentsrepresenting the
rates quoted for different purposes. The most obvious example of rate components
is the bid/ask spread, representing the difference between what something will be
bought for and what it will be sold for. Other components include such items as
the last quoted rate or the rate at close of trading. Within this model, components
may be used to represent special-purpose rates.

1 A note on reading order. This package is very abstract; it provides an infrastructural base
for more concrete expressions of rates. On an initial reading, it may pay to skim one of the more
concrete packages, such as FX rates or interest rates before examining this package.

7

Components are always named. A single point rate may contain several compo-
nents, representing different rates for different purposes. Thebid andaskcompo-
nents are usually assumed to be present in market rates. These rates represent what
another party will buy something for and what another party will sell something for
respectively. Themid component is the average of the bid and ask components.2

Other common components include thelast component— the last rate at which a
transaction took place — and theclose component— the last rate at the close of a
trading day.

Pieces

Each rate component is constructed from a number ofpieces. As an example,
an interest rate may be quoted as a risk-free rate, plus a premium representing
the counterparty risk, plus a premium representing the profit margin. As another
example, a forward FX rate may be quoted as a spot rate, plus a forward margin.

Components are usually constructed from abase rateand a series ofmargins
that represent additions to the base rate.

Quotation Methods

A quotation methoddescribes how the bare number of a rate is intended to be
interpreted. For example, a bond price might be quoted as “Price per Hundred
Face Value” meaning that the figure represents the price paid for 100 units of the
principal amount printed on the bond. As another example, an interest rate might
be quoted as being “annualized with a 30/360 date basis” meaning that the figure
represents an interest payment that compounds yearly, with the elapsed time being
calculated using a 30/360 day/year-count convention.

Rate pieces may used different quotation conventions. In particular, margins
are often quoted as a number of “points” over some base rate; a point might be
0.01% for an interest rate or 0.0001 for an FX rate.

Quotation methods may be freely changed, since they do not affect the under-
lying data. However, when a quotation method changes, the number representing
the rate usually changes as well.

Rate Derivation

Rates have a derivation path. The most basic derivation path is a basic rate, a rate
that is supplied by some outside source. More complex rates can be implied from

2 This rate may not be a simple arithmetic mean of the two rates; non-linear effects may come
into play.

8

sets of basic rates. As an example, a bond price can be implied from the definition
of the bond and a suitable yield curve.

Basic rates have arate name, a string which identifies the rate to an external
source of some sort: a Reuters RIC box, a Telerate feed or a spreadsheet.

Rate Specification

A rate is largely independent of the quotation mechanism and derivation path. A
logical rate expresses the contractual nature of the rate, without requiring any par-
ticular quotation style or derivation.

Point Rates and Prices

At the base level in the model, rates are models which represent the transformation
of some amount into another amount in terms of unit contracts. Apoint rate is a
rate where everything needed to be known about the transformation is fixed: the
date on which it occurs, the commodities involved, etc. Aprice is a particular use
of a point rate, expressing the transformation of some commodity into the amount
paid for it.

Rate Curves

A curve is a mathematical object which represents something that is locally like a
line, plane or other linear space. In the terms of this model, rate curves represent
the complex curves, surfaces, solids, etc. that can be used to represent rates. As
examples: a FX curve is a curve used to get FX rates at future dates, a volatility
curve describes volatilities at forward dates and market prices.

The approach taken in this model is to describe complex rate structures asn-
dimensional curves. A curvesegmentconsists of a set of polynomials, one for each
piece of each component in the rate. Disjoint segments are joined together into a
tree structure. Getting a rate from a curve involves using the tree structure to get
the appropriate segment and then using the polynomials to get the rate.

Curve can be converted into other curve by restricting them. For example, a
volatility surface can be converted into a smile curve by restricting the date param-
eter to a single value.

A note on the use cases.The use cases supplied in this package do not reflect
the abstract focus of the package. In some senses, the use cases should be relegated
to the packages handling the various instruments that they reflect. However, these
cases provide some insight into the general aim of the basic rates package.

9

Euro Compliance. The triangulation rules required by the EMU require that
in-currency FX rates be fixed to a particular rate and that rate not be inverted.
The basic rate model accomplishes this by always retaining the components of a
derivation wherever possible and following the derivation route.

1 Use Cases

1.1 Simple Interest Rate

A simple interest rate is either quoted as a yield or a discount rate and applies over
a fixed term, fromd1 to d2. The rate is usually quoted as an annualized amount,
with a date basis. Ifa1 is the amount of some currency atd1, a2 is the amount
of the same currency atd2, d is the day count betweend1 andd2 andy is the year
length, then

a2 = a1(1 +
id

y
)

or

a1 = a2(1�
rd

y
)

wherei is the yield (interest rate) orr is the discount rate[3, 2].

1.2 Compound Interest Rate

A compound interest rate is usually quoted as a yield and applies over a fixed term,
from d1 to d2. The rate is usually quoted as an annualized amount, with a date
basis and a number of compoundings per annum.

If a1 is the amount of some currency atd1, a2 is the amount of the same cur-
rency atd2, n is the number of compoundings per annum,d is the day count be-
tweend1 andd2 andy is the year length, then

a2 = a1(1 +
i

n
)
nd
y

wherei is the yield (interest rate)[3].

1.3 Continuous Interest Rate

A compound interest rate is usually expressed in terms of the number of terms per
annum,n, that interest compounds over. The annualized rate is given by(1+i=n)n,

10

wherei is the interest rate. A continuous interest rate takes compounding to its
logical conclusion by setting the annualized rate to belimn!1(1 + i=n)n.

If a1 is the amount of some currency atd1, a2 is the amount of the same cur-
rency atd2, n is the number of compoundings per annum,d is the day count be-
tweend1 andd2 andy is the year length, then

a2 = a1e
r d
y

wherer is the continuously compounded rate[3].

1.4 Interest Rate

An interest rate represents the amount of money paid on a loan or deposit over a
certain period. There are a number of ways of quoting an interest rate. An interest
rate is related to a discount factor, in that ifp is the principal of the loan or deposit
andi is the interest, then the discount factor is given byp=(p+ i).

1.5 Discount Factor

A discount factor represents the change in value of an amount of money over time.
If an amounta1 is deposited and, later, an amounta2 is retrieved, then the discount
factor is given bya1=a2.

1.6 FX Rate

An FX rate is the rate at which one currency, the commodity currency, is exchanged
for another currency, the counter currency. The rate is normally the amount of units
of the counter currency, one unit of the commodity currency will buy.

The rate is usually expressed in terms of a standardized currency pair, with one
currency being the commodity currency and one the counter currency. For exam-
ple, the following currency pairs are standard: GBP/USD, USD/FRF, EUR/USD.
Since the actual commodity and counter currencies may be in the reverse order to
these standardized pairs, the quotation may beindirect, indicating that the rate is
expressed in terms of amount of commodity currency needed to buy one unit of the
counter currency.[3]

1.7 FX Forward Rate

A forward rate for FX is usually quoted in terms of a number ofpointsover the
spot rate. The size of a point depends on the two currencies being exchanged but
is usually0:0001.

11

For example, given a USD/DEM spot rate of1:8989 and a 3-month forward
rate of�120 points, the three month exchange rate is1:8869.

1.8 FX Cross Rate

An FX cross rate is constructed from two FX rates with a common currency. The
cross rate is built by combining the two FX rates across the common currency,
giving the same effect as first exchanging the commodity currency for the common
currency and then the common currency for the counter currency.

For example, if the USD/SGD rate is1:6975 and the USD/HKD rate is7:2210
then a cross rate for SGD/HKD is7:2210=1:6975 = 4:253902798233 = 4:2539.

Within the EMU, amounts being converted must follow the following pattern.
The commodity currency is converted to a EUR amount, using the fixed exchange
rate. The EUR amount is rounded to not less than 3 decimal places of accuracy.
The rounded EUR amount is converted to the counter currency amount using the
fixed exchange rate. Note that the intermediate rounding step means that amounts
are not directly scalable and that calculated cross rates may not be used for some
purposes.

1.9 FX Spot Rate

An FX spot rate is an FX rate for thespot date, usually two business days hence
from the current date.

1.10 Bond Price

A bond price reflects the amount of some currency — usually the currency that the
bond is denominated in — needed to purchase some quantity of the bond.

Prices are usually quoted in terms ofprice per hundred face value, the amount
of currency needed to buy a face value of 100 of that bond. Alternately, prices may
be quoted in terms ofyield, where the price is expressed as a constant yield; the
cost of the bond is then based on valuing the coupon and principal payments of the
bond against that yield.

Bond prices may be quoted ascleanor dirty. The dirty price essentially re-
flects the value of the future cashflows. However, the current holder of the bond
will expect to receive a portion of the current coupon, based on the portion of the
coupon period that has elapsed. The clean price subtracts that portion from the
dirty price.[3].

12

1.11 Futures Price

Futures prices express the exchange of some amount of currency for a given future.
Although the amounts paid to the exchange are usually expressed in terms of mar-
gins, the futures price is usually expressed in terms of an implied interest rate on
the assets that are being traded.

Futures are often expressed in terms of ahundred minus yieldconvention,
where the interest rate, as a percentage yield is subtracted from100. As an ex-
ample, if the implied yield is6:78% then the futures price will be93:22.

Other conventions includehundred minus discount, where a discount rate,
rather than a yield is used, as well as straight yields and discount rates. Alter-
nately, futures may be expressed in price per hundred face value terms on the value
of the underlying securities.[3]

1.12 Option Premium

An option premiumis the price paid for the purchase of an option on some un-
derlying transaction. The term “premium” reflects the insurance-like, risk limiting
aspects of options. The price paid is usually in the same currency as the underlying
instrument of the option.

There are a number of different quotation methods: a straight cash price, a price
per hundred face value of the underlying instrument, a price expressed in ticks on
the underlying instrument or a price expressed in basis points against the implied
yield on the underlying instrument.

1.13 Commodity Price

Commodity prices usually express the price of a commodity in terms of the amount
of some currency that a standard amount of the commodity can be exchanged for.
As an example, the gold price is often expressed in terms of USD per ounce.

Some commodity-like financial instruments have more complex ways of ex-
pressing the price.

1.14 Volatility

A volatility represents the tendency to change in some underlying instrument.
Volatilities are usually used, in combination with prices for underlying instruments,
to calculate prices for optional transactions.

Volatilities are usually expressed in terms of the annualized standard deviation
of the logarithm of the relative price movements.[3]

13

1.15 Premium

A premium is an additional amount added to a rate, reflecting either some addi-
tional level of risk or a profit margin.

Interest rate premiums are usually expressed in terms ofbasis points, units of
0:01%. FX rate premiums are usually expressed in terms of points similar to the
ordinary forward FX points — usually, although not always, units of0:0001.

1.16 Yield Curve

A yield curve provides the interest rates and discount factors that apply between
two dates.3 A yield curve can, therefore, be used to reduce a series of forward
cashflows to net present value.

Basic yield curves usually give the base deposit rates for a given currency.
These curves may be further manipulated to add risk estimates, etc.

1.17 Exchange Rate Curve

An exchange rate curve gives the exchange rate between two currencies CUA/CUB
for any date. Exchange rate curves are usually expressed as a forward rate con-
structed from a spot rate and forward points calculated from the date and the
curve.

1.18 Implied (FX) Yield Curve

An implied yield curve, for a currency CUA is a yield curve built by combining a
yield curve for another currency, CUB, and and exchange rate curve for CUA/CUB.

The discount factor for CUA between the datesd1 andd2 can be implied by
assuming an arbitrage-free swap with currency CUB. Assume an amountaCUA

1
at

dated1 and an amountaCUA
2

at dated2, CUA/CUB exchange rates ofx1 andx2
for d1 andd2 and a discount factor offCUB

12
for CUB betweend1 andd2, then

fCUA
12 =

aCUA
1

aCUA
2

= fCUB
12

x2
x1

sinceaCUB
1

= x1a
CUA
1

andaCUB
2

= x2a
CUA
2

.
3 Two dates are necessary, as interest rates essentially represent a density function.

14

1.19 Implied (Yield) Exchange Rate Curve

An implied exchange rate curve between two currencies CUA/CUB is constructed
from a spot rate,x, and a pair of yield curves for each currency.

If the discount factor between spot and a dated for CUA is fCUA and the
discount factor between spot andd for CUB isfCUB, then an implied forward rate
can be calculated by assuming an arbitrage-free swap between the two currencies.
If we have spot amounts ofaCUA andaCUB = xaCUA and forward amounts of
bCUA andbCUB then the forward exchange rate,x0 is given by

x0 =
bCUB

bCUA
= x

fCUA

fCUB

and forward points given byx0 � x.

1.20 Cross Exchange Rate Curve

A cross exchange rate curve for a pair of currencies CUA/CUB is constructed
from two exchange rate curves CUA/CUC and CUB/CUC with a common cur-
rency CUC.

If, at the dated, the CUA/CUC rate isx1 and the CUB/CUC rate isx2 then the
cross rate is calculated as

x =
x1
x2

Note that the EMU conventions actually require the above calculation, for
traded amounts, to be calculated in terms of an intermediately rounded actual
amount.

1.21 Market Yield Curve

A market yield curve is built from a series of point rates. The point rates are a set of
interest rates, discount factors or prices for interest rate instruments, such as FRAs
or securities. The interest rates can be used directly. Instrument prices need to have
their equivalent yields calculated on the basis of a partially constructed yield curve;
in the case of bonds, this process is known ascoupon stripping.

1.22 Premium Shifted Yield Curve

Yield curves can be modified by the addition of premiums to an underlying yield
curve.

15

Premiums usually reflect the transition between some risk-free yield curve and
a curve that reflects the risk associated with a country or a counterparty. As an
example, bonds denominated in USD may be issued by countries other than the
US; these bonds have a greater level of risk than US bonds issued by domestic
issuers and need to be valued against a yield curve that reflects that risk.

1.23 Premium Curve

A premium curve is a curve that gives a premium to apply to some underlying yield,
exchange rate, volatility or other curve at a given date, strike price or other variable.
Combining a premium curve and an underlying curve gives a curve of the same
type as the underlying curve, with the quoted rates shifting in some direction.

1.24 Implied Curve

Implied curves are constructed from other curves – source curves – rather than
market data.

Market data curves are usually built by interpolating between the rate sample
supplied to the curve. In theory, implied curves could be constructed by evaluating
the source curves at various points and then interpolating in a manner similar to
market data curves. The differences in interpolation between the various curves
will, however, lead to an artificial arbitrage caused by differences in interpolation
points.

As an example, imagine two exchange rate curves for USD/SGD and USD/HKD
and linear interpolation. The USD/SGD curve is built from spot, 1 month and 6
month points of1:7018, +100 and+120. The USD/HKD curve is built from spot,
1 month and 1 year points of7:7595, +40 and+80. A cross exchange rate curve
could be built from implied points of4:5596, �242, �285 and�336 — one for
each source point. Using the interpolated cross rate curve, the 4 month exchange
rate is4:5596 � 258. Using the individual rates, the 4 month exchange rate is
4:5596 � 259, a difference of $100 in a $1 million exchange.

For this reason, points on implied curves cannot be interpolated, but must be
directly calculated from the source curves.

1.25 Market Exchange Rate Curve

A market exchange rate curve is built from a series of point rates. The point rate
usually consist of a spot rate, and a series of forward points for various periods. The
curve is then constructed to quote in terms of spot+forward for a given date.

16

1.26 Market Curve

A market curve is built from a series of point rates, interpolated and extrapolated
according to some agreed convention. The point rates are supplied from some
external source, either a commercial market data feed, such as Reuters or Telerate,
or from a database or spreadsheet of internally chosen rates.

Between the supplied rates, the point rates must beinterpolated. Interpolation
can take many forms. Examples are linear interpolation of interest rates or for-
ward points, exponential interpolation of discount factors or Lagrangian and spline
approximations.[1].

Outside the range of the supplied rates, the values supplied by the curve need
to beextrapolated. Example extrapolations include flat or linear extrapolation of
rates or simply generating an error.

1.27 Volatility Smile Curve

A volatility “smile” curve is a curve that contains the volatility of some instrument
at a particular delivery date for various strike prices for that instrument.

1.28 Volatility Surface

A volatility surface is a surface that contains the volatility of some instrument for
various delivery delivery dates and for various strike prices for that instrument.

2 Interfaces

2.1 ActualRateParameter

An actual parameter provides a value for a formal parameter.
More commonly, the actual parameter is some constant value.
An instance which realizes this interface provides a RateFunctionSpecifier §2.21

with values for the unit contract that the specifier encodes.
An example Date Actual Parameter is one which has a LogicalRateDateFor-

malParameter of
<“to-date”,
“end date for an interest rate”,
“Date”,
continuous,
30/360>

17

and a value of
“12-Jul-2001”.

Another example would have the same formal parameter, but a value of
from� date+ FXSpot
meaning that the value of the to-date is derived by adding the FX Spot period to
the from-date parameter.

2.1.1 Relationships

Class Description Notes
* Comparable
ActualRateParameterModel §4.1
*:Inherits #:Realized by

2.1.2 Operations

FormalRateParameter formalParameter() formalParame-
terThe formal parameter that this parameter instantiates.

Object value() value

Raises:RateSpecificationException
The parameter value. Returns the parameter value, possibly derived from the

other parameters in the rate specification.

Boolean equal(Comparable arg) equal

arg: Comparable The comparable to test for equality.
Equality test. Two actual rate parameters are equal if they have the same formal

parameter and their actual values are equal.

2.2 BasicRateCurveTree

An interface that allows the segmentation of a BasicRateCurve into various poly-
nomial segments.

A tree contains a set of BasicRateCurveSegment §2.4 instances that are the
leaves of the tree. These segments are used to construct rates. Above the segments,
forming a binary tree, are BasicRateCurveNode §2.3 instances. A node splits the
curve into two parts, one “inside” and one “outside” a region. The regions can be

18

any shape desired. To get a value, the tree is navigated until a segment is reached,
the segment then interpolates to produce the appropriate rate.

2.2.1 Relationships

Class Description Notes
+ BasicRateCurveNode §2.3
+ BasicRateCurveSegment §2.4
$ BasicRateCurveModel §4.3 constructor 0..n
$ BasicRateCurveNodeModel §4.4 inside 0..n
$ BasicRateCurveNodeModel §4.4 outside 0..n
+:Inherited by $:Association !:Navigable�:Aggregate�:Composite

2.2.2 Operations

PointRate value(Collection<ActualRateParameter> parameters) value

parameters: Collection<ActualRateParameter>The parameters that iden-
tify the position on the rate curve.

Get the value at some point on the curve. The behavior of this method is sub-
interface defined.

2.3 BasicRateCurveNode

A non-leaf node on the curve tree. This node uses a LogicalRateParameterRe-
gion §2.7to split the curve’s domain into two branches, so that the correct segment
can be identified.

2.3.1 Relationships

Class Description Notes
* BasicRateCurveTree §2.2
BasicRateCurveNodeModel §4.4
*:Inherits #:Realized by

2.3.2 Operations

LogicalRateParameterRegion region() region

19

The region for the split. Returns the region that is used to determine which
branch of the tree to take.

BasicRateCurveTree insideBranch() insideBranch

The branch to take if the point is inside the region. Returns the tree branch to
take when the point is inside the region.

BasicRateCurveTree outsideBranch() outsideBranch

The branch to take if the point is outside the region. Returns the tree branch to
take when the point is outside the region.

PointRate value(Collection<ActualRateParameter> parameters) value

parameters: Collection<ActualRateParameter>The parameters that iden-
tify the position on the rate curve.
Raises:RateConstructorException

Get the value at some point on the curve. If the parameters when supplied to
the region’s inside operation return true, then return the result of the insideBranch
operation, valued with the supplied parameters. Otherwise, return the result of the
outsideBranch operation, valued with the supplied parameters.

If there is no inside or outside branch, raise a RateConstructorException.

2.4 BasicRateCurveSegment

A leaf node on the curve tree. A segment of the rate curve that can be represented
by a multivariate polynomial. A value is calculated by using the polynomial to
interpolate or extrapolate the parameters from some fixed point.

Each rate piece for each component of the rate is calculated separately. For ex-
ample, if a rate has bid and ask components and each component has base, forward
margin and corporate margin pieces, then 6 interpolations need to be made — one
for each combination of component and piece.

2.4.1 Relationships

Class Description Notes
* BasicRateCurveTree §2.2
BasicRateCurveSegmentModel §4.5
*:Inherits #:Realized by

20

2.4.2 Operations

Collection<ActualRateParameter> basePoint() basePoint

The base point of parameters. Returns a collection of actual parameters that
are used as the base point for interpolation/extrapolation.

Dictionary coefficients(String component, String piece) coefficients

component: String The component that is being interpolated. (Eg., bid,
ask, etc.)
piece: String The piece of the component that is being interpolated. (Eg.,
base, forward margin, etc.).

The polynomial coefficients. Returns a coefficient map that maps power in-
dices of the various parameters onto coefficients for the supplied component and
piece of component. If no coefficient map is explicitly supplied, the it returns nil.

For example, suppose the parameters werex andy and the polynomial repre-
sented was2x + xy � 5y + 3x2 + 1 and if we assume that the pairi; j represents
the power ofx and power ofy, respectively, then the coefficient map would be:
(0; 0) ! 1,
(0; 1) ! �5,
(0; 2) ! 0,
(1; 0) ! 2,
(1; 1) ! 1,
(1; 2) ! 0,
(2; 0) ! 3,
(2; 1) ! 0,
(2; 2) ! 0

PointRate value(Collection<ActualRateParameter> parameters) value

parameters: Collection<ActualRateParameter>The parameters that iden-
tify the position on the rate curve.

Get the value at some point on the curve.
Suppose there aren parameters, labelledx1; : : : ; xn and that the baseVector

operation returns a matching set of parameters,x0
1
; : : : ; x0n. Also suppose that the

coefficients for componentc, piecep are given byCcp
i1:::in

, whereij is the power of
thejth parameter. Then, if we setzi = xi � x0i , the value of componentc, piecep
is given by

�i1;:::;inC
cp
i1:::in

zi1
1
� � � zinn

21

2.5 FormalRateParameter

A description of a parameter required by a RateFunctionSpecifier §2.21. Logical
rate parameters describe the nature of a parameter, where it fits into a logical rate
specifier and the type of the parameter.

Parameters may be eithercontinuousor discrete. Continuous parameters take
values that can have ordinary arithmetic operations performed upon them. Discrete
parameters are enumerations that take on a range of discrete values. An example
continuous parameter is a date.4 An example discrete parameter is a currency.

FormalRateParameters obey value semantics, making them useful attributes
and keys.

2.5.1 Relationships

Class Description Notes
* Comparable
* ValueSemantics
* Identifiable
* Validatable
+ LogicalRateDateFormalParame-

ter §2.6
FormalRateParameterModel §4.7
$ ActualRateParameterModel §4.1 formalParameter

*:Inherits+:Inherited by #:Realized by $:Association!:Navigable�:Aggregate�:Composite

2.5.2 Operations

String identifier() identifier

The parameter identifier. Returns a formal parameter name for the parameter.
This name should match the regular expression[A-Za-z_][A-Za-z0-9_]* .

String description() description

4 Note that continuous parameters do not follow the normal mathematical definition of “contin-
uous.” Dates are integer-like, but they can be added and subtracted and, therefore, form the basis of
some interpolation method.

22

Long description of the parameter. Returns a long description of the parameter.
This description is intended as a human-friendly description of what the parameter
is intended for.

String type() type

The type of the parameter. Returns the string identifying the type of the param-
eter. This “type” refers to the behavior that the parameter is expected to exhibit.
In strongly-typed languages, such as C++ or Java, the type is the interface or class
of the parameter. In languages with no formal typing system, such as Smalltalk,
the type is essentially the set of methods that the parameter should respond to —
either a class or some more abstract, class-like entity. This string can be used for
“type” checking parameters, however in a language such as C++ this will require
extra work to get the class of the actual parameter.

Boolean isContinuous() isContinuous

The parameter described is continuous? Return true if this parameter is a con-
tinuous, as opposed to discrete, parameter.

Boolean equal(Comparable arg) equal

arg: Comparable
Equality test. Formal parameters are equal if their identifiers and types are

equal.

Reportable validate() validate

Is valid if identifier() matches the regular expression[A-Za-z_][A-Za-
z0-9_]* .

2.6 LogicalRateDateFormalParameter

An extension of the formal parameter structure for dates. Dates are continuous and
must have an attached date basis for day count calculations.

2.6.1 Relationships

Class Description Notes
* FormalRateParameter §2.5
*:Inherits

23

2.6.2 Operations

DateBasis dateBasis() dateBasis

The date basis for interpolation. Return the DateBasis that is to be used when
calculating day-counts, etc. for interpolation purposes.

Boolean isContinuous() isContinuous

The parameter described is continuous? Return true.

2.7 LogicalRateParameterRegion

Parameter regions are used to break a BasicRateCurve §2.16into a series of pieces.
The BasicRateCurveTree §2.2 uses a region to break the curve’s domain into two
pieces, which can then, in turn, be further broken into pieces until a segment is
reached.

Despite the name “region” and the use of the term “inside”, instances that im-
plement this interface will, most likely, represent a cut along a line or a plane.
Those points to the left of the line being inside the region and those to the right
being outside.

2.7.1 Relationships

Class Description Notes
+ Interval §2.8
RectangularRegionModel §4.24
$ BasicRateCurveNodeModel §4.4 region 0..n
$ Interval §2.8 intervals 1..n !

+:Inherited by #:Realized by $:Association!:Navigable�:Aggregate�:Composite

2.7.2 Operations

Boolean inside(Collection<ActualRateParameter> parameters) inside

parameters: Collection<ActualRateParameter>

Are these parameters inside the region? Test parameters to see whether the
parameter set falls inside the specified region or outside it. If the parameters fall
inside the region then return true, otherwise return false.

24

2.8 Interval

2.8.1 Relationships

Class Description Notes
* LogicalRateParameterRegion §2.7
* Identifiable
IntervalModel §4.9
$ LogicalRateParameterRegion §2.7 intervals 1..n
$ RectangularRegionModel §4.24 intervals
*:Inherits #:Realized by $:Association !:Navigable�:Aggregate�:Composite

2.9 Price

A price is a general interface for rates which are intended to be quoted as prices
for deals. In practice, almost all point rates can be used to quote a price. The Price
interface provides a mechanism for grouping any special quotation mechanisms
specific to the use of a rate in a deal.

2.9.1 Relationships

Class Description Notes
+ PointRate §2.10
+:Inherited by

2.9.2 Operations

Instrument buy(Instrument quantity) buy

quantity: Instrument The quantity to convert.
Raises:RateConversionException

Buy one instrument by paying some other instrument. This operation trans-
forms one instrument into an equivalent instrument at the rate set by this price.
This operation is bi-directional, since a price essentially represents an exchange
between an amount of the instrument and the secondary instrument. If argument
quantity is of the primary instrument, then the quantity is converted into the sec-
ondary instrument, and vice-versa.

“Buying” indicates that the user of this price is exchanging the other instrument
for the instrument provided in quantity. This distinction has relevance when a price
has a bid/ask spread.

A RateConversionException §5.2is raised if this rate cannot convert the instru-
ment.

25

Instrument sell(Instrument quantity) sell

quantity: Instrument The quantity to convert.
Raises:RateConversionException

Sell one instrument by paying another instrument. This operation transforms
one instrument into an equivalent instrument at the rate set by this price. This op-
eration is bi-directional, since a price essentially represents an exchange between
an amount of the instrument and the secondary instrument. If argument quantity is
of the primary instrument, then the quantity is converted into the secondary instru-
ment, and vice-versa.

“Selling” indicates that the user of this price is exchanging the instrument pro-
vided in quantity for the other instrument. This distinction has relevance when a
price has a bid/ask spread.

A RateConversionException §5.2is raised if this rate cannot convert the instru-
ment.

2.10 PointRate

A point rate is a rate for a single contract. A point rate can be used to convert a
suitable amount of one commodity into an amount of another commodity.

Point rates are built out of several components. Generally, there will always
be a bid and ask component, reflecting the spread between buy and sell. The mid
component is a derived component that reflects the mid-point between the bid and
ask rates. There may be other components for quotation purposes or other require-
ments.

Point rates exchange between two commodities. Although the exchange is no-
tionally symmetrical, the point rate distinguishes between theprimary commodity
and thesecondary commodity. Which commodity is the primary and which is the
secondary is determined by the conventions of usage: the primary commodity is
the commodity that would normally be regarded as that being traded; the secondary
commodity is the commodity that is being used to pay for the primary commodity.
For example, a bond price has the bond as a primary commodity and the currency
exchanged for it as the secondary commodity.

26

2.10.1 Relationships

Class Description Notes
* Rate §2.14
* Price §2.9
+ CrossPointRate §2.12
+ BasicPointRate §2.11
*:Inherits+:Inherited by

2.10.2 Operations

RateQuote bid() bid

The bid component. Return the bid component, the price at which the item
being traded will be bought at.

RateQuote ask() ask

The ask component. Return the ask component, the price at which the item
being traded will be sold at.

RateQuote mid() mid

The mid component. Return the mid component. The mid component is the
rate “halfway” between the bid and ask components. However, since the quotation
methods for rates can disguise non-linear effects (eg., interest rates), the mid rate
is not (necessarily) the mean of the two rates.

Instead, if amountx of the primary commodity in the rate relationship will buy
ybid of the secondary commodity at the bid rate andyask of the second commodity
at the ask rate, then the mid rate is that rate for whichx of the primary commodity
will buy (ybid + yask)=2 of the secondary commodity.

RateQuote quote(String quoteName) quote

quoteName: String
Get an arbitrary rate component.
Return the named component, if such a component is held or can be derived.

If no such component exists, return nil.

Commodity primaryCommodity() prima-
ryCommodityThe primary commodity. Return the commodity that this rate uses as the pri-

mary commodity.

Commodity secondaryCommodity() sec-
ondaryCommod-
ity

27

The secondary commodity. Return the commodity that this rate uses as the
secondary commodity.

Instrument buy(Instrument quantity) buy

quantity: Instrument The quantity to convert.
Raises:RateConversionException

Buy one quantity of an instrument by paying some other quantity of the instru-
ment. This operation transforms one quantity of a commodity into an equivalent
quantity of another commodity at the rate set by this rate. This operation is bi-
directional, since a rate essentially represents an exchange between an amount of
the primary commodity and the secondary commodity. If argument quantity is of
the primary commodity, then the quantity is converted into the secondary commod-
ity, and vice-versa.

If this rate is mine, the commodity is the primary commodity and the quantity
is greater than zero, use the bid rate. Any change of one of the listed characteristics
flips from bid to ask. Another change flips back from ask to bid.

The Instruments, in this case, must be SimpleCashflows. A RateConversionEx-
ception §5.2 is raised if this rate cannot convert the instrument.

Instrument sell(Instrument quantity) sell

quantity: Instrument The quantity to convert.
Raises:RateConversionException

Sell one quantity of an instrument by paying some other quantity of the instru-
ment. This operation transforms one quantity of a commodity into an equivalent
quantity of another commodity at the rate set by this rate. This operation is bi-
directional, since a rate essentially represents an exchange between an amount of
the primary commodity and the secondary commodity. If argument quantity is of
the primary commodity, then the quantity is converted into the secondary commod-
ity, and vice-versa.

If this rate is mine, the commodity is the primary commodity and the quantity
is greater than zero, use the ask rate. Any change of one of the listed characteristics
flips from ask to bid. Another change flips back from bid to ask.

The Instruments, in this case, must be SimpleCashflows. A RateConversionEx-
ception §5.2 is raised if this rate cannot convert the instrument.

2.11 BasicPointRate

A basic point rate is a point rate where the rate is directly specified, rather than as
a chain of commodity transformations, as in the CrossPointRate §2.12.

28

2.11.1 Relationships

Class Description Notes
* PointRate §2.10
BasicPointRateModel §4.2
*:Inherits #:Realized by

2.12 CrossPointRate

A cross point rate is a rate defined in terms of two other point rates with a com-
mon commodity. When buying or selling commodities, the commodity is first
transformed into an amount of the common commodity. The common commod-
ity amount is rounded to an intermediate value, and the intermediate value is then
transformed into an amount of the target commodity.

2.12.1 Relationships

Class Description Notes
* PointRate §2.10
*:Inherits

2.12.2 Operations

Commodity commonCommodity() commonCom-
modityThe common commodity. Return the commodity that is common to both the

primary leg and the secondary leg.

PointRate primaryLeg() primaryLeg

The primary/common leg. Return the rate that transforms between the primary
commodity and the common commodity.

PointRate secondaryLeg() secondaryLeg

The secondary/common leg. Return the rate that transforms between the sec-
ondary commodity and the common commodity.

2.13 QuotationMethod

A quotation method provides enough information to interpret the actual value of
a rate, in conjunction with a RateFunctionSpecifier §2.21. Quotation methods are

29

usually rate type specific. For example, discount rates normally apply to interest
rates, forward margins to FX rates, etc.

Quotation methods come in two forms:full andmargin. Full quotation meth-
ods mean that the rate pieces can be valued independently, as complete rates. Mar-
gin quotation methods mean that the rate pieces must be combined with another
rate for a complete rate to be built.

Each type of rate — interest rate, FX rate, etc. — has acanonical quotation
method, a standardized method for representing the rate.

2.13.1 Relationships

Class Description Notes
* Comparable
$ RatePieceModel §4.20 quotation

method 0..n
$ BasicRateDerivationSpecifier-

Model §4.6
quotationMethod

*:Inherits $:Association !:Navigable�:Aggregate�:Composite

2.13.2 Operations

Boolean isMargin() isMargin

Is this rate in margin form? Return true if this rate is a margin over another
rate, false otherwise.

Boolean isCanonical() isCanonical

Is this the canonical representation? Return true if this quotation method rep-
resents the canonical quotation method for this rate type.

String type() type

The type of rate that this rate is for. Returns a string giving the type of rate this
this quotation method can be used for.

See the RateFunctionSpecifier §2.21interface.

parse(InputStream stream, Boolean loose, RateFunctionSpecifier spec-
ifier) parse

stream: InputStream The stream to read the value from.
loose: BooleanPerform “loose” parsing. The default value is true.

30

specifier: RateFunctionSpecifierThe specifier to use when interpreting
this rate.
Raises:ParseException

Read in a text description of a rate and convert it into an appropriately quoted
rate. Read in a value from an input stream in whatever form this quotation method
accepts. Raise a ParseException if it is not possible to read the value.

If loose is true, then “loosely” parse the input stream; initial white space is ig-
nored, additional accuracy is accepted and sensibly inferable elements are inferred.

printRate(OutputStream stream, Number rate, Boolean loose, Rate-
FunctionSpecifier specifier) printRate

stream: OutputStream The stream to print onto.
rate: Number The rate to print.
loose: BooleanPrint the rate in “loose” format. The default value is false.
specifier: RateFunctionSpecifierThe specifier to use when interpreting
this rate.

Print a rate piece on an output stream. Print the rate in a form parseable by
the parse operation. If loose is true, then additional accuracy, above that normally
expected, can be printed.

Number asCanonical(Number rate, RateFunctionSpecifier specifier) asCanonical

rate: Number
specifier: RateFunctionSpecifierThe specifier to use when interpreting
this rate.
Raises:RateQuotationException

Convert a rate into the equivalent canonical quotation method. Convert the sup-
plied rate, assumed to be quoted in the form given by this quotation method into an
equivalent amount in the canonical quotation method. Raise a RateQuotationEx-
ception if it is not possible to convert the rate.

Number fromCanonical(Number rate, RateFunctionSpecifier specifier)
fromCanonical

rate: Number
specifier: RateFunctionSpecifierThe specifier to use when interpreting
this rate.
Raises:RateQuotationException

Convert a rate from canonical form into this quotation form. Convert a rate
supplied in the canonical quotation method into an equivalent rate in this quotation

31

method. Raise a RateQuotationException if it is not possible to convert the rate.

Boolean equal(Comparable arg) equal

arg: Comparable The comparable to test for equality.
Equality test. This equality test is defined by the concrete realizations of this

interface.

2.14 Rate

The rate interface covers anything that, abstractly, might be regarded as a rate. This
definition includes such “rates” as curves, surfaces, etc.

Rates are quoted at a specific time and have an expiry time. After the expiry
time, the rate is considered to bestale. Stale rates should be refreshed, if possible.

Rates are eitheryoursor mine, reflecting who is doing the quotation. If yours,
the rate has been supplied from some outside source. If mine, the rate has been
supplied from within the system.

2.14.1 Relationships

Class Description Notes
+ PointRate §2.10
+ RateCurve §2.15
$ ImpliedRateCurveModel §4.8 sources 0..n �

+:Inherited by $:Association !:Navigable�:Aggregate�:Composite

2.14.2 Operations

RateFunctionSpecifier specifier() specifier

The rate specifier for this rate. Return the rate specifier that describes this rate.

Timestamp quoteTime() quoteTime

The time at which this rate was quoted. Return the time at which this rate be-
came current. If this rate is derived from a basic derivation (see BasicRateDeriva-
tionSpecifier §2.19), then this is the time of quotation from the source. If this rate
is derived from an implied derivation (see ImpliedRateDerivationSpecifier §2.20),
then the quote time is when the implied rate was built.

Boolean isYours() isYours

32

Is this rate an external quotation? Return true if this rate is quoted as-if from
an outside source.

Timestamp expiry() expiry

The expiry time. Return the date and time at which this rate becomes stale.
Once a rate has become stale, it should be re-requested. Re-requesting applies to
one-shot, as well as stream rates (see RateSource §2.26).

Boolean isStale() isStale

Is this rate stale? Return true if the expiry date is not null and the current date
and time is after the (non-null) expiry date and time, false otherwise.

2.15 RateCurve

A rate curver represents some rate curve, surface or higher-order object that can be
interrogated, with sufficient parameters to give a point rate for some point within its
domain. The parameters used to construct rate curves must be continuous param-
eters (see FormalRateParameter §2.5); discrete parameters must be fixed before a
curve is constructed.

Rate curves are completely abstract. Specialized versions deal with the com-
mon cases of curves and surfaces.

Rate curve are assumed to be functional, in the sense that the curve will al-
ways return the same result from a value operation with the same parameters. The
functional condition implies that curve fold results can be cached or tabulated.

2.15.1 Relationships

Class Description Notes
* Rate §2.14
+ BasicRateCurve §2.16
+ ImpliedRateCurve §2.17
*:Inherits+:Inherited by

2.15.2 Operations

OrderedCollection<FormalRateParameter> formalParamaters() formalPara-
matersThe parameters of the curve. Return an ordered collection of the parameters of

the rate curve. This collection is the same as the curve formal parameters that the
specification holds.

33

PointRate value(Collection<ActualRateParameter> parameters) value

parameters: Collection<ActualRateParameter>The parameters that iden-
tify the position on the rate curve.

Get the value at some point on the curve . Return the point rate that corresponds
to the combination of the point actual parameters from the specifier and the actual
parameters supplied by the parameters argument. The parameter combination must
fix the specifier.

2.16 BasicRateCurve

Basic rate curve abstractly describe the process by which rates are interpolated or
extrapolated into a rate curve.n-dimensional rate curve are piece-wise interpolated
by the construction ofn-variable polynomials.

2.16.1 Relationships

Class Description Notes
* RateCurve §2.15
BasicRateCurveModel §4.3
*:Inherits #:Realized by

2.16.2 Operations

PointRate value(Collection<ActualRateParameter> parameters) value

parameters: Collection<ActualRateParameter>The parameters that iden-
tify the position on the rate curve.

Get the value at some point on the curve.
Construct the point rate by using the associated constructor.

BasicRateCurveTree constructor() constructor

The rate constructor.
Return the constructor tree used to build this rate.

2.17 ImpliedRateCurve

A variety of rate curve where the point rate is constructed by combining two or
more point rates given by component rate curves. The source rates need to be com-
bined together to form the resulting point, using a suitable RateConstructor §3.1.

34

Source rates can be point rates, as well as rate curve. As an example, a forward
FX rate implied from two yield curves needs a spot FX rate to use as a base rate.

2.17.1 Relationships

Class Description Notes
* RateCurve §2.15
ImpliedRateCurveModel §4.8
*:Inherits #:Realized by

2.17.2 Operations

PointRate value(Collection<ActualRateParameter> parameters) value

parameters: Collection<ActualRateParameter>The parameters that iden-
tify the position on the rate curve.

Get the value at some point on the curve. A point rate is constructed by first
getting point rates from the supplied source curves. The parameters for the source
curves must match the parameters required by the source rate curves and are con-
structed by combining the fixed parameters from this rate curve’s specifier and the
parameters supplied by the parameter argument.

The resulting source point rates are then supplied to the rate constructor’s con-
struct operation, to give a resultant point rate. The constructed rate must match the
yours/mine convention of the implied curve.

RateConstructor constructor() constructor

The rate constructor. Returns the rate constructor that is used to combine the
source point rates together to form the returned rate.

Collection<Rate> sources() sources

The source rates. Returns the source curve or point rates that are used as
sources to construct the rate.

Timestamp quoteTime() quoteTime

The time at which this rate was quoted. Return the maximum of the quote
times of all the source rates.

Timestamp expiry() expiry

The expiry time. Return the minimum of the expiry dates and times of all the
source rates.

35

2.18 RateDerivationSpecifier

A rate derivation specifier describes how a rate is to be constructed. There are two
main streams of derivation: basic rates and implied rates. Basic rates have a name
and a source and can be acquired from some external source of data. Implied rates
are constructed from other rates, using some construction methodology.

2.18.1 Relationships

Class Description Notes
* Comparable
+ BasicRateDerivationSpecifier §2.19
+ ImpliedRateDerivationSpecifier §2.20
*:Inherits+:Inherited by

2.19 BasicRateDerivationSpecifier

A basic rate derivation specifier acquires a rate by means of a rate source and a rate
name. The rate source is some external source of rates. The rate name is a string
key to the rate source that uniquely specifies the rate (in logical, contract terms)
that is required.

2.19.1 Relationships

Class Description Notes
* RateDerivationSpecifier §2.18
BasicRateDerivationSpecifier-

Model §4.6
*:Inherits #:Realized by

2.19.2 Operations

RateName rateName() rateName

The rate name for this rate. Returns the rate name that this rate is identified by.

RateSource rateSource() rateSource

The supplying rate source. Returns the source that supplies this rate.

Boolean equal(Comparable arg) equal

arg: Comparable The comparable to test for equality.

36

Equality test. Two basic rate derivations are equal if the rate sources and rate
names are equal.

QuotationMethod quotationMethod() quotation-
MethodThe way in which the externally supplied rate will be quoted.

2.20 ImpliedRateDerivationSpecifier

An implied rate derivation specifier indicates that a rate is constructed in terms
of a set of source rates, which can be combined together to build another rate.
An example implied rate derivation is the building of a bond price from the bond
definition and a yield curve.

2.20.1 Relationships

Class Description Notes
* RateDerivationSpecifier §2.18
*:Inherits

2.20.2 Operations

OrderedCollection<RateDefinitionSpecifier> sources() sources

The source rates. Returns a collection of source rate specifiers that this method
requires to build the rate. This collection will be the same as the specifiers returned
by constructor().sources().

RateConstructor constructor() constructor

The rate constructor. Returns the rate constructor that can be used to build the
implied rate.

Boolean equal(Comparable arg) equal

arg: Comparable The comparable to test for equality.
Equality test. Two implied rate derivations are equal if the sources are equal

and the constructors are identical.

37

2.21 RateFunctionSpecifier

A rate function specifier is an abstract description of the unit contract that a rate
describes. That is, it specifies what the rate can be used to do, without saying
anything about how the rate is derived.

A rateFunctionSpecifier is characterised by a ’type’ which specifies the type of
the rate (exchange rate, interest rate etc), a set of curveParameters, which specify
what rate curve the rate is on (e.g. the USD/DEM exchange rate curve or the
USD yield curve), and a set of point parameters which specify a specific point
along the rate curve (e.g. the 1 month point along the USD yield curve). A rate
functionSpecifier must have its type and curve parameters specified. If the point
parameters are not specified, then the rateFunctonSpecifier represents a whole rate
curve, rather than a single point along it.

RateFunctionSpecifiers are used as part of a rate: Each rate needs to know what
kind of rate it is.

Example rate function specifiers:

FX rate Commodity currency, counter currency, forward date. Without a forward
date specified, the rate is a curve over a series of forward dates.

Interest rate Currency, location of origin (for bonds), party (for loans), from-date,
to-date.

Exchange traded option price Option contract, expiry date, strike price, exchange.

Futures volatility Futures contract, delivery date, price. Without specified deliv-
ery dates and prices, this becomes a “smile” surface. Alternately, the price
can be defined as a function of the delivery date, eg.p = 99:23 + (d �
‘21-Jan-2000’) � 0:01 to provide a complex forward curve.

2.21.1 Relationships

Class Description Notes
* Comparable
+ RateDefinitionSpecifier §2.22
*:Inherits+:Inherited by

2.21.2 Operations

Collection<FormalRateParameter> curveFormalParameters() curveFormalPa-
rameters

38

The possible parameters for this rate specifier. These formal parameters define
the data required to specifiy a curve for the rate. Returns a collection of the formal
parameters that give the possible parameters that may be fixed by this specifier.

Collection<ActualRateParameter> curveActualParameters() curveActualPa-
rametersThe set of parameters for this specifier. These parameters define a curve for the

rate. Returns a collection of parameters that describe this specifier.

String type() type

The type of rate that this specifier specifies. Returns a string identifying the
type of rate that this logical rate specifier specifies. Examples are ‘Interest Rate’ or
‘FX Rate’.

If the language being used supports some form of interned string class (eg.,
Smalltalk’s Symbols or Java’s intern() method) then return an interned string.

See QuotationMethod §2.13.

Boolean equal(Comparable arg) equal

arg: Comparable The comparable to test for equality.
Equality test. A rate function specifier is equal to another rate function spec-

ifier if both refer to the same unit contract. A rate function specifier is equal to a
non-rate function specifier if the specification, quotation method and derivations
are all equal.

Collection<FormalRateParameter> pointFormalParameters() pointFormalPa-
rametersThe possible parameters for this rate specifier. These formal parameters define

the data required to specifiy a point on a curve for the rate. Returns a collection of
the formal parameters that give the possible parameters that may be fixed by this
specifier.

Collection<ActualRateParameter> pointActualParameters() pointActualPa-
rametersThe set of parameters for this specifier. These parameters define a point rate on

a curve. Returns a collection of parameters that describe this specifier.

2.22 RateDefinitionSpecifier

RateDefinitionSpecifiers are used for two distinct purposes:

39

(i) They are used to define rates in reference data. For example, a rate may
be available from an external source, identified by a string (its rate name). In
this case a rateDefinitionSpecifier can be used to specify how that external rate(a
simple number) is interpreted. RateDefinitionSpecifiers can also be used to specify
implied rates, which are calculated from other rates. if used for this purpose, the
derivationMethod must not be null.

(ii) RateDefinitionSpecifiers are also used to request rates from a rate manager.
When a rate is required, we may want to specify the rate derivation method, as
well as the rate’s function. For instance, we may be specifically interested in the
JPY yield curve implied by the USD yield curve, and the USD.JPY exchange rate
curve, rather than just wanting any available JPY yield curve. For this purpose
the curveParameters of the RateFunctionSpecifier must all be non-nil. The point
parameters can either all be nil (in which case a curve is requested) or all non-
nil. The derivationMethod can be nil, in which case the request may return any
appropriate rate, irrespective of how it is derived.

2.22.1 Relationships

Class Description Notes
* RateFunctionSpecifier §2.21
*:Inherits

2.22.2 Operations

RateDerivationSpecifier derivationMethod() derivation-
MethodThis is the method by which the specified rate is derived. If the specified rate

is a point rate supplied by another system, then this will be a BasicRateDerivation-
Specifier, specifying the rate source, a rate name (identifier string) and quotation
method. If this rate is an implied rate calculated from other rates, then the deriva-
tionmethod will be an ImpliedRateDerivationSpecifier which lists the source rates
and the calculation method. This RateDefinitionSpecifier may also specify a rate
curve, in which case the derivationMethod will also be an ImpliedRateDerivation-
Specifier.

RateFunctionSpecifier rateFunctionSpecifier() rateFunction-
SpecifierReturn the RateFunctionSpecifier implicit in the receiver. That is, construct a

RateFunctionSpecifier with the same type and parameters as the receiver.

40

Code Description
{ The { character itself
e Maturity date
d Maturity day
m Maturity month
y Maturity year
p Maturity (to) period.
f Start (from) period
s Strike price
o Option put/call code

Table 1: Rate Name Codes

2.23 RateName

A rate name is a logical specification of a key, usable by some RateSource §2.26.
Rate names map a logical rate description, in the form of a RateFunctionSpeci-
fier §2.21onto a string key that can be supplied to some external source of rates.
Since many financial instruments are described in terms of series of contracts, some
form of pattern-based naming is needed.

As a simple example, the USD interest rate for today to 1 year might be given
by asking for ’USD1YD=’ from some external rate source. As a more complex
example, a series of futures contracts might be expressed as ’FJM{m}{y}’ where
the {y} and {m} elements represent year and month specifications for a particular
contract.

RateNames are essentially strings with special properties and, therefore, have
value semantics and inherit the ValueSemantics interface. The strings contain em-
bedded escape sequences for elements that need to be filled out by appropriate
encoders and decoders. The escape sequences begin with the { character, and end
with the } character. Within the {} pair is the code for the portion of the specifier
that is to be included. The codes are summarised in table1.5

Two codes may be joined together into a code that combines the characteristics
of both elements by placing more that one code between the braces. For example,
the code {om} combines the option put/call code and the maturity month into a
single symbol; a process used by Reuters ETO RIC codes.

The codes used are highly source- and instrument-specific. The coders and de-
coders for a particular source (see RateNameCoder §3.2and RateNameDecoder §3.3)
need to map the patterns to and from specific codes.

5 This code table may be expanded by further instruments.

41

2.23.1 Relationships

Class Description Notes
* Validatable
* ValueSemantics
* Comparable
RateNameModel §4.19
*:Inherits #:Realized by

2.23.2 Operations

String rateName() rateName

The rate name pattern. Return a string that contains the rate name pattern.

Reportable validate() validate

A rate name is valid if all codes within the {} braces are valid codes, as given
in the code table.

Boolean equal(Comparable arg) equal

arg: Comparable The comparable to test for equality.
Equality test. Two rate names are equal if the rateName() operation returns the

same string for both objects.

2.24 RatePiece

A rate piece expresses one part of a rate, either some full value or a margin on that
value. Rate pieces obey ValueSemantics, making them suitable attributes.

2.24.1 Relationships

Class Description Notes
* Identifiable
* ValueSemantics
RatePieceModel §4.20
*:Inherits #:Realized by

42

2.24.2 Operations

QuotationMethod quotationMethod() quotation-
MethodThe quotation method. Return the quotation method that is used to express this

rate.

Number value() value

The rate piece. Return the value for this rate.

RatePiece sum(RatePiece arg, String name, RateFunctionSpecifier spec-
ifier) sum

arg: RatePieceThe rate piece to add to this value.
name: String The new identifier for the combined value.
specifier: RateFunctionSpecifier
Raises:RateQuotationException

The sum of two rate pieces. Return the rate piece that would be the sum of this
rate piece and the arg rate piece. The resulting rate piece has an identifier of name.
The two rate pieces must have compatible quotation methods; a RateQuotationEx-
ception is raised if the two quotation methods are incompatible.

2.25 RateQuote

A rate quote consists of a single part of a rate: bid, ask, mid, last, etc. Quotes are
identified by the part they represent, usually an all-lower-case name, interned, if
possible.

Each quote is built from a base rate, which must have a full quotation method
and a series of margins, which must have a margin quotation method. The sum of
the base rate and all the margins makes the total rate. A quote may beincomplete,
indicating that it does not have a base rate.

2.25.1 Relationships

Class Description Notes
* Identifiable
* Validatable
RateQuoteModel §4.21
$ BasicPointRateModel §4.2 quotes 1..1 �

*:Inherits #:Realized by $:Association !:Navigable�:Aggregate�:Composite

43

2.25.2 Operations

RatePiece base() base

Return the base rate piece. Return the base rate onto which all other margin
rates are added. If there is no base rate, return nil.

RatePiece total(RateFunctionSpecifier specifier) total

specifier: RateFunctionSpecifier
Return the total rate piece. Return the sum of the base rate and all margins.

RatePiece margin(String name) margin

name: String The name of the margin component.
Return the margin for a specific margin element. Return the value of the named

margin, if one exists, return nil otherwise.

Boolean isComplete() isComplete

Is this quote completely specified? Return true if the quote has a base rate.

2.26 RateSource

A rate source describes a source of rate data. Rate sources are generally named and
associated with some form of plug-in component that can interface with the outside
source of data. Example rate sources would be a TCP/IP rate feed, a database table
or a spreadsheet.

Rate sources can be eitherstreamrate sources orone-shotrate sources. Stream
rate sources feed a continuous stream of updates of a rate for the life of the rate.
One-shot rate sources provide a single rate, semi-static in nature. One-shot rates
are not intended to be completely static, just largely static. It is possible that new
values of one-shot rates will need to be read, for example, when the processing
date changes.

44

2.26.1 Relationships

Class Description Notes
* Comparable
* Identifiable
RateSourceModel §4.22
RateSourceReferenceData-

Model §4.23
$ BasicRateDerivationSpecifier-

Model §4.6
rate source 0..n

$ RateSourceReferenceData-
Model §4.23

model 0..1

*:Inherits #:Realized by $:Association !:Navigable�:Aggregate�:Composite

2.26.2 Operations

Boolean isStream() isStream

Is this a stream rate source? Return true if this rate source provides a continu-
ous stream of updates, false otherwise.

RateNameCoder coder() coder

The coder to use when constructing rate names. Return the coder to use when
converting parameterized rate names into keys acceptable to this external rate source.

RateNameDecoder decoder() decoder

The decoder to use when interpreting rate names. Return the decoder to use
when converting rate names into logical rate specifiers.

Boolean equal(Comparable arg) equal

arg: Comparable The comparable to test for equality.
Equality test. Two rate sources are equal if the names of both sources are equal.

3 Service Interfaces

3.1 RateConstructor

A rate constructor takes a collection of rates and builds a new rate from the input

45

collection. Rate constructors can take many forms, and may be implemented as
pluggable components.

3.1.1 Relationships

Class Description Notes
$ ImpliedRateCurveModel §4.8 constructor 0..n

$:Association !:Navigable�:Aggregate�:Composite

3.1.2 Operations

Rate construct(OrderedCollection<Rate> sources) construct

sources: OrderedCollection<Rate>The rates used to build the new rate.
The rates in this collection must have the same ordering as the specifiers
given by the sources operation.
Raises:RateConstructorException

Build the rate. Take the supplied set of sources (which may be incomplete) and
attempt to construct a result rate. If a rate cannot be constructed, raise a RateCon-
structorException.

OrderedCollection<RateDefinitionSpecifier> sources() sources

The sources used to build a rate. Return the collection of rate specifiers needed
to build this rate. These rate specifiers are RateDefinitionSpecifiers, rather than
RateFunctionSpecifiers, since this will allow us to specify the use of rates derived
in a particular way. The derivationMethod does not have to be specified if this is
irrelevant.

RateFunctionSpecifier result() result

The output rate specification. Return the logical specification for the rate that
this constructor constructs.

3.2 RateNameCoder

Certain rate names are in the form of patterns, giving a general description for a
class of rate names, which need to be filled-out by the exact nature of the contract
involved. These patterns use a RateNameCoder to convert the pattern, in conjunc-
tion with a RateFunctionSpecifier §2.21into an acceptable rate name. (Similarly, a
RateNameDecoder §3.3converts supplied rate names into logical rate specifiers.)

46

The exact nature of a coder is dependent on the nature of the rate feed that is
being handled and the type of rates being requested. As such, a coder needs to be
supplied in the form of a pluggable component.

Eg.
For a Reuters feed, a Rate Name may be expressed as simple string such DEM=
for the Deutchemark Spot rate or as a parameterized string such as ZBmy where:
ZB is the code for British Pounds on the Philadelphia Board of Trade,
m is the Month (See Reuters manuals for codes. eg. F = Jan .. Z = Dec for Futures
contracts
y is the last digit of the year, eg. 2001 = 1
The values for m and y would be supplied by the RateFunctionSpecifier §2.21

3.2.1 Relationships

Class Description Notes
$ RateSourceModel §4.22 encoding 0..n

$:Association !:Navigable�:Aggregate�:Composite

3.2.2 Operations

String encode(RateNameCoder rateName, RateFunctionSpecifier spec-
ifier) encode

rateName: RateNameCoderThe rate name to encode.
specifier: RateFunctionSpecifierThe logical rate specifier to use for pa-
rameter interpretation.
Raises:RateNameException

Convert a rate name into a suitable key string. Convert the supplied rate name
into a completely specified key intelligible to the associated rate source. Any pa-
rameters used within the rate name are expanded using the supplied rate specifier.

3.3 RateNameDecoder

Certain rate names are in the form of patterns, giving a general description for
a class of rate names. When a rate is received from a rate feed, it needs to be
decoded so that the incoming rate can be matched to a suitable logical rate (See
RateFunctionSpecifier §2.21).

A RateNameDecoder matches the supplied key against all the possible Rate-
Names §2.23 and returns the matching logical rate specifier. (Similarly, a Rate-

47

NameCoder §3.2 converts logical rate specifiers and rate names into complete
keys.)

The implementation of a RateNameDecoder is likely to be quite difficult. In
theory, the decoder needs to know about all possible traded contracts which get
information from the associated feed and implement some sort of matching algo-
rithm. In addition, the decoder needs to be able to handle the pattern-based rate
names that are used to specify families of contracts.

The exact nature of a decoder is dependent on the nature of the rate feed that is
being handled and the type of rates being requested. As such, a decoder needs to
be supplied in the form of a pluggable component.

Eg.
A value from the Reuters feed could be: ZBZ1 123.456 The decoder will have to
recognize the ZBZ1 as the RIC code for the value being quoted and then link this
back to a RateFunctionSpecifier §2.21that cause the original rate request.

3.3.1 Relationships

Class Description Notes
$ RateSourceModel §4.22 decoding 0..n

$:Association !:Navigable�:Aggregate�:Composite

3.3.2 Operations

RateFunctionSpecifier decode(String key) decode

key: String The string used to identify the rate.
Raises:RateNameException

Decode a rate key string. Convert the incoming rate string into a matching
RateFunctionSpecifier §2.21.

4 Classes

4.1 ActualRateParameterModel

48

4.1.1 Relationships

Class Description Notes
" ActualRateParameter §2.1
$ FormalRateParameter §2.5 formalParameter !

":Realizes $:Association !:Navigable�:Aggregate�:Composite

4.1.2 Attributes

value: Object

4.2 BasicPointRateModel

A concrete implementation of the BasicPointRate interface where the various rate
components are modeled as a collection of one or more components. Subclasses
of this class provide specific information on commodities and transformations.

4.2.1 Relationships

Class Description Notes
" BasicPointRate §2.11
$ RateQuote §2.25 quotes 1..n !

":Realizes $:Association !:Navigable�:Aggregate�:Composite

4.2.2 Attributes

specifier: RateFunctionSpecifier The specifier for the rate.

quoteTime: Timestamp The time at which the rate was quoted

isYours: Boolean True if this rate is quoted from the external perspective.

expiry: Timestamp The expiry date and time. Can be null.

4.2.3 Operations

RateQuote quote(String quoteName) quote

quoteName: String

Get an arbitrary rate component. Search the associated list of components for
a component with the same identifier as the supplied component argument. Return
nil if not found.

49

RateQuote bid() bid

The bid component. Return quote identified by ’bid’

RateQuote ask() ask

The bid component. Return quote identified by ’bid’

4.3 BasicRateCurveModel

A concrete implementation of the BasicRateCurve interface. The model is con-
structed by building a curve tree which can be searched to build the appropriate
point rate.

4.3.1 Relationships

Class Description Notes
" BasicRateCurve §2.16
$ BasicRateCurveTree §2.2 constructor 1..1 !

":Realizes $:Association !:Navigable�:Aggregate�:Composite

4.3.2 Attributes

specifier: RateFunctionSpecifier The specifier for the rate.

isYours: Boolean True if this rate is quoted from the external perspective.

quoteTime: Timestamp

expiry: Timestamp

4.4 BasicRateCurveNodeModel

A concrete implementation of the BasicRateCurveNode interface. The elements of
the interface are implemented as associations.

4.4.1 Relationships

Class Description Notes
" BasicRateCurveNode §2.3
$ LogicalRateParameterRegion §2.7 region 1..1 !

$ BasicRateCurveTree §2.2 inside 0..1 !

$ BasicRateCurveTree §2.2 outside 0..1 !

":Realizes $:Association !:Navigable�:Aggregate�:Composite

50

4.4.2 Operations

LogicalRateParameterRegion region() region

The region for the split. When the curve tree is being constructed each Segment
is tested against this region. If the segment is "inside" the region then it is added
to this node’s insideBranch otherwise it it added to the outsideBranch Return the
associated region.

4.5 BasicRateCurveSegmentModel

A concrete implementation of the BasicRateCurveSegment interface. The base
point and coefficient matrix are kept as dictionaries of parameters.

4.5.1 Relationships

Class Description Notes
" BasicRateCurveSegment §2.4
":Realizes

4.5.2 Attributes

basePoint: Collection<ActualRateParameter> The collection of base values.
For a region that is based on the RectangularRegionModel classes this will
be the point that is closest to -1 coordinates. For example for a 1-D line
defined by:

((3), (5))
it would be (3).

For a 2d region define by the rectangular region:
(2,3),
(2,6),
(4,3),
(4,6)
it would be the point: (2,3).

For a 3-D region defined by the cube with corners:

(-10,1,2), (-10,1,3), (-10,3,2), (-10,3,3),
(2,1,2), (2,1,3), (2,3,2), (2,3,3),

51

it would be the point: (-10,1,2).

For a rectangle based region model the method for finding the base point is
to sort the coordinates in ascending order by each of their ordinates and then
taking the first one in the list. (eg for a 3-D system, order by x,y,z and take
the first one).

coefficients: Dictionary A dictionary that mapsc� p� i1� � � �� in ! v where
c is the component name,p is the piece name,ij is the power of thejth

parameter andv is the coefficient value.

This dictionary is likely to be sparse.

4.6 BasicRateDerivationSpecifierModel

An implementation of the BasicRateDerivationSpecifier interface.

4.6.1 Relationships

Class Description Notes
" BasicRateDerivationSpecifier §2.19
$ RateSource §2.26 rate source 1..1 !

$ QuotationMethod §2.13 quotationMethod
1..1

!

":Realizes $:Association !:Navigable�:Aggregate�:Composite

4.6.2 Attributes

rateName: RateName The name of the rate.

4.6.3 Operations

RateSource rateSource() rateSource

The supplying rate source. Return the associated rate source.

4.7 FormalRateParameterModel

4.7.1 Relationships

Class Description Notes
" FormalRateParameter §2.5
":Realizes

52

4.7.2 Attributes

identifier: String

description: String

type: String

isContinuous: String

4.8 ImpliedRateCurveModel

A concrete implementation of the ImpliedRateCurve interface. Underlying an im-
plied rate is the collection of rates that are used to construct the implied rate and a
constructor that build the resulting rate.

4.8.1 Relationships

Class Description Notes
" ImpliedRateCurve §2.17
$ Rate §2.14 sources 1..n !

$ RateConstructor §3.1 constructor 1..1 !

":Realizes $:Association !:Navigable�:Aggregate�:Composite

4.8.2 Attributes

specifier: RateFunctionSpecifier The specifier for the rate.

isYours: Boolean True if this rate is quoted from the external perspective.

4.8.3 Operations

Reportable validate() validate

Validate the object.
An implied rate curve must be consistent in the sense that the source rates can

be queried in such a way as to give the correct point rates for the rate constructor.

53

4.9 IntervalModel

4.9.1 Relationships

Class Description Notes
" Interval §2.8
+ InfiniteInfiniteIntervalModel §4.14
+ InfiniteClosedIntervalModel §4.13
+ InfiniteOpenIntervalModel §4.15
+ ClosedInfiniteIntervalModel §4.11
+ OpenInfiniteIntervalModel §4.17
+ OpenOpenIntervalModel §4.18
+ OpenClosedIntervalModel §4.16
+ ClosedClosedIntervalModel §4.10
+ ClosedOpenIntervalModel §4.12
InfiniteInfiniteIntervalModel §4.14
InfiniteClosedIntervalModel §4.13
InfiniteOpenIntervalModel §4.15
ClosedInfiniteIntervalModel §4.11
OpenInfiniteIntervalModel §4.17
OpenOpenIntervalModel §4.18
OpenClosedIntervalModel §4.16
ClosedClosedIntervalModel §4.10
ClosedOpenIntervalModel §4.12
+:Inherited by":Realizes#:Realized by

4.10 ClosedClosedIntervalModel

4.10.1 Relationships

Class Description Notes
* IntervalModel §4.9
" IntervalModel §4.9
*:Inherits ":Realizes

4.10.2 Attributes

lowerBoundary: Comparable Lower boundary of the interval.

upperBoundary: Comparable Upper boundary of the interval.

54

4.10.3 Operations

Boolean inside(ActualRateParameter parameter) inside

parameter: ActualRateParameter
Return True if:

lowerBoundary � parameter � upperBoundary

4.11 ClosedInfiniteIntervalModel

4.11.1 Relationships

Class Description Notes
* IntervalModel §4.9
" IntervalModel §4.9
*:Inherits ":Realizes

4.11.2 Attributes

lowerBoundary: Comparable Lower boundary of the interval.

4.11.3 Operations

Boolean inside(ActualRateParameter parameter) inside

parameter: ActualRateParameter
Return True if:

lowerBoundary � parameter

4.12 ClosedOpenIntervalModel

4.12.1 Relationships

Class Description Notes
* IntervalModel §4.9
" IntervalModel §4.9
*:Inherits ":Realizes

4.12.2 Attributes

lowerBoundary: Comparable Lower boundary of the interval.

upperBoundary: Comparable Upper boundary of the interval.

55

4.12.3 Operations

Boolean inside(ActualRateParameter parameter) inside

parameter: ActualRateParameter

Return True if:
lowerBoundary � parameter < upperBoundary

4.13 InfiniteClosedIntervalModel

4.13.1 Relationships

Class Description Notes
* IntervalModel §4.9
" IntervalModel §4.9
*:Inherits ":Realizes

4.13.2 Attributes

upperBoundary: Comparable Upper boundary of the interval.

4.13.3 Operations

Boolean inside(ActualRateParameter parameter) inside

parameter: ActualRateParameter

Return true if:
parameter � upperBoundary

4.14 InfiniteInfiniteIntervalModel

4.14.1 Relationships

Class Description Notes
* IntervalModel §4.9
" IntervalModel §4.9
*:Inherits ":Realizes

4.14.2 Operations

Boolean inside(ActualRateParameter parameter) inside

parameter: ActualRateParameter

56

Return True.
Every point is inside the infinite-infinite boundary.

4.15 InfiniteOpenIntervalModel

4.15.1 Relationships

Class Description Notes
* IntervalModel §4.9
" IntervalModel §4.9
*:Inherits ":Realizes

4.15.2 Attributes

upperBoundary: Comparable Upper boundary of the interval.

4.15.3 Operations

Boolean inside(ActualRateParameter parameter) inside

parameter: ActualRateParameter

Return true if:
parameter < upperBoundary

4.16 OpenClosedIntervalModel

4.16.1 Relationships

Class Description Notes
* IntervalModel §4.9
" IntervalModel §4.9
*:Inherits ":Realizes

4.16.2 Attributes

lowerBoundary: Comparable Lower boundary of the interval.

upperBoundary: Comparable Upper boundary of the interval.

57

4.16.3 Operations

Boolean inside(ActualRateParameter parameter) inside

parameter: ActualRateParameter
Return true if:

lowerBoundary < parameter � upperBoundary

4.17 OpenInfiniteIntervalModel

4.17.1 Relationships

Class Description Notes
* IntervalModel §4.9
" IntervalModel §4.9
*:Inherits ":Realizes

4.17.2 Attributes

lowerBoundary: Comparable Lower boundary of the interval.

4.17.3 Operations

Boolean inside(ActualRateParameter parameter) inside

parameter: ActualRateParameter
Return True if:

lowerBoundary < parameter

4.18 OpenOpenIntervalModel

4.18.1 Relationships

Class Description Notes
* IntervalModel §4.9
" IntervalModel §4.9
*:Inherits ":Realizes

4.18.2 Attributes

lowerBoundary: Comparable Lower boundary of the interval.

upperBoundary: Comparable Upper boundary of the interval.

58

4.18.3 Operations

Boolean inside(ActualRateParameter parameter) inside

parameter: ActualRateParameter

Return True if:
lowerBoundary < parameter < upperBoundary

4.19 RateNameModel

A concrete implementation of the RateName interface.

4.19.1 Relationships

Class Description Notes
" RateName §2.23
":Realizes

4.19.2 Attributes

rateName: String The rate name.

4.20 RatePieceModel

A concrete implementation of the RatePiece interface.

4.20.1 Relationships

Class Description Notes
" RatePiece §2.24
$ QuotationMethod §2.13 quotation

method 1..1
!

":Realizes $:Association !:Navigable�:Aggregate�:Composite

4.20.2 Attributes

identifier: String The name of the rate piece.

value: Number The value of the rate piece.

59

4.21 RateQuoteModel

A basic implementation of the RateQuote interface. This model describes a rate in
terms of a single base value and a series of margins over that base value.

4.21.1 Relationships

Class Description Notes
" RateQuote §2.25
":Realizes

4.21.2 Attributes

identifier: String The quote name.

base: RatePiece The base rate piece (may be nil).

margins: Collection<RatePiece> A collection of RatePieces. This attribute may
be implemented as a dictionary-like collection.

4.21.3 Operations

RatePiece margin(String name) margin

name: String The name of the margin component.

Return the margin for a specific margin element. Return the matching value
from the margins collection that has the same identifier as the margin argument.

Boolean validate() validate

An item is valid if:

� Each element of the margins collection has a different identifier and must be
in margin form.

� No element of the margins collection may have the same identifier as the
base value

� The base attribute value may not be in margin form.

.

60

4.22 RateSourceModel

A concrete implementation of the RateSource interface.

4.22.1 Relationships

Class Description Notes
" RateSource §2.26
$ RateNameDecoder §3.3 decoding 1..1 !

$ RateNameCoder §3.2 encoding 1..1 !

":Realizes $:Association !:Navigable�:Aggregate�:Composite

4.22.2 Attributes

identifier: String The unique identifier for the rate source.

stream: Boolean Is this a stream source?

4.23 RateSourceReferenceDataModel

An implementation of the RateSource interface that is a subclass of Reference-
DataModel, so that rate sources can be managed by the reference data systems.
This class holds an instance of a RateSource and delegates all RateSource queries
to the held model.

4.23.1 Relationships

Class Description Notes
* ReferenceDataModel
" RateSource §2.26
$ RateSource §2.26 model 1..1 !

*:Inherits ":Realizes $:Association !:Navigable�:Aggregate�:Composite

4.24 RectangularRegionModel

The region consists of rectangular regions. The use of the description ’rectangular’
region is somewhat misleading. This is actually a type of hyper rectangles. In 1-D
the larger region being defined is a curve and the RectangularRegionModel holds a
collection of 1 Interval that defines the end points of a line. In 2-D the larger region
is a surface and this model holds a pair of Interval objects that define the boundaries
of a rectangle. In 3D the model holds an interval triplet that define a rectangular
prism. In an n-D curve there will be n intervals that define an n-D rectangle .

61

4.24.1 Relationships

Class Description Notes
" LogicalRateParameterRegion §2.7
$ Interval §2.8 intervals 1..n !

":Realizes $:Association !:Navigable�:Aggregate�:Composite

5 Exceptions

5.1 RateConstructorException

An exception raised when a rate constructor is unable to construct a rate, either
through some error in the supplied sources, through some missing information or
through the sources being outside the domain of application.

5.1.1 Operations

RateConstructor constructor() constructor

The constructor. Returns the constructor that was attempting to build the rate.

Collection<Rate> sources() sources

The source rates. Returns the sources that were being used to build the rate.

String description() description

A description of the error. Returns a description of the error that has occurred.

5.2 RateConversionException

An exception that is raised when a price or rate cannot convert a supplied Instru-
ment.

5.2.1 Operations

Instrument instrument() instrument

The instrument that could not be converted.

Price price() price

The rate or price that was attempting to perform the conversion.

62

5.3 RateNameException

An exception raised when a RateName §2.23 is being expanded with escape se-
quence information.

5.3.1 Operations

RateName rateName() rateName

The rate name. Returns the rate name that caused the exception to be raised.

RateNameCoder coder() coder

The coder for the rate name. Returns the coder that was attempting to expand
the rate name.

Integer position() position

The position where the error occurred. Returns the position within the rate
name string that caused the error to occur. If the error was caused by an attempt
to expand an escape sequence (usually the case), then the position points to the
opening brace ({) of the sequence.

5.4 RateQuotationException

An exception raised when a quotation method cannot be sensibly used, usually
while converting to another quotation method.

5.4.1 Operations

QuotationMethod source() source

The source quotation method. Returns the quotation method that the rate was
initially quoted in terms of. Returns nil if there is no source quotation method.

QuotationMethod target() target

The target quotation method. Returns the quotation method that the rate was
begin converted to. Returns nil if there is no target quotation method.

Number rate() rate

The rate being converted. Returns the number that the quotation method could
not convert.

63

5.5 RateSpecificationException

This exception is raised if it is not possible to derive some constrained parameter
from rate specification and a set of parameters.

5.5.1 Operations

ActualRateParameter parameter() parameter

The parameter being derived. Returns the parameter that raised this exception.

RateFunctionSpecifier specifier() specifier

The specifier that could not be satisfied. Returns the specifier that could not be
used to fix this parameter.

6 Associations

Table 2: Basic Rates— Associations

Association
Role Class Card. Notes

constructor
constructor BasicRateCurveTree §2.2 1..1 !

curve BasicRateCurveModel §4.3 0..n
region

region LogicalRateParameterRegion §2.7 1..1 !

tree BasicRateCurveNodeModel §4.4 0..n
sources

source Rate §2.14 1..n !

requesting rate ImpliedRateCurveModel §4.8 0..n �

quotation method
quotation method QuotationMethod §2.13 1..1 !

rate piece RatePieceModel §4.20 0..n
rate source

source RateSource §2.26 1..1 !

basic derivation BasicRateDerivationSpecifier-
Model §4.6

0..n

decoding

64

Table 2: . . . continued

Association
Role Class Card. Notes
decoder RateNameDecoder §3.3 1..1 !

source RateSourceModel §4.22 0..n
encoding

encoder RateNameCoder §3.2 1..1 !

source RateSourceModel §4.22 0..n
model

model RateSource §2.26 1..1 !

wrapper RateSourceReferenceData-
Model §4.23

0..1

constructor
constructor RateConstructor §3.1 1..1 !

implied rate ImpliedRateCurveModel §4.8 0..n
inside

inside branch BasicRateCurveTree §2.2 0..1 !

tree BasicRateCurveNodeModel §4.4 0..n
outside

outside branch BasicRateCurveTree §2.2 0..1 !

tree BasicRateCurveNodeModel §4.4 0..n
quotes

quote RateQuote §2.25 1..n !

rate BasicPointRateModel §4.2 1..1 �

intervals
Interval §2.8 1..n !

LogicalRateParameterRegion §2.7 1..n
intervals

Interval §2.8 1..n !

RectangularRegionModel §4.24
formalParameter

FormalRateParameter §2.5 !

ActualRateParameterModel §4.1
quotationMethod

QuotationMethod §2.13 1..1 !

BasicRateDerivationSpecifier-
Model §4.6

!:Navigable�:Aggregate�:Composite

65

6.1 constructor

Role: constructor NavigableBasicRateCurveTree, 1..1.
Role: curve BasicRateCurveModel, 0..n.

The tree that the curve uses to build a rate.

6.2 region

Role: region NavigableLogicalRateParameterRegion, 1..1.
Role: tree BasicRateCurveNodeModel, 0..n.

The region that the tree node uses to divide the curve into segments.

6.3 sources

Role: source NavigableRate, 1..n.
Role: requesting rate AggregateImpliedRateCurveModel, 0..n.

The sources for the curve.

6.4 quotation method

Role: quotation method NavigableQuotationMethod, 1..1.
Role: rate piece RatePieceModel, 0..n.

The quotation method for this rate piece.

6.5 rate source

Role: source NavigableRateSource, 1..1.
Role: basic derivation BasicRateDerivationSpecifierModel, 0..n.

The source for the basic rate.

6.6 decoding

Role: decoder NavigableRateNameDecoder, 1..1.
Role: source RateSourceModel, 0..n.

The decoder for a rate source.

6.7 encoding

Role: encoder NavigableRateNameCoder, 1..1.
Role: source RateSourceModel, 0..n.

The encoder for a rate source.

66

6.8 model

Role: model NavigableRateSource, 1..1.
Role: wrapper RateSourceReferenceDataModel, 0..1.

The held RateSource model for the reference data implementation.

6.9 constructor

Role: constructor NavigableRateConstructor, 1..1.
Role: implied rate ImpliedRateCurveModel, 0..n.

The constructor used to build the implied rate. The constructor must take a set
of point rates and build a resulting rate from the set of point rates.

6.10 inside

Role: inside branch NavigableBasicRateCurveTree, 0..1.
Role: tree BasicRateCurveNodeModel, 0..n.

The branch to follow when inside the region.

6.11 outside

Role: outside branch NavigableBasicRateCurveTree, 0..1.
Role: tree BasicRateCurveNodeModel, 0..n.

The branch to follow when outside the region.

6.12 quotes

Role: quote NavigableRateQuote, 1..n.
Role: rate AggregateBasicPointRateModel, 1..1.

The set of quotes that make up the rate.

6.13 intervals

Role: NavigableInterval, 1..n.
Role: LogicalRateParameterRegion, 1..n.

6.14 intervals

Role: NavigableInterval, 1..n.
Role: RectangularRegionModel.

67

6.15 formalParameter

Role: NavigableFormalRateParameter.
Role: ActualRateParameterModel.

6.16 quotationMethod

Role: NavigableQuotationMethod, 1..1.
Role: BasicRateDerivationSpecifierModel.

68

S
im

p
le

 In
te

re
s

t
R

a
te

C
o

m
p

o
u

n
d

 In
te

re
s

t
R

a
te

C
o

n
ti

n
u

o
u

s
 In

te
re

s
t

R
a

te

In
te

re
s

t
R

a
te

D
is

c
o

u
n

t
F

a
c

to
r

F
X

 R
a

te

F
X

 F
o

rw
a

rd
 R

a
te

F
X

 C
ro

ss
 R

a
te

F
X

 S
p

o
t

R
a

te
B

o
n

d
 P

ri
c

e
O

p
ti

o
n

 P
re

m
iu

m
F

u
tu

re
s

 P
ri

c
e

C
o

m
m

o
d

it
y

P
ri

c
e

Figure 1: Class Diagram— Example Rates

69

V
o

la
til

ity
P

re
m

iu
m

Figure 2: Class Diagram— Example Operator Rates

70

Y
ie

ld
 C

u
rv

e

Im
p

lie
d

 (
F

X
)

Y
ie

ld
 C

u
rv

e

E
xc

h
a

n
g

e
 R

a
te

 C
u

rv
e

Im
p

lie
d

 (
Y

ie
ld

)
E

xc
ha

n
g

e
 R

a
te

 C
u

rv
e

C
ro

s
s

 E
xc

h
a

n
g

e
 R

a
te

 C
u

rv
e

M
a

rk
e

t
Y

ie
ld

 C
u

rv
e

P
re

m
iu

m
 S

h
if

te
d

 Y
ie

ld
 C

u
rv

e

P
re

m
iu

m
 C

u
rv

e

Im
p

lie
d

 C
u

rv
e

M
a

rk
e

t
E

xc
h

a
n

g
e

 R
a

te
 C

u
rv

e

M
a

rk
e

t
C

u
rv

e

V
o

la
ti

lit
y

S
m

ile
 C

u
rv

e
V

o
la

ti
lit

y
S

u
rf

a
c

e

Figure 3: Class Diagram— Example Curves and Surfaces

71

A
ct

u
al

R
a

te
P

ar
am

e
te

r

fo
rm

al
P

a
ra

m
e

te
r(

)
va

lu
e

()
e

q
ua

l()

<
<

In
te

rf
a

ce
>

>

C
o

m
p

a
ra

b
le

(f
ro

m
 U

ti
lit

ie
s

)

<
<I

nt
er

fa
ce

>>

V
a

lu
e

S
e

m
an

tic
s

(f
ro

m
 U

til
iti

es
)

<
<I

nt
er

fa
ce

>
>

C
o

m
p

a
ra

b
le

(f
ro

m
 U

ti
lit

ie
s

)

<
<I

nt
er

fa
ce

>>

C
o

m
p

a
ra

b
le

(f
ro

m
 U

til
iti

es
)

<
<

In
te

rf
a

ce
>

>
Id

e
nt

ifi
ab

le
(f

ro
m

 U
ti

lit
ie

s
)

<
<

In
te

rf
a

ce
>

>

L
o

g
ic

a
lR

a
te

D
a

te
F

o
rm

a
lP

ar
am

e
te

r

d
a

te
B

a
si

s(
)

is
C

o
nt

in
uo

us
()

<
<I

nt
er

fa
ce

>>

F
o

rm
al

R
a

te
P

ar
am

et
e

rM
od

el

id
en

tif
ie

r :
 S

tri
ng

d
e

sc
ri

p
tio

n
: S

tr
in

g
ty

p
e

 :
S

tr
in

g
is

C
o

nt
in

uo
us

 :
S

tri
ng

F
o

rm
a

lR
a

te
P

a
ra

m
e

te
r

id
e

nt
ifi

e
r(

)
d

e
sc

ri
p

tio
n(

)
ty

p
e

()
is

C
o

nt
in

uo
us

()
e

q
ua

l()
va

lid
a

te
()

<
<I

nt
er

fa
ce

>>

A
ct

ua
lR

a
te

P
a

ra
m

e
te

rM
o

d
e

l

va
lu

e
 :

O
b

je
ct

fo
rm

a
lP

a
ra

m
e

te
r

R
a

te
F

u
nc

tio
nS

pe
ci

fie
r

cu
rv

e
F

o
rm

a
lP

a
ra

m
e

te
rs

()
cu

rv
e

A
ct

ua
lP

a
ra

m
e

te
rs

()
ty

p
e

()
e

q
ua

l()
p

o
in

tF
o

rm
a

lP
a

ra
m

e
te

rs
()

p
o

in
tA

ct
ua

lP
a

ra
m

e
te

rs
()

<
<I

nt
er

fa
ce

>>

R
a

te
D

e
fin

iti
o

nS
p

e
ci

fie
r

d
e

ri
va

tio
nM

e
th

o
d

()
ra

te
F

un
ct

io
nS

pe
ci

fie
r(

)

<
<I

nt
er

fa
ce

>>

V
a

lid
a

ta
b

le
(f

ro
m

 U
ti

lit
ie

s
)

<
<

In
te

rf
a

ce
>

>

Figure 4: Class Diagram— Logical Rates

72

QuotationM ethod

isMargin()
isCanonical()
type()
parse()
printRate()
asCanonical()
fromCanonical()
equal()

<<Interface>>

Com parable
(from Utilit ies)

<<Interface>>

Figure 5: Class Diagram— Quotation Methods

73

R
at

e

s
p

e
c

if
ie

r(
)

q
u

o
te

T
im

e
()

is
Y

o
u

rs
()

e
xp

ir
y(

)
is

S
ta

le
()

<
<

In
te

rf
a

c
e

>
>

P
o

in
tR

a
te

b
id

()
a

s
k

()
m

id
()

q
u

o
te

()
p

ri
m

a
ry

C
o

m
m

o
d

it
y(

)
s

e
c

o
n

d
a

ry
C

o
m

m
o

d
it

y(
)

b
u

y(
)

s
e

ll(
)<

<
In

te
rf

a
c

e
>

>

C
ro

ss
P

o
in

tR
a

te

c
o

m
m

o
n

C
o

m
m

o
d

it
y(

)
p

ri
m

a
ry

L
e

g
()

s
e

c
o

n
d

a
ry

L
e

g
()

<
<

In
te

rf
a

c
e

>
>

B
a

si
cP

o
in

tR
a

te

<
<

In
te

rf
a

c
e

>
>

Id
e

n
ti

fi
a

b
le

(fr
o

m
 U

til
iti

es
)

<
<

In
te

rf
a

c
e

>
>Id

e
n

ti
fi

a
b

le
(fr

o
m

 U
til

iti
es

)

<
<

In
te

rf
a

c
e

>
>

V
a

lu
e

S
e

m
a

n
tic

s
(f

ro
m

 U
til

it
ie

s
)

<
<

In
te

rf
a

c
e

>
>

Q
u

o
ta

tio
n

M
e

th
o

d
<

<
In

te
rf

a
c

e
>

>

R
a

te
P

ie
c

e
M

o
d

e
l

id
e

n
ti

fi
e

r
:

S
tr

in
g

va
lu

e
 :

 N
um

b
e

r

1
..

1

0
..

*

1
..

1

0
..

*

q
u

o
ta

tio
n

 m
e

th
o

d

P
ri

c
e

b
u

y
()

s
e

ll(
)

<
<

In
te

rf
a

c
e

>
>

R
a

te
Q

u
o

te
M

o
d

e
l

id
e

n
ti

fi
e

r
:

S
tr

in
g

b
a

s
e

 :
 R

a
te

P
ie

c
e

m
a

rg
in

s
 :

 C
o

lle
c

ti
o

n
<

R
a

te
P

ie
c

e
>

m
a

rg
in

()
va

lid
a

te
()

R
a

te
P

ie
ce

q
u

o
ta

ti
o

n
M

e
th

o
d

()
va

lu
e

()
s

u
m

()

<
<

In
te

rf
a

c
e

>
>

R
a

te
Q

u
o

te

b
a

s
e

()
to

ta
l(

)
m

a
rg

in
()

is
C

o
m

p
le

te
()

<
<

In
te

rf
a

c
e

>
>

B
a

si
cP

o
in

tR
a

te
M

o
d

e
l

s
p

e
c

if
ie

r
:

R
a

te
F

u
n

c
ti

o
n

S
p

e
ci

fi
e

r
q

u
o

te
T

im
e

 :
 T

im
e

s
ta

m
p

is
Y

o
u

rs
 :

 B
o

o
le

a
n

e
xp

ir
y

:
T

im
e

s
ta

m
p

q
u

o
te

()
b

id
()

a
s

k
()

1
..

*

1
..

1

1
..

*

1
..

1

q
u

o
te

s

V
a

lid
a

ta
b

le

(f
ro

m
 U

til
it

ie
s

)

<
<

In
te

rf
a

c
e

>
>

Figure 6: Class Diagram— Point Rates

74

R
a

te
D

e
ri

v
a

tio
n

S
pe

c
ifi

e
r

<
<

In
te

rf
ac

e
>

>

B
a

s
ic

R
a

te
D

e
ri

v
a

tio
n

S
p

e
c

ifi
e

r

ra
te

N
a

m
e

()
ra

te
S

ou
rc

e
()

e
qu

a
l(

)
q

uo
ta

tio
n

M
e

th
o

d
()

<
<

In
te

rf
a

c
e

>
>

Im
p

lie
d

R
a

te
D

e
ri

v
a

tio
n

S
p

e
c

ifi
e

r

s
o

u
rc

e
s

()
c

o
n

s
tr

u
c

to
r(

)
e

q
u

a
l(

)

<
<

In
te

rf
a

c
e

>
>

R
a

te
N

a
m

e

ra
te

N
a

m
e

()
va

lid
a

te
()

e
q

u
a

l(
)

<
<

In
te

rf
ac

e
>

>

V
a

lid
a

ta
b

le
(f

ro
m

 U
ti

li
tie

s)

<
<

In
te

rf
a

c
e

>
>

V
a

lu
e

S
em

a
n

tic
s

(f
ro

m
 U

til
it

ie
s)

<
<

In
te

rf
ac

e
>

>

R
a

te
C

o
n

s
tr

u
c

to
r

c
o

n
st

ru
c

t(
)

s
o

ur
c

e
s

()
re

s
u

lt(
)

<
<

S
e

rv
ic

e
 In

te
rf

a
c

e
>

>

C
o

m
p

a
ra

bl
e

(f
ro

m
 U

til
it

ie
s)

<
<

In
te

rf
ac

e
>

>
C

o
m

p
a

ra
bl

e
(f

ro
m

 U
til

it
ie

s
)

<
<

In
te

rf
ac

e
>

>
C

o
m

p
a

ra
b

le
(f

ro
m

 U
til

it
ie

s)

<
<

In
te

rf
a

c
e

>
>

Id
e

n
tif

ia
b

le
(f

ro
m

 U
til

iti
e

s
)

<
<

In
te

rf
a

c
e

>
>

R
e

fe
re

n
c

e
D

a
ta

M
o

d
e

l
(f

ro
m

 R
ef

e
re

n
c

e
 D

a
ta

)

R
a

te
N

am
e

D
e

co
d

e
r

d
e

co
d

e
()

<
<

S
e

rv
ic

e
 In

te
rf

a
c

e
>

>

R
a

te
N

a
m

e
C

o
d

e
r

e
n

co
d

e
()

<
<

S
e

rv
ic

e
 In

te
rf

ac
e

>
>

R
a

te
S

ou
rc

e
M

o
de

l

id
e

n
tif

ie
r

:
S

tr
in

g
s

tr
e

a
m

 :
 B

o
o

le
a

n

1
..

1

0
..*

1
..

1

0
..*

d
e

co
d

in
g

1
..

1

0
..*

1
..

1

0
..*

e
n

co
d

in
g

R
a

te
S

o
u

rc
e

is
S

tr
e

a
m

()
c

o
d

e
r(

)
d

e
c

o
d

e
r(

)
e

q
u

a
l(

)

<
<

In
te

rf
ac

e
>

>

R
at

e
S

o
ur

c
e

R
e

fe
re

n
ce

D
a

ta
M

o
de

l

1
..

1

0
..

1

1
..

1

0
..

1

m
o

d
e

l

R
a

te
N

a
m

e
M

o
de

l

ra
te

N
a

m
e

 :
 S

tr
in

g

R
a

te
S

ou
rc

e

<
<

In
te

rf
a

c
e

>
>

Q
u

o
ta

tio
n

M
e

th
o

d

<
<

In
te

rf
a

c
e

>
>

B
a

s
ic

R
a

te
D

e
ri

va
tio

n
S

p
e

c
ifi

e
rM

o
d

e
l

ra
te

N
a

m
e

 :
 R

a
te

N
a

m
e

ra
te

S
o

u
rc

e
()

1
..

1
0

..*
1

..
1

0
..*

ra
te

 s
o

u
rc

e

1
..

1
1

..
1

q
u

o
ta

tio
nM

e
th

o
d

Figure 7: Class Diagram— Derivation Methods

75

R
a

te
C

u
rv

e

fo
rm

a
lP

a
ra

m
a

te
rs

()
va

lu
e

()

<
<

In
te

rf
a

c
e

>
>

B
a

si
cR

a
te

C
u

rv
e

va
lu

e
()

c
o

n
s

tr
u

c
to

r(
)

<
<

In
te

rf
a

c
e

>
>

B
a

si
cR

a
te

C
u

rv
e

S
e

g
m

e
n

t

b
a

s
e

P
o

in
t(

)
c

o
e

ff
ic

ie
nt

s
()

va
lu

e
()<
<

In
te

rf
a

c
e

>
>

B
a

si
cR

a
te

C
u

rv
e

N
o

d
e

re
g

io
n

()
in

s
id

e
B

ra
n

c
h

()
o

u
ts

id
e

B
ra

n
c

h
()

va
lu

e
()

<
<

In
te

rf
a

c
e

>
>

Im
p

lie
d

R
a

te
C

u
rv

e

va
lu

e
()

c
o

n
s

tr
u

c
to

r(
)

s
o

u
rc

e
s

()
q

u
o

te
T

im
e

()
e

xp
ir

y(
)

<
<

In
te

rf
a

c
e

>
>

R
a

te

s
p

e
c

if
ie

r(
)

q
u

o
te

T
im

e
()

is
Y

o
u

rs
()

e
xp

ir
y(

)
is

S
ta

le
()

<
<

In
te

rf
a

c
e

>
>

R
a

te
C

o
n

s
tr

u
c

to
r

<
<

S
e

rv
ic

e
 In

te
rf

a
c

e
>

>

Im
p

lie
d

R
a

te
C

u
rv

e
M

o
d

e
l

s
p

e
c

if
ie

r
:

R
a

te
F

u
n

c
ti

o
n

S
p

e
c

if
ie

r
is

Y
o

u
rs

 :
 B

o
o

le
a

n

va
lid

a
te

()

1
..

*

0
..

*

1
..

*

0
..

*

so
u

rc
e

s

1
..

1
0

..
*

1
..

1
0

..
*

co
n

st
ru

ct
o

r

B
a

s
ic

R
a

te
C

u
rv

e
S

e
g

m
e

n
tM

o
d

e
l

b
a

s
e

P
o

in
t

:
C

o
lle

c
ti

o
n

<
A

c
tu

a
lR

a
te

P
a

ra
m

e
te

r>
c

o
e

ff
ic

ie
nt

s
 :

 D
ic

ti
o

n
a

ry

B
a

s
ic

R
a

te
C

u
rv

e
M

o
d

e
l

s
p

e
c

if
ie

r
:

R
a

te
F

u
n

c
ti

o
n

S
p

e
c

if
ie

r
is

Y
o

u
rs

 :
 B

o
o

le
a

n
q

u
o

te
T

im
e

 :
 T

im
e

s
ta

m
p

e
xp

ir
y

:
T

im
e

s
ta

m
p

L
og

ic
al

R
a

te
P

ar
am

e
te

rR
eg

io
n

in
s

id
e

()

<
<

In
te

rf
a

c
e

>
>

B
a

s
ic

R
a

te
C

u
rv

e
T

re
e

va
lu

e
()

<
<

In
te

rf
a

c
e

>
>

1
..

1

0
..

*

1
..

1

0
..

*

co
n

st
ru

ct
o

r

B
a

s
ic

R
a

te
C

u
rv

e
N

o
d

e
M

o
d

e
l

re
g

io
n

()

1
..

1
0

..
*

1
..

1
0

..
*

re
g

io
n

0
..

1 0
..

*

0
..

1 0
..

*

in
si

d
e

0
..

1

0
..

*

0
..

1

0
..

*

ou
ts

id
e

Figure 8: Class Diagram— Curves and Surfaces

76

InfiniteInfinite Interva lM odel

inside()

InfiniteC lo sedIntervalMode l

uppe rBo undary : C ompa rable

inside()

InfiniteOpenIntervalMode l

uppe rBo undary : C ompa rable

inside()

C losedInfiniteIntervalMode l

lowerB oundary : C om parab le

inside()

OpenInfiniteIntervalMode l

lowerB oundary : C om parab le

inside()

OpenOpe nInterva lM od el

lo we rB ound ary : C o mpa rable
uppe rBo undary : C omp arab le

inside ()

OpenC losed Interva lM odel

lo we rB ound ary : C o mp arab le
uppe rBo undary : C ompa rable

inside ()

C losedC losedInterva lMo del

lo we rB ound ary : C o mp arable
uppe rBo undary : C ompa rab le

inside ()

C losedOpe nInterva lM odel

lowerB ound ary : C o mp arab le
uppe rBo undary : C ompa rable

inside()

Log icalR ateP aram eterR e gion

<<Interfa ce>>

Interval
<<Interfa ce>>

Re ctang ula rR eg ionM od el

1..*1..*

intervals

IntervalMode l

Figure 9: Class Diagram— Regions

77

References

[1] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flan-
nery. Numerical Recipes in C. Cambridge University Press, second edition,
1992.

[2] Michael Sherris.Money and Captial Markets. Allen and Unwin, 1991.

[3] Robert Steiner.Mastering Financial Calculations. Pitman Publishing, 1998.

78

	Use Cases
	Simple Interest Rate
	Compound Interest Rate
	Continuous Interest Rate
	Interest Rate
	Discount Factor
	FX Rate
	FX Forward Rate
	FX Cross Rate
	FX Spot Rate
	Bond Price
	Futures Price
	Option Premium
	Commodity Price
	Volatility
	Premium
	Yield Curve
	Exchange Rate Curve
	Implied (FX)
Yield Curve
	Implied (Yield)
Exchange Rate Curve
	Cross Exchange Rate Curve
	Market Yield Curve
	Premium Shifted Yield Curve
	Premium Curve
	Implied Curve
	Market Exchange Rate Curve
	Market Curve
	Volatility Smile Curve
	Volatility Surface

	Interfaces
	ActualRateParameter
	Relationships
	Operations

	BasicRateCurveTree
	Relationships
	Operations

	BasicRateCurveNode
	Relationships
	Operations

	BasicRateCurveSegment
	Relationships
	Operations

	FormalRateParameter
	Relationships
	Operations

	LogicalRateDateFormalParameter
	Relationships
	Operations

	LogicalRateParameterRegion
	Relationships
	Operations

	Interval
	Relationships

	Price
	Relationships
	Operations

	PointRate
	Relationships
	Operations

	BasicPointRate
	Relationships

	CrossPointRate
	Relationships
	Operations

	QuotationMethod
	Relationships
	Operations

	Rate
	Relationships
	Operations

	RateCurve
	Relationships
	Operations

	BasicRateCurve
	Relationships
	Operations

	ImpliedRateCurve
	Relationships
	Operations

	RateDerivationSpecifier
	Relationships

	BasicRateDerivationSpecifier
	Relationships
	Operations

	ImpliedRateDerivationSpecifier
	Relationships
	Operations

	RateFunctionSpecifier
	Relationships
	Operations

	RateDefinitionSpecifier
	Relationships
	Operations

	RateName
	Relationships
	Operations

	RatePiece
	Relationships
	Operations

	RateQuote
	Relationships
	Operations

	RateSource
	Relationships
	Operations

	Service Interfaces
	RateConstructor
	Relationships
	Operations

	RateNameCoder
	Relationships
	Operations

	RateNameDecoder
	Relationships
	Operations

	Classes
	ActualRateParameterModel
	Relationships
	Attributes

	BasicPointRateModel
	Relationships
	Attributes
	Operations

	BasicRateCurveModel
	Relationships
	Attributes

	BasicRateCurveNodeModel
	Relationships
	Operations

	BasicRateCurveSegmentModel
	Relationships
	Attributes

	BasicRateDerivationSpecifierModel
	Relationships
	Attributes
	Operations

	FormalRateParameterModel
	Relationships
	Attributes

	ImpliedRateCurveModel
	Relationships
	Attributes
	Operations

	IntervalModel
	Relationships

	ClosedClosedIntervalModel
	Relationships
	Attributes
	Operations

	ClosedInfiniteIntervalModel
	Relationships
	Attributes
	Operations

	ClosedOpenIntervalModel
	Relationships
	Attributes
	Operations

	InfiniteClosedIntervalModel
	Relationships
	Attributes
	Operations

	InfiniteInfiniteIntervalModel
	Relationships
	Operations

	InfiniteOpenIntervalModel
	Relationships
	Attributes
	Operations

	OpenClosedIntervalModel
	Relationships
	Attributes
	Operations

	OpenInfiniteIntervalModel
	Relationships
	Attributes
	Operations

	OpenOpenIntervalModel
	Relationships
	Attributes
	Operations

	RateNameModel
	Relationships
	Attributes

	RatePieceModel
	Relationships
	Attributes

	RateQuoteModel
	Relationships
	Attributes
	Operations

	RateSourceModel
	Relationships
	Attributes

	RateSourceReferenceDataModel
	Relationships

	RectangularRegionModel
	Relationships

	Exceptions
	RateConstructorException
	Operations

	RateConversionException
	Operations

	RateNameException
	Operations

	RateQuotationException
	Operations

	RateSpecificationException
	Operations

	Associations
	constructor
	region
	sources
	quotation method
	rate source
	decoding
	encoding
	model
	constructor
	inside
	outside
	quotes
	intervals
	intervals
	formalParameter
	quotationMethod

