elements RS

Basic Rates Package

TARMS Inc.

September 07, 2000

TARMS Inc. http://www.tarms.com

http://www.tarms.com

Copyright(©2000 TARMS Inc.

Permission is hereby granted, free of charge, to any person obtaining a
copy of this model and associated documentation files (the “Model”),

to deal in the Model without restriction, including without limitation

the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Model, and to permit persons to whom the
Model is furnished to do so, subject to the following conditions:

1. The origin of this model must not be misrepresented; you must
not claim that you wrote the original model. If you use this
Model in a product, an acknowledgment in the product
documentation would be appreciated but is not required.
Similarly notification of this Model's use in a product would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and
must not be misrepresented as being the original software.

3. This notice, including the above copyright notice shall be
included in all copies or substantial portions of the Model.

THE MODEL IS PROVIDED “AS IS”, WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS
OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE MODEL OR THE USE OR
OTHER DEALINGS IN THE MODEL.

Typeset inATEX.

Contents

1 Use Cases 10
1.1 SimplelinterestRate. 10
1.2 CompoundinterestRate 10
1.3 Continuous InterestRate 10
14 InterestRate 11
1.5 DiscountFactor. 11
1.6 FXRate. e 11
17 FXForwardRate. 11
1.8 FXCrossRate. 12
1.9 FXSpotRate. 12
1.10 BondPrice e 12
1.11 FuturesPrice. 13
1.12 Option Premium 13
1.13 Commodity Price. 13
1.14 Volatility 13
1.15 Premium 14
1.16 YieldCurve. 14
1.17 Exchange Rate Curve. 14
1.18 Implied (FX)YieldCurve 14
1.19 Implied (Yield) Exchange Rate Curve 15
1.20 Cross Exchange Rate Curve. 15
1.21 MarketYieldCurve. 15
1.22 Premium Shifted YieldCurve. 15
1.23 PremiumCurve. e 16
1.24 Implied Curve. e 16
1.25 Market Exchange Rate Curve 16
1.26 MarketCurve. 17
1.27 Volatility SmileCurve 17
1.28 \olatility Surface 17

2 Interfaces 17
2.1 ActualRateParameter L 17

2.1.1 Relationships 18
21.2 Operations. 18
2.2 BasicRateCurveTree i 18
2.21 Relationships 19
2.2.2 Operations. i 19
2.3 BasicRateCurveNode 19

2.3.1 Relationships 19

23.2 Operations. 19
2.4 BasicRateCurveSegment. 20
241 Relationships 20
242 Operations. 21
2.5 FormalRateParameter. 22
25.1 Relationships 22
252 Operations. 22
2.6 LogicalRateDateFormalParameter. 23
2.6.1 Relationships, 23
26.2 Operations. 24
2.7 LogicalRateParameterRegion 24
271 Relationships 24
2.7.2 Operations. i 24
28 Interval 25
2.8.1 Relationships 25
29 Price. 25
29.1 Relationships 25
2.9.2 Operations. it 25
210 PointRate. L 26
2.10.1 Relationships 27
2.10.2 Operations. e 27
2.11 BasicPointRate. 28
2.11.1 Relationships 29
2.12 CrossPointRate 29
2.12.1 Relationships 29
2.12.2 Operations. o 29
2.13 QuotationMethod. 29
2.13.1 Relationships 30
2.13.2 Operations. 30
214 Rate. e 32
2.14.1 Relationships 32
2.14.2 Operations. e 32
215 RateCurve e e 33
2.15.1 Relationships 33
2.15.2 Operations. 33
2.16 BasicRateCurve 34
2.16.1 Relationships 34
2.16.2 Operations. 34
2.17 ImpliedRateCurve e 34

2.17.1 Relationships 35

2.17.2 Operations. 35
2.18 RateDerivationSpecifier. L. 36
2.18.1 Relationships 36
2.19 BasicRateDerivationSpecifier. 36
2.19.1 Relationships 36
2.19.2 Operations. e 36
2.20 ImpliedRateDerivationSpecifier. 37
2.20.1 Relationships 37
2.20.2 Operations. 37
2.21 RateFunctionSpecifier., 38
2.21.1 Relationships L. 38
2.21.2 Operations. e 38
2.22 RateDefinitionSpecifier oL 39
2.22.1 Relationships 40
2.22.2 Operations. 40
223 RateName e 41
2.23.1 Relationships 42
2.23.2 Operations. 42
2.24 RatePiece. 42
2.24.1 Relationships 42
2.24.2 Operations. e 43
225 RateQuote 43
2.25.1 Relationships 43
2.25.2 Operations. 44
2.26 RateSource. 44
2.26.1 Relationships 45
2.26.2 Operations. 45
Service Interfaces 45
3.1 RateConstructor 45
3.1.1 Relationships 46
3.1.2 Operations. 46
3.2 RateNameCoder. 46
3.2.1 Relationships a7
3.22 Operations. 47
3.3 RateNameDecoder 47
3.3.1 Relationships L. 48
332 Operations. 48

4 Classes 48

4.1 ActualRateParameterModel L. 48
4.1.1 Relationships 49
412 Attributes. 49

4.2 BasicPointRateModel oL 49
421 Relationships L. 49
422 Attributes. 49
423 Operations. 49

4.3 BasicRateCurveModel. 50
4.3.1 Relationships L. 50
432 Attributes. 50

4.4 BasicRateCurveNodeModel 50
44,1 Relationships 50
442 Operations. 51

4.5 BasicRateCurveSegmentModel 51
451 Relationships L. 51
452 Attributes. 51

4.6 BasicRateDerivationSpecifierModel 52
4.6.1 Relationships 52
4.6.2 Attributes. 52
46.3 Operations. 52

4.7 FormalRateParameterModel 52
4.7.1 Relationships L. 52
4.7.2 Attributes. 53

4.8 ImpliedRateCurveModel. 53
4.8.1 Relationships 53
482 Attributes. 53
483 Operations. 53

49 IntervalModel. 54
49.1 Relationships 54

4.10 ClosedClosedintervalModel 54
4.10.1 Relationships 54
4.10.2 Attributes. 54
4.10.3 Operations. 55

4.11 ClosedInfinitelntervalModel. 55
4.11.1 Relationships 55
4.11.2 Attributes. 55
4.11.3 Operations. oo 55

4.12 ClosedOpenintervalModel 55
4,12.1 Relationships 55

4.12.2 Attributes. 55

4,12.3 Operations. 56
4.13 InfiniteClosedIntervalModel. 56
4,13.1 Relationships 56
4.13.2 Attributes. 56
4.13.3 Operations.o 56
4.14 InfinitelnfinitelntervalModel 56
4.14.1 Relationships 56
4,142 Operations. 56
4.15 InfiniteOpenintervalModel. 57
4,15.1 Relationships, 57
4,152 Attributes. 57
4,15.3 Operations. e 57
4.16 OpenClosedintervalModel 57
4,16.1 Relationships 57
4.16.2 Attributes. 57
4.16.3 Operations. i 58
4.17 OpenlnfinitelntervalModel. 58
4.17.1 Relationships 58
4.17.2 Attributes. 58
4.17.3 Operations. 58
4.18 OpenOpenintervalModel 58
4.18.1 Relationships 58
4.18.2 Attributes. 58
4.18.3 Operations. 59
419 RateNameModel. 59
4.19.1 Relationships 59
4.19.2 Attributes. 59
4.20 RatePieceModel. L. 59
4.20.1 Relationships 59
4.20.2 Attributes. 59
4.21 RateQuoteModel. 60
4.21.1 Relationships 60
4.21.2 Attributes. 60
4,21.3 Operations. 60
4.22 RateSourceModel 61
4,22.1 Relationships 61
4222 Attributes. 61
4.23 RateSourceReferenceDataModel 61
4,23.1 Relationships 61

4.24 RectangularRegionModel. 61

4.24.1 Relationships, 62

5 Exceptions 62
5.1 RateConstructorException 62
51.1 Operations. i 62
5.2 RateConversionException. 62
521 Operations. o 62
5.3 RateNameException. 63
531 Operations. o 63
5.4 RateQuotationException 63
541 Operations. i 63
5.5 RateSpecificationExceptian. 64
551 Operations. 64

6 Associations 64
6.1 constructor 66
6.2 region. e 66
6.3 SOUICES o e e 66
6.4 quotatonmethod. 66
6.5 ratesource e 66
6.6 decoding 66
6.7 encoding 66
6.8 model 67
6.9 constructor 67
6.10 inside 67
6.11 outside 67
6.12 quotes. 67
6.13 intervals. 67
6.14 intervals. 67
6.15 formalParameter. 68
6.16 quotationMethod. 68

List of Figures

1 Class Diagram— Example Rates. 69
2 Class Diagram— Example Operator Rates 70
3 Class Diagram— Example Curves and Surfaces. 71
4 Class Diagram— LogicalRates. 72

5 Class Diagram— Quotation Methods 73
6 Class Diagram— PointRates. 74
7 Class Diagram— Derivation Methods 75
8 Class Diagram— Curves and Surfaces 76
9 Class Diagram— Regions. 77
List of Tables
1 RateNameCodes 41
2 Basic Rates— Associations. 64
2 .continued ... L L L L 65

Package Description

Rates represent two aspects of financial modeling. In the first instance, they repre-
sent the transformation of an amount of one commodity into an amount of another
commodity. In the second instance, they represent the price that someone is will-
ing to exchange a good for. These aspects are related, but reflect two different
functions of rates: the first is to express an amount of one commaodity in terms of

another, the second is to act as a quotation mechanism.

There are also entities that are traditionally regarded as rates, but which rep-
resent the transformation of rates into other rates. For example, volatilities can be
used to transform an underlying price into an optional price. As another example,
premiums transform a rate into another rate of the same kind, with a different price.

The basic rates package covers a number of areas: point rates, rate curves (a
generalized term that is applied to any n-dimensional rate curve) quotation mecha-
nisms, derivation mechanisms, components, piecels, .

Components

A rate supplied by the marketplace may have sevaraiponentsepresenting the

rates quoted for different purposes. The most obvious example of rate components
is the bid/ask spread, representing the difference between what something will be
bought for and what it will be sold for. Other components include such items as
the last quoted rate or the rate at close of trading. Within this model, components
may be used to represent special-purpose rates.

1 A note on reading order. This package is very abstract; it provides an infrastructural base
for more concrete expressions of rates. On an initial reading, it may pay to skim one of the more
concrete packages, such as FX rates or interest rates before examining this package.

Components are always named. A single point rate may contain several compo-
nents, representing different rates for different purposes.bithandaskcompo-
nents are usually assumed to be present in market rates. These rates represent what
another party will buy something for and what another party will sell something for
respectively. Thenid component is the average of the bid and ask comporents.
Other common components include tast componert— the last rate at which a
transaction took place — and those component- the last rate at the close of a
trading day.

Pieces

Each rate component is constructed from a numbepietes As an example,

an interest rate may be quoted as a risk-free rate, plus a premium representing

the counterparty risk, plus a premium representing the profit margin. As another

example, a forward FX rate may be quoted as a spot rate, plus a forward margin.
Components are usually constructed frolbbase rateand a series afnargins

that represent additions to the base rate.

Quotation Methods

A gquotation methodlescribes how the bare number of a rate is intended to be
interpreted. For example, a bond price might be quoted as “Price per Hundred
Face Value” meaning that the figure represents the price paid for 100 units of the
principal amount printed on the bond. As another example, an interest rate might
be quoted as being “annualized with a 30/360 date basis” meaning that the figure
represents an interest payment that compounds yearly, with the elapsed time being
calculated using a 30/360 day/year-count convention.

Rate pieces may used different quotation conventions. In particular, margins
are often quoted as a number of “points” over some base rate; a point might be
0.01% for an interest rate or 0.0001 for an FX rate.

Quotation methods may be freely changed, since they do not affect the under-
lying data. However, when a quotation method changes, the number representing
the rate usually changes as well.

Rate Derivation

Rates have a derivation path. The most basic derivation path is a basic rate, a rate
that is supplied by some outside source. More complex rates can be implied from

2 This rate may not be a simple arithmetic mean of the two rates; non-linear effects may come
into play.

sets of basic rates. As an example, a bond price can be implied from the definition
of the bond and a suitable yield curve.

Basic rates have mte name a string which identifies the rate to an external
source of some sort: a Reuters RIC box, a Telerate feed or a spreadsheet.

Rate Specification

A rate is largely independent of the quotation mechanism and derivation path. A
logical rate expresses the contractual nature of the rate, without requiring any par-
ticular quotation style or derivation.

Point Rates and Prices

At the base level in the model, rates are models which represent the transformation
of some amount into another amount in terms of unit contractpoiAt rateis a

rate where everything needed to be known about the transformation is fixed: the
date on which it occurs, the commaodities involved, etqrise is a particular use

of a point rate, expressing the transformation of some commodity into the amount
paid for it.

Rate Curves

A curveis a mathematical object which represents something that is locally like a
line, plane or other linear space. In the terms of this model, rate curves represent
the complex curves, surfaces, solids, etc. that can be used to represent rates. As
examples: a FX curve is a curve used to get FX rates at future dates, a volatility
curve describes volatilities at forward dates and market prices.

The approach taken in this model is to describe complex rate structures as
dimensional curves. A cungegmentonsists of a set of polynomials, one for each
piece of each component in the rate. Disjoint segments are joined together into a
tree structure. Getting a rate from a curve involves using the tree structure to get
the appropriate segment and then using the polynomials to get the rate.

Curve can be converted into other curve by restricting them. For example, a
volatility surface can be converted into a smile curve by restricting the date param-
eter to a single value.

A note on the use casesThe use cases supplied in this package do not reflect
the abstract focus of the package. In some senses, the use cases should be relegated
to the packages handling the various instruments that they reflect. However, these
cases provide some insight into the general aim of the basic rates package.

Euro Compliance. The triangulation rules required by the EMU require that
in-currency FX rates be fixed to a particular rate and that rate not be inverted.
The basic rate model accomplishes this by always retaining the components of a
derivation wherever possible and following the derivation route.

1 Use Cases

1.1 Simple Interest Rate

A simple interest rate is either quoted as a yield or a discount rate and applies over
a fixed term, fromd; to d>. The rate is usually quoted as an annualized amount,
with a date basis. I, is the amount of some currency dt, a5 is the amount

of the same currency db, d is the day count betweefy andds; andy is the year
length, then

id

as =a1(l+ —

(y)

or d
r

a; =as(l — —

(y)

wherei is the yield (interest rate) oris the discount raté] 2].

1.2 Compound Interest Rate

A compound interest rate is usually quoted as a yield and applies over a fixed term,
from d; to d>. The rate is usually quoted as an annualized amount, with a date
basis and a number of compoundings per annum.

If a; is the amount of some currencyd&t, as is the amount of the same cur-
rency atds, n is the number of compoundings per annuifrs the day count be-
tweend; andd, andy is the year length, then

1 Z nd
= + =)
2 al(n)

wherei is the yield (interest rate)].

1.3 Continuous Interest Rate

A compound interest rate is usually expressed in terms of the number of terms per
annump, that interest compounds over. The annualized rate is givéh-py/n)",

10

wherei is the interest rate. A continuous interest rate takes compounding to its
logical conclusion by setting the annualized rate tdibg, (1 +i/n)™.

If aq is the amount of some currencydt, as is the amount of the same cur-
rency atds, n is the number of compoundings per annufis the day count be-
tweend; andd, andy is the year length, then
d
Yy

r
a9 = al€

wherer is the continuously compounded r&k|[

1.4 Interest Rate

An interest rate represents the amount of money paid on a loan or deposit over a
certain period. There are a number of ways of quoting an interest rate. An interest
rate is related to a discount factor, in thapiis the principal of the loan or deposit
ands is the interest, then the discount factor is giverplbyp + 7).

1.5 Discount Factor

A discount factor represents the change in value of an amount of money over time.
If an amounta; is deposited and, later, an amountis retrieved, then the discount
factor is given byu; /as.

1.6 FXRate

An FXrate is the rate at which one currency, the commodity currency, is exchanged
for another currency, the counter currency. The rate is normally the amount of units
of the counter currency, one unit of the commodity currency will buy.

The rate is usually expressed in terms of a standardized currency pair, with one
currency being the commodity currency and one the counter currency. For exam-
ple, the following currency pairs are standard: GBP/USD, USD/FRF, EUR/USD.
Since the actual commodity and counter currencies may be in the reverse order to
these standardized pairs, the quotation maynbeect, indicating that the rate is
expressed in terms of amount of commaodity currency needed to buy one unit of the
counter currencyd]

1.7 FX Forward Rate

A forward rate for FX is usually quoted in terms of a numbeipofnts over the
spot rate. The size of a point depends on the two currencies being exchanged but
is usually0.0001.

11

For example, given a USD/DEM spot rate 8989 and a 3-month forward
rate of —120 points, the three month exchange raté.&369.

1.8 FX Cross Rate

An FX cross rate is constructed from two FX rates with a common currency. The
cross rate is built by combining the two FX rates across the common currency,
giving the same effect as first exchanging the commodity currency for the common
currency and then the common currency for the counter currency.

For example, if the USD/SGD rate 16975 and the USD/HKD rate i%.2210
then a cross rate for SGD/HKD 162210/1.6975 = 4.253902798233 = 4.2539.

Within the EMU, amounts being converted must follow the following pattern.
The commodity currency is converted to a EUR amount, using the fixed exchange
rate. The EUR amount is rounded to not less than 3 decimal places of accuracy.
The rounded EUR amount is converted to the counter currency amount using the
fixed exchange rate. Note that the intermediate rounding step means that amounts
are not directly scalable and that calculated cross rates may not be used for some
purposes.

1.9 FX Spot Rate

An FX spot rate is an FX rate for thepot date usually two business days hence
from the current date.

1.10 Bond Price

A bond price reflects the amount of some currency — usually the currency that the
bond is denominated in — needed to purchase some quantity of the bond.

Prices are usually quoted in termsprfce per hundred face valy¢he amount
of currency needed to buy a face value of 100 of that bond. Alternately, prices may
be quoted in terms ofield, where the price is expressed as a constant yield; the
cost of the bond is then based on valuing the coupon and principal payments of the
bond against that yield.

Bond prices may be quoted akanor dirty. The dirty price essentially re-
flects the value of the future cashflows. However, the current holder of the bond
will expect to receive a portion of the current coupon, based on the portion of the
coupon period that has elapsed. The clean price subtracts that portion from the

dirty price.[3].

12

1.11 Futures Price

Futures prices express the exchange of some amount of currency for a given future.
Although the amounts paid to the exchange are usually expressed in terms of mar-
gins, the futures price is usually expressed in terms of an implied interest rate on
the assets that are being traded.

Futures are often expressed in terms dfiumdred minus yielcconvention,
where the interest rate, as a percentage yield is subtracted1fidmAs an ex-
ample, if the implied yield i$.78% then the futures price will be3.22.

Other conventions includaundred minus discountwhere a discount rate,
rather than a yield is used, as well as straight yields and discount rates. Alter-
nately, futures may be expressed in price per hundred face value terms on the value
of the underlying securitieS]

1.12 Option Premium

An option premiumis the price paid for the purchase of an option on some un-
derlying transaction. The term “premium?” reflects the insurance-like, risk limiting
aspects of options. The price paid is usually in the same currency as the underlying
instrument of the option.

There are a number of different quotation methods: a straight cash price, a price
per hundred face value of the underlying instrument, a price expressed in ticks on
the underlying instrument or a price expressed in basis points against the implied
yield on the underlying instrument.

1.13 Commodity Price

Commodity prices usually express the price of a commodity in terms of the amount
of some currency that a standard amount of the commodity can be exchanged for.
As an example, the gold price is often expressed in terms of USD per ounce.

Some commodity-like financial instruments have more complex ways of ex-
pressing the price.

1.14 \Volatility

A volatility represents the tendency to change in some underlying instrument.
Volatilities are usually used, in combination with prices for underlying instruments,
to calculate prices for optional transactions.

\olatilities are usually expressed in terms of the annualized standard deviation
of the logarithm of the relative price movemeng$.|

13

1.15 Premium

A premium is an additional amount added to a rate, reflecting either some addi-
tional level of risk or a profit margin.

Interest rate premiums are usually expressed in ternbsgib pointsunits of
0.01%. FX rate premiums are usually expressed in terms of points similar to the
ordinary forward FX points — usually, although not always, unit.6601.

1.16 Yield Curve

A vyield curve provides the interest rates and discount factors that apply between
two dates® A yield curve can, therefore, be used to reduce a series of forward
cashflows to net present value.

Basic yield curves usually give the base deposit rates for a given currency.
These curves may be further manipulated to add risk estimates, etc.

1.17 Exchange Rate Curve

An exchange rate curve gives the exchange rate between two currencies CUA/CUB
for any date. Exchange rate curves are usually expressed as a forward rate con-
structed from a spot rate and forward points calculated from the date and the

curve.

1.18 Implied (FX) Yield Curve

An implied yield curve, for a currency CUA is a yield curve built by combining a

yield curve for another currency, CUB, and and exchange rate curve for CUA/CUB.
The discount factor for CUA between the datgsandds; can be implied by

assuming an arbitrage-free swap with currency CUB. Assume an amptiritat

dated; and an amount$'V4 at dated,, CUA/CUB exchange rates af, andz,

for d, andd, and a discount factor gfSV? for CUB betweend; andds, then

cuA
cva _ 91 _ pCcUB”*2
12 = = J12
a§TA T
sincea{V8 = z1a{V"4 andalVB = z5a{UA.

% Two dates are necessary, as interest rates essentially represent a density function.

14

1.19 Implied (Yield) Exchange Rate Curve

An implied exchange rate curve between two currencies CUA/CUB is constructed
from a spot rateg, and a pair of yield curves for each currency.

If the discount factor between spot and a dédteor CUA is f€U4 and the
discount factor between spot aidor CUB is ¢V B, then an implied forward rate
can be calculated by assuming an arbitrage-free swap between the two currencies.
If we have spot amounts af“V4 anda“V? = z4“U4 and forward amounts of
bCUA andb®U B then the forward exchange raté,is given by

CUB cUA
_ v f
=cvA — TrcUuB
b f

!
x

and forward points given by’ — z.

1.20 Cross Exchange Rate Curve

A cross exchange rate curve for a pair of currencies CUA/CUB is constructed
from two exchange rate curves CUA/CUC and CUB/CUC with a common cur-
rency CUC.
If, at the datel, the CUA/CUC rate ig;; and the CUB/CUC rate i85 then the
cross rate is calculated as o
r =L
T2
Note that the EMU conventions actually require the above calculation, for
traded amounts, to be calculated in terms of an intermediately rounded actual

amount.

1.21 Market Yield Curve

A market yield curve is built from a series of point rates. The point rates are a set of
interest rates, discount factors or prices for interest rate instruments, such as FRAs
or securities. The interest rates can be used directly. Instrument prices need to have
their equivalent yields calculated on the basis of a partially constructed yield curve;
in the case of bonds, this process is knowic@gpon stripping

1.22 Premium Shifted Yield Curve

Yield curves can be modified by the addition of premiums to an underlying yield
curve.

15

Premiums usually reflect the transition between some risk-free yield curve and
a curve that reflects the risk associated with a country or a counterparty. As an
example, bonds denominated in USD may be issued by countries other than the
US; these bonds have a greater level of risk than US bonds issued by domestic
issuers and need to be valued against a yield curve that reflects that risk.

1.23 Premium Curve

A premium curve is a curve that gives a premium to apply to some underlying yield,

exchange rate, volatility or other curve at a given date, strike price or other variable.
Combining a premium curve and an underlying curve gives a curve of the same
type as the underlying curve, with the quoted rates shifting in some direction.

1.24 Implied Curve

Implied curves are constructed from other curves — source curves — rather than
market data.

Market data curves are usually built by interpolating between the rate sample
supplied to the curve. In theory, implied curves could be constructed by evaluating
the source curves at various points and then interpolating in a manner similar to
market data curves. The differences in interpolation between the various curves
will, however, lead to an artificial arbitrage caused by differences in interpolation
points.

As an example, imagine two exchange rate curves for USD/SGD and USD/HKD
and linear interpolation. The USD/SGD curve is built from spot, 1 month and 6
month points ofl.7018, +100 and+120. The USD/HKD curve is built from spot,

1 month and 1 year points Gf7595, +40 and+80. A cross exchange rate curve
could be built from implied points 0f.5596, —242, —285 and —336 — one for

each source point. Using the interpolated cross rate curve, the 4 month exchange
rate is4.5596 — 258. Using the individual rates, the 4 month exchange rate is
4.5596 — 259, a difference of $100 in a $1 million exchange.

For this reason, points on implied curves cannot be interpolated, but must be
directly calculated from the source curves.

1.25 Market Exchange Rate Curve

A market exchange rate curve is built from a series of point rates. The point rate
usually consist of a spot rate, and a series of forward points for various periods. The
curve is then constructed to quote in terms of spot+forward for a given date.

16

1.26 Market Curve

A market curve is built from a series of point rates, interpolated and extrapolated
according to some agreed convention. The point rates are supplied from some
external source, either a commercial market data feed, such as Reuters or Telerate,
or from a database or spreadsheet of internally chosen rates.

Between the supplied rates, the point rates mushieepolated Interpolation
can take many forms. Examples are linear interpolation of interest rates or for-
ward points, exponential interpolation of discount factors or Lagrangian and spline
approximations1].

Outside the range of the supplied rates, the values supplied by the curve need
to beextrapolated Example extrapolations include flat or linear extrapolation of
rates or simply generating an error.

1.27 Volatility Smile Curve

A volatility “smile” curve is a curve that contains the volatility of some instrument
at a particular delivery date for various strike prices for that instrument.

1.28 Volatility Surface

A volatility surface is a surface that contains the volatility of some instrument for
various delivery delivery dates and for various strike prices for that instrument.

2 Interfaces

2.1 ActualRateParameter

An actual parameter provides a value for a formal parameter.
More commonly, the actual parameter is some constant value.
An instance which realizes this interface provides a RateFunctionSpe@ifidr §
with values for the unit contract that the specifier encodes.
An example Date Actual Parameter is one which has a LogicalRateDateFor-
malParameter of
<“to-date”,
“end date for an interest rate”,
“Date”,
continuous,
30/360>

17

and a value of
“12-Jul-2001".

Another example would have the same formal parameter, but a value of
from — date + F X Spot
meaning that the value of the to-date is derived by adding the FX Spot period to
the from-date parameter.

2.1.1 Relationships

Class Description Notes
{+ Comparable
1 ActualRateParameterModeft &
M:Inherits |:Realized by

2.1.2 Operations

FormalRateParameter formalParameter() formalParame-
The formal parameter that this parameter instantiates. ter

Object value() value
Raises:RateSpecificationException

The parameter value. Returns the parameter value, possibly derived from the
other parameters in the rate specification.

Boolean equal(Comparable arg) equal
arg: Comparable The comparable to test for equality.

Equality test. Two actual rate parameters are equal if they have the same formal
parameter and their actual values are equal.

2.2 BasicRateCurveTree

An interface that allows the segmentation of a BasicRateCurve into various poly-
nomial segments.

A tree contains a set of BasicRateCurveSegme Bistances that are the
leaves of the tree. These segments are used to construct rates. Above the segments,
forming a binary tree, are BasicRateCurveNo@e38nstances. A node splits the
curve into two parts, one “inside” and one “outside” a region. The regions can be

18

any shape desired. To get a value, the tree is navigated until a segment is reached,
the segment then interpolates to produce the appropriate rate.

2.2.1 Relationships

Class Description Notes
|l BasicRateCurveNode2§3
|l BasicRateCurveSegmen2.g
++ BasicRateCurveModel4g3 constructor 0..n
< BasicRateCurveNodeModel & inside 0..n
+» BasicRateCurveNodeModel & outside 0..n
U:Inherited by «+»:Association —:Navigable:Aggregate¢:Composite

2.2.2 Operations

PointRate value(Collection<ActualRateParameter> parameters) value
parameters: Collection<ActualRateParameter>The parameters that iden-
tify the position on the rate curve.

Get the value at some point on the curve. The behavior of this method is sub-
interface defined.

2.3 BasicRateCurveNode

A non-leaf node on the curve tree. This node uses a LogicalRateParameterRe-
gion 8.7to split the curve’s domain into two branches, so that the correct segment
can be identified.

2.3.1 Relationships

Class Description Notes
{ BasicRateCurveTree2®
|} BasicRateCurveNodeMode# &
1:Inherits |:Realized by

2.3.2 Operations

LogicalRateParameterRegion region() region

19

The region for the split. Returns the region that is used to determine which
branch of the tree to take.

BasicRateCurveTree insideBranch() insideBranch
The branch to take if the point is inside the region. Returns the tree branch to
take when the point is inside the region.

BasicRateCurveTree outsideBranch() outsideBranch
The branch to take if the point is outside the region. Returns the tree branch to
take when the point is outside the region.

PointRate value(Collection<ActualRateParameter> parameters) value
parameters: Collection<ActualRateParameter>The parameters that iden-
tify the position on the rate curve.
Raises:RateConstructorException

Get the value at some point on the curve. If the parameters when supplied to
the region’s inside operation return true, then return the result of the insideBranch
operation, valued with the supplied parameters. Otherwise, return the result of the
outsideBranch operation, valued with the supplied parameters.

If there is no inside or outside branch, raise a RateConstructorException.

2.4 BasicRateCurveSegment

A leaf node on the curve tree. A segment of the rate curve that can be represented
by a multivariate polynomial. A value is calculated by using the polynomial to
interpolate or extrapolate the parameters from some fixed point.

Each rate piece for each component of the rate is calculated separately. For ex-
ample, if a rate has bid and ask components and each component has base, forward
margin and corporate margin pieces, then 6 interpolations need to be made — one
for each combination of component and piece.

2.4.1 Relationships

Class Description Notes
{ BasicRateCurveTree2®
| BasicRateCurveSegmentModel.§
M:Inherits |:Realized by

20

2.4.2 Operations

Collection<ActualRateParameter> basePoint() basePoint

The base point of parameters. Returns a collection of actual parameters that
are used as the base point for interpolation/extrapolation.

Dictionary coefficients(String component, String piece) coefficients
component: String The component that is being interpolated. (Eg., bid,

ask, etc.)

piece: String The piece of the component that is being interpolated. (Eg.,

base, forward margin, etc.).

The polynomial coefficients. Returns a coefficient map that maps power in-
dices of the various parameters onto coefficients for the supplied component and
piece of component. If no coefficient map is explicitly supplied, the it returns nil.

For example, suppose the parameters weaedy and the polynomial repre-
sented wagz + zy — 5y + 322 + 1 and if we assume that the pairj represents
the power ofr and power ofy, respectively, then the coefficient map would be:

PointRate value(Collection<ActualRateParameter> parameters) value
parameters: Collection<ActualRateParameter>The parameters that iden-
tify the position on the rate curve.

Get the value at some point on the curve.

Suppose there are parameters, labelled, ..., z, and that the baseVector
operation returns a matching set of parametels, .., z2. Also suppose that the
coefficients for componert piecep are given b fl”ln wherei; is the power of
the jth parameter. Then, if we set = z; — =, the value of component piecep
is given by

. . cp i1 in
er-'ﬂnoil...inzl zn

by

21

2.5 FormalRateParameter

A description of a parameter required by a RateFunctionSpecitil8Logical
rate parameters describe the nature of a parameter, where it fits into a logical rate
specifier and the type of the parameter.

Parameters may be eitheontinuousor discrete Continuous parameters take
values that can have ordinary arithmetic operations performed upon them. Discrete
parameters are enumerations that take on a range of discrete values. An example
continuous parameter is a d4tén example discrete parameter is a currency.

FormalRateParameters obey value semantics, making them useful attributes
and keys.

2.5.1 Relationships

Class Description Notes
Comparable

ValueSemantics

Identifiable

Validatable

LogicalRateDateFormalParame-

ter 8.6

} FormalRateParameterModed.§

+ ActualRateParameterModeft & formalParameter

e ==

M:Inherits{:Inherited by |:Realized by <« :Association—:Navigable®:Aggregate$:Composite

2.5.2 Operations

String identifier() identifier
The parameter identifier. Returns a formal parameter name for the parameter.
This name should match the regular expres§foda-z_]J[A-Za-z0-9_J*

String description() description

4 Note that continuous parameters do not follow the normal mathematical definition of “contin-
uous.” Dates are integer-like, but they can be added and subtracted and, therefore, form the basis of
some interpolation method.

22

Long description of the parameter. Returns a long description of the parameter.
This description is intended as a human-friendly description of what the parameter
is intended for.

String type() type

The type of the parameter. Returns the string identifying the type of the param-
eter. This “type” refers to the behavior that the parameter is expected to exhibit.
In strongly-typed languages, such as C++ or Java, the type is the interface or class
of the parameter. In languages with no formal typing system, such as Smalltalk,
the type is essentially the set of methods that the parameter should respond to —
either a class or some more abstract, class-like entity. This string can be used for
“type” checking parameters, however in a language such as C++ this will require
extra work to get the class of the actual parameter.

Boolean isContinuous() isContinuous
The parameter described is continuous? Return true if this parameter is a con-
tinuous, as opposed to discrete, parameter.

Boolean equal(Comparable arg) equal
arg: Comparable

Equality test. Formal parameters are equal if their identifiers and types are
equal.

Reportable validate() validate
Is valid if identifier() matches the regular expressignrZa-z_][A-Za-
z0-9_J*

2.6 LogicalRateDateFormalParameter

An extension of the formal parameter structure for dates. Dates are continuous and
must have an attached date basis for day count calculations.

2.6.1 Relationships

Class Description Notes
1 FormalRateParamete? &
1:Inherits

23

2.6.2 Operations

DateBasis dateBasis() dateBasis

The date basis for interpolation. Return the DateBasis that is to be used when
calculating day-counts, etc. for interpolation purposes.

Boolean isContinuous() isContinuous
The parameter described is continuous? Return true.

2.7 LogicalRateParameterRegion

Parameter regions are used to break a BasicRateCQr{6igto a series of pieces.
The BasicRateCurveTre@ & uses a region to break the curve’s domain into two
pieces, which can then, in turn, be further broken into pieces until a segment is
reached.

Despite the name “region” and the use of the term “inside”, instances that im-
plement this interface will, most likely, represent a cut along a line or a plane.
Those points to the left of the line being inside the region and those to the right
being outside.

2.7.1 Relationships

Class Description Notes
| Interval 8.8
J RectangularRegionModek&4
+ BasicRateCurveNodeMode#&! region 0..n
+ Interval 8.8 intervals 1..n —
U:Inherited by |:Realized by <>:Association—:Navigable{:Aggregate¢:Composite

2.7.2 Operations
Boolean inside(Collection<ActualRateParameter> parameters) inside
parameters: Collection<ActualRateParameter>

Are these parameters inside the region? Test parameters to see whether the
parameter set falls inside the specified region or outside it. If the parameters fall
inside the region then return true, otherwise return false.

24

2.8 Interval

2.8.1 Relationships

Class Description Notes
1+ LogicalRateParameterRegio.g
f+ ldentifiable
J IntervalModel 8.9
+» LogicalRateParameterRegioR.8 intervals 1..n
+» RectangularRegionModek&4 intervals
f:Inherits |:Realized by <«s:Association —:Navigable®:Aggregate¢:Composite

2.9 Price

A price is a general interface for rates which are intended to be quoted as prices
for deals. In practice, almost all point rates can be used to quote a price. The Price
interface provides a mechanism for grouping any special quotation mechanisms
specific to the use of a rate in a deal.

2.9.1 Relationships

Class Description Notes
| PointRate 2.10
U:Inherited by

2.9.2 Operations

Instrument buy(Instrument quantity) buy
quantity: Instrument The quantity to convert.
Raises:RateConversionException

Buy one instrument by paying some other instrument. This operation trans-
forms one instrument into an equivalent instrument at the rate set by this price.
This operation is bi-directional, since a price essentially represents an exchange
between an amount of the instrument and the secondary instrument. If argument
quantity is of the primary instrument, then the quantity is converted into the sec-
ondary instrument, and vice-versa.

“Buying” indicates that the user of this price is exchanging the other instrument
for the instrument provided in quantity. This distinction has relevance when a price
has a bid/ask spread.

A RateConversionExceptiorb®is raised if this rate cannot convert the instru-
ment.

25

Instrument sell(Instrument quantity) sell
quantity: Instrument The quantity to convert.
Raises:RateConversionException

Sell one instrument by paying another instrument. This operation transforms
one instrument into an equivalent instrument at the rate set by this price. This op-
eration is bi-directional, since a price essentially represents an exchange between
an amount of the instrument and the secondary instrument. If argument quantity is
of the primary instrument, then the quantity is converted into the secondary instru-
ment, and vice-versa.

“Selling” indicates that the user of this price is exchanging the instrument pro-
vided in quantity for the other instrument. This distinction has relevance when a
price has a bid/ask spread.

A RateConversionExceptiorb®is raised if this rate cannot convert the instru-
ment.

2.10 PointRate

A point rate is a rate for a single contract. A point rate can be used to convert a
suitable amount of one commodity into an amount of another commodity.

Point rates are built out of several components. Generally, there will always
be a bid and ask component, reflecting the spread between buy and sell. The mid
component is a derived component that reflects the mid-point between the bid and
ask rates. There may be other components for quotation purposes or other require-
ments.

Point rates exchange between two commodities. Although the exchange is no-
tionally symmetrical, the point rate distinguishes betweerptiteary commodity
and thesecondary commodityWhich commodity is the primary and which is the
secondary is determined by the conventions of usage: the primary commodity is
the commodity that would normally be regarded as that being traded; the secondary
commodity is the commodity that is being used to pay for the primary commodity.
For example, a bond price has the bond as a primary commodity and the currency
exchanged for it as the secondary commodity.

26

2.10.1 Relationships

Class Description Notes
Rate .14
Price 8.9
CrossPointRate812
BasicPointRate 311
:Inherits}:Inherited by

e

=

2.10.2 Operations

RateQuote bid() bid

The bid component. Return the bid component, the price at which the item
being traded will be bought at.

RateQuote ask() ask
The ask component. Return the ask component, the price at which the item
being traded will be sold at.

RateQuote mid() mid
The mid component. Return the mid component. The mid component is the
rate “halfway” between the bid and ask components. However, since the quotation
methods for rates can disguise non-linear effects (eg., interest rates), the mid rate
is not (necessarily) the mean of the two rates.
Instead, if amount of the primary commodity in the rate relationship will buy
yia Of the secondary commaodity at the bid rate apg. of the second commodity
at the ask rate, then the mid rate is that rate for whicli the primary commodity
will buy (ypiq + yask)/2 of the secondary commodity.

RateQuote quote(String quoteName) quote
guoteName: String

Get an arbitrary rate component.

Return the named component, if such a component is held or can be derived.
If no such component exists, return nil.

Commodity primaryCommodity() prima-
The primary commodity. Return the commodity that this rate uses as thenggemmodity
mary commodity.

Commodity secondaryCommodity() sec-
ondaryCommod-
ity

27

The secondary commodity. Return the commodity that this rate uses as the
secondary commodity.

Instrument buy(Instrument quantity) buy
quantity: Instrument The quantity to convert.
Raises:RateConversionException

Buy one quantity of an instrument by paying some other quantity of the instru-
ment. This operation transforms one quantity of a commaodity into an equivalent
quantity of another commodity at the rate set by this rate. This operation is bi-
directional, since a rate essentially represents an exchange between an amount of
the primary commodity and the secondary commaodity. If argument quantity is of
the primary commodity, then the quantity is converted into the secondary commod-
ity, and vice-versa.

If this rate is mine, the commodity is the primary commaodity and the quantity
is greater than zero, use the bid rate. Any change of one of the listed characteristics
flips from bid to ask. Another change flips back from ask to bid.

The Instruments, in this case, must be SimpleCashflows. A RateConversionEx-
ception %.2is raised if this rate cannot convert the instrument.

Instrument sell(Instrument quantity) sell
quantity: Instrument The quantity to convert.
Raises:RateConversionException

Sell one quantity of an instrument by paying some other quantity of the instru-
ment. This operation transforms one quantity of a commaodity into an equivalent
quantity of another commodity at the rate set by this rate. This operation is bi-
directional, since a rate essentially represents an exchange between an amount of
the primary commodity and the secondary commaodity. If argument quantity is of
the primary commodity, then the quantity is converted into the secondary commod-
ity, and vice-versa.

If this rate is mine, the commodity is the primary commaodity and the quantity
is greater than zero, use the ask rate. Any change of one of the listed characteristics
flips from ask to bid. Another change flips back from bid to ask.

The Instruments, in this case, must be SimpleCashflows. A RateConversionEx-
ception %.2is raised if this rate cannot convert the instrument.

2.11 BasicPointRate

A basic point rate is a point rate where the rate is directly specified, rather than as
a chain of commodity transformations, as in the CrossPointRat28

28

2.11.1 Relationships

Class Description Notes
1+ PointRate 8.10
} BasicPointRateModelg2
1:Inherits |:Realized by

2.12 CrossPointRate

A cross point rate is a rate defined in terms of two other point rates with a com-
mon commodity. When buying or selling commaodities, the commodity is first
transformed into an amount of the common commaodity. The common commaod-
ity amount is rounded to an intermediate value, and the intermediate value is then
transformed into an amount of the target commodity.

2.12.1 Relationships

Class Description Notes
{ PointRate 2.10
1:Inherits

2.12.2 Operations

Commodity commonCommodity() commonCom-

The common commodity. Return the commodity that is common to both fogity
primary leg and the secondary leg.

PointRate primaryLeg() primaryLeg
The primary/common leg. Return the rate that transforms between the primary
commaodity and the common commodity.

PointRate secondaryLeg() secondarylLeg
The secondary/common leg. Return the rate that transforms between the sec-
ondary commodity and the common commaodity.

2.13 QuotationMethod

A quotation method provides enough information to interpret the actual value of
a rate, in conjunction with a RateFunctionSpecifigr2d. Quotation methods are

29

usually rate type specific. For example, discount rates normally apply to interest
rates, forward margins to FX rates, etc.

Quotation methods come in two formigll andmargin Full quotation meth-
ods mean that the rate pieces can be valued independently, as complete rates. Mar-
gin quotation methods mean that the rate pieces must be combined with another
rate for a complete rate to be built.

Each type of rate — interest rate, FX rate, etc. — haswsonical quotation
method a standardized method for representing the rate.

2.13.1 Relationships

Class Description Notes
1 Comparable
+ RatePieceModel£&20 guotation
method 0..n
+ BasicRateDerivationSpecifier- quotationMethod
Model 4.6
f:Inherits «+»:Association —:Navigable:Aggregate¢:Composite

2.13.2 Operations

Boolean isMargin() isMargin

Is this rate in margin form? Return true if this rate is a margin over another
rate, false otherwise.

Boolean isCanonical() isCanonical
Is this the canonical representation? Return true if this quotation method rep-
resents the canonical quotation method for this rate type.

String type() type
The type of rate that this rate is for. Returns a string giving the type of rate this
this quotation method can be used for.
See the RateFunctionSpecifi&.8linterface.

parse(InputStream stream, Boolean loose, RateFunctionSpecifier spec-

ifier) parse
stream: InputStream The stream to read the value from.

loose: BoolearPerform “loose” parsing. The default value is true.

30

specifier: RateFunctionSpecifierThe specifier to use when interpreting
this rate.
Raises:ParseException

Read in a text description of a rate and convert it into an appropriately quoted
rate. Read in a value from an input stream in whatever form this quotation method
accepts. Raise a ParseException if it is not possible to read the value.

If loose is true, then “loosely” parse the input stream; initial white space is ig-
nored, additional accuracy is accepted and sensibly inferable elements are inferred.

printRate(OutputStream stream, Number rate, Boolean loose, Rate-
FunctionSpecifier specifier) printRate
stream: OutputStream The stream to print onto.
rate: Number The rate to print.
loose: BoolearPrint the rate in “loose” format. The default value is false.
specifier: RateFunctionSpecifierThe specifier to use when interpreting
this rate.

Print a rate piece on an output stream. Print the rate in a form parseable by
the parse operation. If loose is true, then additional accuracy, above that normally
expected, can be printed.

Number asCanonical(Number rate, RateFunctionSpecifier specifier) asCanonical
rate: Number
specifier: RateFunctionSpecifierThe specifier to use when interpreting
this rate.
Raises:RateQuotationException

Convert a rate into the equivalent canonical quotation method. Convert the sup-
plied rate, assumed to be quoted in the form given by this quotation method into an
equivalent amount in the canonical quotation method. Raise a RateQuotationEx-
ception if it is not possible to convert the rate.

Number fromCanonical(Number rate, RateFunctionSpecifier specifier)
fromCanonical

rate: Number
specifier: RateFunctionSpecifierThe specifier to use when interpreting
this rate.
Raises:RateQuotationException

Convert a rate from canonical form into this quotation form. Convert a rate
supplied in the canonical quotation method into an equivalent rate in this quotation

31

method. Raise a RateQuotationException if it is not possible to convert the rate.

Boolean equal(Comparable arg) equal
arg: Comparable The comparable to test for equality.

Equality test. This equality test is defined by the concrete realizations of this
interface.

2.14 Rate

The rate interface covers anything that, abstractly, might be regarded as a rate. This
definition includes such “rates” as curves, surfaces, etc.
Rates are quoted at a specific time and have an expiry time. After the expiry
time, the rate is considered to bale Stale rates should be refreshed, if possible.
Rates are eithegroursor mineg reflecting who is doing the quotation. If yours,
the rate has been supplied from some outside source. If mine, the rate has been
supplied from within the system.

2.14.1 Relationships

Class Description Notes
| PointRate 2.10
| RateCurve 8.15
< ImpliedRateCurveModel 48 sources 0..n O
U:Inherited by «+»:Association —:Navigable:Aggregate¢:Composite

2.14.2 Operations

RateFunctionSpecifier specifier() specifier
The rate specifier for this rate. Return the rate specifier that describes this rate.

Timestamp quoteTime() quoteTime
The time at which this rate was quoted. Return the time at which this rate be-

came current. If this rate is derived from a basic derivation (see BasicRateDeriva-

tionSpecifier 8.19), then this is the time of quotation from the source. If this rate

is derived from an implied derivation (see ImpliedRateDerivationSpecife2(g

then the quote time is when the implied rate was built.

Boolean isYours() isYours

32

Is this rate an external quotation? Return true if this rate is quoted as-if from
an outside source.

Timestamp expiry() expiry
The expiry time. Return the date and time at which this rate becomes stale.
Once a rate has become stale, it should be re-requested. Re-requesting applies to

one-shot, as well as stream rates (see RateSo@r2é)§

Boolean isStale() isStale
Is this rate stale? Return true if the expiry date is not null and the current date
and time is after the (non-null) expiry date and time, false otherwise.

2.15 RateCurve

A rate curver represents some rate curve, surface or higher-order object that can be
interrogated, with sufficient parameters to give a point rate for some point within its
domain. The parameters used to construct rate curves must be continuous param-
eters (see FormalRateParamet215§ discrete parameters must be fixed before a
curve is constructed.

Rate curves are completely abstract. Specialized versions deal with the com-
mon cases of curves and surfaces.

Rate curve are assumed to be functional, in the sense that the curve will al-
ways return the same result from a value operation with the same parameters. The
functional condition implies that curve fold results can be cached or tabulated.

2.15.1 Relationships

Class Description Notes
{ Rate .14
| BasicRateCurveXZ16
| ImpliedRateCurve 8.17
1r:Inherits{}:Inherited by

2.15.2 Operations

OrderedCollection<FormalRateParameter> formalParamaters() formalPara-

The parameters of the curve. Return an ordered collection of the paramet&f8'8f
the rate curve. This collection is the same as the curve formal parameters that the
specification holds.

33

PointRate value(Collection<ActualRateParameter> parameters) value
parameters: Collection<ActualRateParameter>The parameters that iden-
tify the position on the rate curve.

Get the value at some point on the curve . Return the point rate that corresponds
to the combination of the point actual parameters from the specifier and the actual
parameters supplied by the parameters argument. The parameter combination must
fix the specifier.

2.16 BasicRateCurve

Basic rate curve abstractly describe the process by which rates are interpolated or
extrapolated into a rate curve-dimensional rate curve are piece-wise interpolated
by the construction ofi-variable polynomials.

2.16.1 Relationships

Class Description Notes
1+ RateCurve 8.15
| BasicRateCurveModel4&3
1:Inherits |:Realized by

2.16.2 Operations

PointRate value(Collection<ActualRateParameter> parameters) value
parameters: Collection<ActualRateParameter>The parameters that iden-
tify the position on the rate curve.

Get the value at some point on the curve.
Construct the point rate by using the associated constructor.

BasicRateCurveTree constructor() constructor
The rate constructor.
Return the constructor tree used to build this rate.

2.17 ImpliedRateCurve

A variety of rate curve where the point rate is constructed by combining two or
more point rates given by component rate curves. The source rates need to be com-
bined together to form the resulting point, using a suitable RateConstrigtbr §

34

Source rates can be point rates, as well as rate curve. As an example, a forward
FX rate implied from two yield curves needs a spot FX rate to use as a base rate.

2.17.1 Relationships

Class Description Notes
1+ RateCurve 8.15
1 ImpliedRateCurveModel 88
1:Inherits |:Realized by

2.17.2 Operations

PointRate value(Collection<ActualRateParameter> parameters) value
parameters: Collection<ActualRateParameter>The parameters that iden-
tify the position on the rate curve.

Get the value at some point on the curve. A point rate is constructed by first
getting point rates from the supplied source curves. The parameters for the source
curves must match the parameters required by the source rate curves and are con-
structed by combining the fixed parameters from this rate curve’s specifier and the
parameters supplied by the parameter argument.

The resulting source point rates are then supplied to the rate constructor's con-
struct operation, to give a resultant point rate. The constructed rate must match the
yours/mine convention of the implied curve.

RateConstructor constructor() constructor
The rate constructor. Returns the rate constructor that is used to combine the
source point rates together to form the returned rate.

Collection<Rate> sources() sources
The source rates. Returns the source curve or point rates that are used as
sources to construct the rate.

Timestamp quoteTime() quoteTime
The time at which this rate was quoted. Return the maximum of the quote
times of all the source rates.

Timestamp expiry() expiry

The expiry time. Return the minimum of the expiry dates and times of all the
source rates.

35

2.18 RateDerivationSpecifier

A rate derivation specifier describes how a rate is to be constructed. There are two

main streams of derivation: basic rates and implied rates. Basic rates have a name
and a source and can be acquired from some external source of data. Implied rates
are constructed from other rates, using some construction methodology.

2.18.1 Relationships

Class Description Notes
1+ Comparable
|l BasicRateDerivationSpecifie289
| ImpliedRateDerivationSpecifie2820
M:Inherits|}:Inherited by

2.19 BasicRateDerivationSpecifier

A basic rate derivation specifier acquires a rate by means of a rate source and a rate
name. The rate source is some external source of rates. The rate name is a string
key to the rate source that uniquely specifies the rate (in logical, contract terms)
that is required.

2.19.1 Relationships

Class Description Notes
1+ RateDerivationSpecifier18
| BasicRateDerivationSpecifier-

Model #4.6
M:Inherits |:Realized by

2.19.2 Operations

RateName rateName() rateName
The rate name for this rate. Returns the rate name that this rate is identified by.

RateSource rateSource() rateSource
The supplying rate source. Returns the source that supplies this rate.

Boolean equal(Comparable arg) equal
arg: Comparable The comparable to test for equality.

36

Equality test. Two basic rate derivations are equal if the rate sources and rate
names are equal.

QuotationMethod quotationMethod() quotation-
The way in which the externally supplied rate will be quoted. Method

2.20 ImpliedRateDerivationSpecifier

An implied rate derivation specifier indicates that a rate is constructed in terms
of a set of source rates, which can be combined together to build another rate.
An example implied rate derivation is the building of a bond price from the bond
definition and a yield curve.

2.20.1 Relationships

Class Description Notes
1+ RateDerivationSpecifier818
1:Inherits

2.20.2 Operations

OrderedCollection<RateDefinitionSpecifier> sources() sources

The source rates. Returns a collection of source rate specifiers that this method
requires to build the rate. This collection will be the same as the specifiers returned
by constructor().sources().

RateConstructor constructor() constructor
The rate constructor. Returns the rate constructor that can be used to build the
implied rate.

Boolean equal(Comparable arg) equal
arg: Comparable The comparable to test for equality.

Equality test. Two implied rate derivations are equal if the sources are equal
and the constructors are identical.

37

2.21 RateFunctionSpecifier

A rate function specifier is an abstract description of the unit contract that a rate
describes. That is, it specifies what the rate can be used to do, without saying
anything about how the rate is derived.

A rateFunctionSpecifier is characterised by a 'type’ which specifies the type of
the rate (exchange rate, interest rate etc), a set of curveParameters, which specify
what rate curve the rate is on (e.g. the USD/DEM exchange rate curve or the
USD vyield curve), and a set of point parameters which specify a specific point
along the rate curve (e.g. the 1 month point along the USD yield curve). A rate
functionSpecifier must have its type and curve parameters specified. If the point
parameters are not specified, then the rateFunctonSpecifier represents a whole rate
curve, rather than a single point along it.

RateFunctionSpecifiers are used as part of a rate: Each rate needs to know what
kind of rate it is.

Example rate function specifiers:

FX rate Commodity currency, counter currency, forward date. Without a forward
date specified, the rate is a curve over a series of forward dates.

Interest rate Currency, location of origin (for bonds), party (for loans), from-date,
to-date.

Exchange traded option price Option contract, expiry date, strike price, exchange.

Futures volatility Futures contract, delivery date, price. Without specified deliv-
ery dates and prices, this becomes a “smile” surface. Alternately, the price
can be defined as a function of the delivery date, gg= 99.23 + (d —
‘21-Jan-2000J x 0.01 to provide a complex forward curve.

2.21.1 Relationships

Class Description Notes
1+ Comparable
|l RateDefinitionSpecifierZ22
1r:Inherits|}:Inherited by

2.21.2 Operations

Collection<FormalRateParameter> curveFormalParameters() curveFormalPa-
rameters

38

The possible parameters for this rate specifier. These formal parameters define
the data required to specifiy a curve for the rate. Returns a collection of the formal
parameters that give the possible parameters that may be fixed by this specifier.

Collection<ActualRateParameter> curveActualParameters() curveActualPa-
The set of parameters for this specifier. These parameters define a curve fGRErs
rate. Returns a collection of parameters that describe this specifier.

String type() type

The type of rate that this specifier specifies. Returns a string identifying the
type of rate that this logical rate specifier specifies. Examples are ‘Interest Rate’ or
‘FX Rate’.

If the language being used supports some form of interned string class (eg.,
Smalltalk’'s Symbols or Java’s intern() method) then return an interned string.

See QuotationMethod2813

Boolean equal(Comparable arg) equal
arg: Comparable The comparable to test for equality.

Equality test. A rate function specifier is equal to another rate function spec-
ifier if both refer to the same unit contract. A rate function specifier is equal to a
non-rate function specifier if the specification, quotation method and derivations
are all equal.

Collection<FormalRateParameter> pointFormalParameters() pointFormalPa-
The possible parameters for this rate specifier. These formal parameters defifers

the data required to specifiy a point on a curve for the rate. Returns a collection of

the formal parameters that give the possible parameters that may be fixed by this

specifier.

Collection<ActualRateParameter> pointActualParameters() pointActualPa-
The set of parameters for this specifier. These parameters define a point rd@#"ei§rs
a curve. Returns a collection of parameters that describe this specifier.

2.22 RateDefinitionSpecifier

RateDefinitionSpecifiers are used for two distinct purposes:

39

(i) They are used to define rates in reference data. For example, a rate may
be available from an external source, identified by a string (its rate name). In
this case a rateDefinitionSpecifier can be used to specify how that external rate(a
simple number) is interpreted. RateDefinitionSpecifiers can also be used to specify
implied rates, which are calculated from other rates. if used for this purpose, the
derivationMethod must not be null.

(i) RateDefinitionSpecifiers are also used to request rates from a rate manager.
When a rate is required, we may want to specify the rate derivation method, as
well as the rate’s function. For instance, we may be specifically interested in the
JPY yield curve implied by the USD yield curve, and the USD.JPY exchange rate
curve, rather than just wanting any available JPY vyield curve. For this purpose
the curveParameters of the RateFunctionSpecifier must all be non-nil. The point
parameters can either all be nil (in which case a curve is requested) or all non-
nil. The derivationMethod can be nil, in which case the request may return any
appropriate rate, irrespective of how it is derived.

2.22.1 Relationships

Class Description Notes
1 RateFunctionSpecifier2§21
M:Inherits

2.22.2 Operations

RateDerivationSpecifier derivationMethod() derivation-

This is the method by which the specified rate is derived. If the specified Mgigod
is a point rate supplied by another system, then this will be a BasicRateDerivation-
Specifier, specifying the rate source, a rate name (identifier string) and quotation
method. If this rate is an implied rate calculated from other rates, then the deriva-
tionmethod will be an ImpliedRateDerivationSpecifier which lists the source rates
and the calculation method. This RateDefinitionSpecifier may also specify a rate
curve, in which case the derivationMethod will also be an ImpliedRateDerivation-
Specifier.

RateFunctionSpecifier rateFunctionSpecifier() rateFunction-

Return the RateFunctionSpecifier implicit in the receiver. That is, construgpggifier
RateFunctionSpecifier with the same type and parameters as the receiver.

40

Code Description

The { character itself
Maturity date
Maturity day
Maturity month
Maturity year
Maturity (to) period.
Start (from) period
Strike price

Option put/call code

Ow o< 30D~

Table 1: Rate Name Codes

2.23 RateName

A rate name is a logical specification of a key, usable by some RateSqua® §

Rate names map a logical rate description, in the form of a RateFunctionSpeci-
fier 8.21onto a string key that can be supplied to some external source of rates.
Since many financial instruments are described in terms of series of contracts, some
form of pattern-based naming is needed.

As a simple example, the USD interest rate for today to 1 year might be given
by asking for 'USD1YD=" from some external rate source. As a more complex
example, a series of futures contracts might be expressed as 'FIM{mHKy}' where
the {y} and {m} elements represent year and month specifications for a particular
contract.

RateNames are essentially strings with special properties and, therefore, have
value semantics and inherit the ValueSemantics interface. The strings contain em-
bedded escape sequences for elements that need to be filled out by appropriate
encoders and decoders. The escape sequences begin with the { character, and end
with the } character. Within the {} pair is the code for the portion of the specifier
that is to be included. The codes are summarised in table

Two codes may be joined together into a code that combines the characteristics
of both elements by placing more that one code between the braces. For example,
the code {om} combines the option put/call code and the maturity month into a
single symbol; a process used by Reuters ETO RIC codes.

The codes used are highly source- and instrument-specific. The coders and de-
coders for a particular source (see RateNameCddl@e®d RateNameDecodeB)
need to map the patterns to and from specific codes.

® This code table may be expanded by further instruments.

41

2.23.1 Relationships

Class Description Notes
Validatable
ValueSemantics
Comparable
RateNameModel 419
:Inherits |:Realized by

===

= |+

2.23.2 Operations

String rateName() rateName
The rate name pattern. Return a string that contains the rate name pattern.

Reportable validate() validate
A rate name is valid if all codes within the {} braces are valid codes, as given
in the code table.

Boolean equal(Comparable arg) equal
arg: Comparable The comparable to test for equality.

Equality test. Two rate names are equal if the rateName() operation returns the
same string for both objects.

2.24 RatePiece

A rate piece expresses one part of a rate, either some full value or a margin on that
value. Rate pieces obey ValueSemantics, making them suitable attributes.

2.24.1 Relationships

Class Description Notes
{+ Identifiable
1 ValueSemantics
1 RatePieceModel&20
M:Inherits |:Realized by

42

2.24.2 Operations

QuotationMethod quotationMethod() quotation-

The quotation method. Return the quotation method that is used to expresy?mgd
rate.

Number value() value
The rate piece. Return the value for this rate.

RatePiece sum(RatePiece arg, String name, RateFunctionSpecifier spec-
ifier) sum
arg: RatePieceThe rate piece to add to this value.
name: String The new identifier for the combined value.
specifier: RateFunctionSpecifier
Raises:RateQuotationException

The sum of two rate pieces. Return the rate piece that would be the sum of this
rate piece and the arg rate piece. The resulting rate piece has an identifier of name.
The two rate pieces must have compatible quotation methods; a RateQuotationEx-
ception is raised if the two quotation methods are incompatible.

2.25 RateQuote

A rate quote consists of a single part of a rate: bid, ask, mid, last, etc. Quotes are
identified by the part they represent, usually an all-lower-case name, interned, if
possible.

Each quote is built from a base rate, which must have a full quotation method
and a series of margins, which must have a margin quotation method. The sum of
the base rate and all the margins makes the total rate. A quote niaydmeplete
indicating that it does not have a base rate.

2.25.1 Relationships

Class Description Notes
f+ ldentifiable
1 Validatable
1 RateQuoteModel 421
+ BasicPointRateModel£2 quotes 1..1 O
f:Inherits |:Realized by <«s:Association —:Navigable®:Aggregate¢:Composite

43

2.25.2 Operations

RatePiece base() base

Return the base rate piece. Return the base rate onto which all other margin
rates are added. If there is no base rate, return nil.

RatePiece total(RateFunctionSpecifier specifier) total
specifier: RateFunctionSpecifier
Return the total rate piece. Return the sum of the base rate and all margins.

RatePiece margin(String name) margin
name: String The name of the margin component.

Return the margin for a specific margin element. Return the value of the named
margin, if one exists, return nil otherwise.

Boolean isComplete() isComplete
Is this quote completely specified? Return true if the quote has a base rate.

2.26 RateSource

A rate source describes a source of rate data. Rate sources are generally named and
associated with some form of plug-in component that can interface with the outside
source of data. Example rate sources would be a TCP/IP rate feed, a database table
or a spreadsheet.

Rate sources can be eittetreamrate sources asne-shotate sources. Stream
rate sources feed a continuous stream of updates of a rate for the life of the rate.
One-shot rate sources provide a single rate, semi-static in nature. One-shot rates
are not intended to be completely static, just largely static. It is possible that new
values of one-shot rates will need to be read, for example, when the processing
date changes.

44

2.26.1 Relationships

Class Description Notes
Comparable
Identifiable
RateSourceModel£&22
RateSourceReferenceData-
Model .23
+» BasicRateDerivationSpecifier- rate source 0..n
Model &.6
< RateSourceReferenceData- model 0..1
Model .23
f:Inherits |:Realized by <«»:Association —:Navigable®:Aggregate¢:Composite

=

2.26.2 Operations

Boolean isStream() isStream

Is this a stream rate source? Return true if this rate source provides a continu-
ous stream of updates, false otherwise.

RateNameCoder coder() coder
The coder to use when constructing rate names. Return the coder to use when
converting parameterized rate names into keys acceptable to this external rate source.

RateNameDecoder decoder() decoder
The decoder to use when interpreting rate names. Return the decoder to use
when converting rate names into logical rate specifiers.

Boolean equal(Comparable arg) equal

arg: Comparable The comparable to test for equality.
Equality test. Two rate sources are equal if the names of both sources are equal.

3 Service Interfaces

3.1 RateConstructor

A rate constructor takes a collection of rates and builds a new rate from the input

45

collection. Rate constructors can take many forms, and may be implemented as
pluggable components.

3.1.1 Relationships

Class Description Notes
+ ImpliedRateCurveModel g8 constructor 0..n
«+»:Association —:Navigable:Aggregate¢:Composite

3.1.2 Operations

Rate construct(OrderedCollection<Rate> sources) construct
sources: OrderedCollection<Rate>The rates used to build the new rate.

The rates in this collection must have the same ordering as the specifiers

given by the sources operation.

Raises:RateConstructorException

Build the rate. Take the supplied set of sources (which may be incomplete) and
attempt to construct a result rate. If a rate cannot be constructed, raise a RateCon-
structorException.

OrderedCollection<RateDefinitionSpecifier> sources() sources
The sources used to build a rate. Return the collection of rate specifiers needed

to build this rate. These rate specifiers are RateDefinitionSpecifiers, rather than

RateFunctionSpecifiers, since this will allow us to specify the use of rates derived

in a particular way. The derivationMethod does not have to be specified if this is

irrelevant.

RateFunctionSpecifier result() result
The output rate specification. Return the logical specification for the rate that
this constructor constructs.

3.2 RateNameCoder

Certain rate names are in the form of patterns, giving a general description for a
class of rate names, which need to be filled-out by the exact nature of the contract
involved. These patterns use a RateNameCoder to convert the pattern, in conjunc-
tion with a RateFunctionSpecifieR&1into an acceptable rate name. (Similarly, a
RateNameDecoder383 converts supplied rate names into logical rate specifiers.)

46

The exact nature of a coder is dependent on the nature of the rate feed that is
being handled and the type of rates being requested. As such, a coder needs to be
supplied in the form of a pluggable component.

Eg.

For a Reuters feed, a Rate Name may be expressed as simple string such DEM=
for the Deutchemark Spot rate or as a parameterized string such as ZBmy where:
ZB is the code for British Pounds on the Philadelphia Board of Trade,

m is the Month (See Reuters manuals for codes. eg. F = Jan .. Z = Dec for Futures
contracts

y is the last digit of the year, eg. 2001 =1

The values for m and y would be supplied by the RateFunctionSpec¥i2i §

3.2.1 Relationships

Class Description Notes
+ RateSourceModel£22 encoding 0..n
«+»:Association —:Navigable:Aggregate¢:Composite

3.2.2 Operations

String encode(RateNameCoder rateName, RateFunctionSpecifier spec-

ifier) encode
rateName: RateNameCodeiThe rate name to encode.

specifier: RateFunctionSpecifierThe logical rate specifier to use for pa-

rameter interpretation.

Raises:RateNameException

Convert a rate name into a suitable key string. Convert the supplied rate name
into a completely specified key intelligible to the associated rate source. Any pa-
rameters used within the rate name are expanded using the supplied rate specifier.

3.3 RateNameDecoder

Certain rate names are in the form of patterns, giving a general description for
a class of rate names. When a rate is received from a rate feed, it needs to be
decoded so that the incoming rate can be matched to a suitable logical rate (See
RateFunctionSpecifier2g21).

A RateNameDecoder matches the supplied key against all the possible Rate-
Names .23 and returns the matching logical rate specifier. (Similarly, a Rate-

47

NameCoder 8.2 converts logical rate specifiers and rate names into complete
keys.)

The implementation of a RateNameDecoder is likely to be quite difficult. In
theory, the decoder needs to know about all possible traded contracts which get
information from the associated feed and implement some sort of matching algo-
rithm. In addition, the decoder needs to be able to handle the pattern-based rate
names that are used to specify families of contracts.

The exact nature of a decoder is dependent on the nature of the rate feed that is
being handled and the type of rates being requested. As such, a decoder needs to
be supplied in the form of a pluggable component.

Eg.

A value from the Reuters feed could be: ZBZ1 123.456 The decoder will have to
recognize the ZBZ1 as the RIC code for the value being quoted and then link this
back to a RateFunctionSpecifie2.81that cause the original rate request.

3.3.1 Relationships

Class Description Notes
+» RateSourceModel&g22 decoding 0..n
«+»:Association —:Navigable:Aggregate¢:Composite

3.3.2 Operations

RateFunctionSpecifier decode(String key) decode
key: String The string used to identify the rate.
Raises:RateNameException

Decode a rate key string. Convert the incoming rate string into a matching
RateFunctionSpecifier2821

4 Classes

4.1 ActualRateParameterModel

48

4.1.1 Relationships

Class Description Notes
1T ActualRateParamete8L
+ FormalRateParamete2® formalParameter —
T:Realizes <«s:Association —:Navigable¢:Aggregate$:Composite

4.1.2 Attributes

value: Object

4.2 BasicPointRateModel

A concrete implementation of the BasicPointRate interface where the various rate
components are modeled as a collection of one or more components. Subclasses
of this class provide specific information on commodities and transformations.

4.2.1 Relationships

Class Description Notes
1 BasicPointRate 311
+ RateQuote 8.25 quotes 1..n —
T:Realizes <»:Association —:Navigable:Aggregate¢:Composite

4.2.2 Attributes

specifier: RateFunctionSpecifier The specifier for the rate.

quoteTime: Timestamp The time at which the rate was quoted

isYours: Boolean True if this rate is quoted from the external perspective.

expiry: Timestamp The expiry date and time. Can be null.

4.2.3 Operations
RateQuote quote(String quoteName) quote
guoteName: String

Get an arbitrary rate component. Search the associated list of components for
a component with the same identifier as the supplied component argument. Return
nil if not found.

49

RateQuote bid() bid
The bid component. Return quote identified by "bid’

RateQuote ask() ask
The bid component. Return quote identified by ’bid’

4.3 BasicRateCurveModel

A concrete implementation of the BasicRateCurve interface. The model is con-
structed by building a curve tree which can be searched to build the appropriate
point rate.

4.3.1 Relationships

Class Description Notes
1 BasicRateCurveZ816
+» BasicRateCurveTree2® constructor 1..1 —
T:Realizes <«s:Association —:Navigable¢:Aggregate¢:Composite

4.3.2 Attributes

specifier: RateFunctionSpecifier The specifier for the rate.

isYours: Boolean True if this rate is quoted from the external perspective.
quoteTime: Timestamp

expiry: Timestamp

4.4 BasicRateCurveNodeModel

A concrete implementation of the BasicRateCurveNode interface. The elements of
the interface are implemented as associations.

4.4.1 Relationships

Class Description Notes
+ BasicRateCurveNode2§3
+» LogicalRateParameterRegioR.8 region 1..1 —
+» BasicRateCurveTree28 inside 0..1 —
+» BasicRateCurveTree2®2 outside 0..1 —
T:Realizes <«s:Association —:Navigable¢:Aggregate¢:Composite

50

4.4.2 Operations

LogicalRateParameterRegion region() region

The region for the split. When the curve tree is being constructed each Segment
is tested against this region. If the segment is "inside" the region then it is added
to this node’s insideBranch otherwise it it added to the outsideBranch Return the
associated region.

4.5 BasicRateCurveSegmentModel

A concrete implementation of the BasicRateCurveSegment interface. The base
point and coefficient matrix are kept as dictionaries of parameters.

4.5.1 Relationships

Class Description Notes
1T BasicRateCurveSegmer2.g
T:Realizes

4.5.2 Attributes

basePoint: Collection<ActualRateParameter> The collection of base values.
For a region that is based on the RectangularRegionModel classes this will
be the point that is closest toc- coordinates. For example for a 1-D line
defined by:

((3). (5)

it would be (3).

For a 2d region define by the rectangular region:
(2.3),

(2,6),

(4.3),

(4.6)

it would be the point: (2,3).

For a 3-D region defined by the cube with corners:

(-10,1,2), (-10,1,3), (-10,3,2), (-10,3,3),
(2,1,2), (2,1,3), (2,3,2), (2,3,3),

51

it would be the point: (-10,1,2).

For a rectangle based region model the method for finding the base point is
to sort the coordinates in ascending order by each of their ordinates and then
taking the first one in the list. (eg for a 3-D system, order by x,y,z and take
the first one).

coefficients: Dictionary A dictionary that maps x p x i1 x - -- X i, — v where
c is the component name, is the piece namei; is the power of thej'
parameter and is the coefficient value.

This dictionary is likely to be sparse.

4.6 BasicRateDerivationSpecifierModel

An implementation of the BasicRateDerivationSpecifier interface.

4.6.1 Relationships

Class Description Notes
1 BasicRateDerivationSpecifie28.9
+ RateSourceZ26 rate source 1..1 —
+» QuotationMethod 28.13 guotationMethod —
1.1
T:Realizes <»:Association —:Navigable:Aggregate¢:Composite

4.6.2 Attributes

rateName: RateName The name of the rate.

4.6.3 Operations

RateSource rateSource() rateSource
The supplying rate source. Return the associated rate source.

4.7 FormalRateParameterModel

4.7.1 Relationships

Class Description Notes
1T FormalRateParamete2®
T:Realizes

52

4.7.2 Attributes
identifier: String
description: String
type: String

isContinuous: String

4.8 ImpliedRateCurveModel

A concrete implementation of the ImpliedRateCurve interface. Underlying an im-
plied rate is the collection of rates that are used to construct the implied rate and a
constructor that build the resulting rate.

4.8.1 Relationships

Class Description Notes
1T ImpliedRateCurve 8.17
+ Rate .14 sources 1..n —
+ RateConstructor31 constructor 1..1 —
T:Realizes <«s:Association —:Navigable¢:Aggregate$:Composite

4.8.2 Attributes

specifier: RateFunctionSpecifier The specifier for the rate.

isYours: Boolean True if this rate is quoted from the external perspective.

4.8.3 Operations

Reportable validate() validate

Validate the object.
An implied rate curve must be consistent in the sense that the source rates can
be queried in such a way as to give the correct point rates for the rate constructor.

53

4.9 IntervalModel
4.9.1 Relationships

Class Description

Notes

Interval 2.8
InfinitelnfinitelntervalModel 8.14
InfiniteClosedIntervalModel £13
InfiniteOpenintervalModel 4.15
ClosediInfinitelntervalModel £11
OpenlinfinitelntervalModel 4.17
OpenOpenintervalModel4818
OpenClosedintervalModel4§16
ClosedClosedIntervalModeKg§10

InfinitelnfinitelntervalModel 8.14
InfiniteClosedIntervalModel £13
InfiniteOpenintervalModel 4.15
ClosedInfiniteIntervalModel £11
OpenlnfinitelntervalModel £.17
OpenOpenintervalModel4818
OpenClosedintervalModel4§16
ClosedClosedIntervalModeKg§10
ClosedOpenintervalModel4§12

7
U
4
U
U
4
U
4
U
| ClosedOpenintervalModel4§12
1
i)
1
i)
1
1
i)
1
i)
Y-

Inherited byt:Realizes|:Realized by

4.10 ClosedClosedintervalModel
4.10.1 Relationships

Class Description

Notes

{ IntervalModel &.9
1 IntervalModel &.9

M:Inherits 1:Realizes

4.10.2 Attributes

lowerBoundary: Comparable Lower boundary of the interval.

upperBoundary: Comparable Upper boundary of the interval.

54

4.10.3 Operations

Boolean inside(ActualRateParameter parameter)
parameter: ActualRateParameter

Return True if:
lower Boundary < parameter < upper Boundary

411 ClosedInfinitelntervalModel
4.11.1 Relationships

Class Description Notes
1+ IntervalModel &.9
1 IntervalModel 8.9
{r:Inherits 1:Realizes

4.11.2 Attributes

lowerBoundary: Comparable Lower boundary of the interval.

4.11.3 Operations

Boolean inside(ActualRateParameter parameter)
parameter: ActualRateParameter

Return True if:
lower Boundary < parameter

4.12 ClosedOpenintervalModel
4.12.1 Relationships

Class Description Notes
{ IntervalModel 8.9
1 IntervalModel &.9

M:Inherits 1:Realizes

4.12.2 Attributes
lowerBoundary: Comparable Lower boundary of the interval.

upperBoundary: Comparable Upper boundary of the interval.

55

inside

inside

4.12.3 Operations

Boolean inside(ActualRateParameter parameter)
parameter: ActualRateParameter

Return True if:
lower Boundary < parameter < upper Boundary

4.13 InfiniteClosedIntervalModel
4.13.1 Relationships

Class Description

Notes

1+ IntervalModel &.9
1 IntervalModel 8.9

{r:Inherits 1:Realizes

4.13.2 Attributes

upperBoundary: Comparable Upper boundary of the interval.

4.13.3 Operations

Boolean inside(ActualRateParameter parameter)
parameter: ActualRateParameter

Return true if:
parameter < upper Boundary

4.14 InfinitelnfiniteIntervalModel
4.14.1 Relationships

Class Description

Notes

1+ IntervalModel &.9
1 IntervalModel 8.9

{r:Inherits 1:Realizes

4.14.2 Operations

Boolean inside(ActualRateParameter parameter)
parameter: ActualRateParameter

56

inside

inside

inside

Return True.
Every point is inside the infinite-infinite boundary.

4.15 InfiniteOpenlintervalModel
4.15.1 Relationships

Class Description Notes
{ IntervalModel &.9
1 IntervalModel &.9

M:Inherits 1:Realizes

4.15.2 Attributes

upperBoundary: Comparable Upper boundary of the interval.

4.15.3 Operations

Boolean inside(ActualRateParameter parameter)
parameter: ActualRateParameter

Return true if:
parameter < upper Boundary

4.16 OpenClosedintervalModel
4.16.1 Relationships

Class Description Notes
{ IntervalModel 8.9
1 IntervalModel &.9

M:Inherits 1:Realizes

4.16.2 Attributes

lowerBoundary: Comparable Lower boundary of the interval.

upperBoundary: Comparable Upper boundary of the interval.

57

inside

4.16.3 Operations

Boolean inside(ActualRateParameter parameter)
parameter: ActualRateParameter

Return true if:
lower Boundary < parameter < upper Boundary

4.17 OpenlinfinitelntervalModel
4.17.1 Relationships

Class Description Notes
1+ IntervalModel &.9
1 IntervalModel 8.9
{r:Inherits 1:Realizes

4.17.2 Attributes

lowerBoundary: Comparable Lower boundary of the interval.

4.17.3 Operations

Boolean inside(ActualRateParameter parameter)
parameter: ActualRateParameter

Return True if:
lower Boundary < parameter

4.18 OpenOpenintervalModel
4.18.1 Relationships

Class Description Notes
{ IntervalModel 8.9
1 IntervalModel &.9

M:Inherits 1:Realizes

4.18.2 Attributes
lowerBoundary: Comparable Lower boundary of the interval.

upperBoundary: Comparable Upper boundary of the interval.

58

inside

inside

4.18.3 Operations

Boolean inside(ActualRateParameter parameter)
parameter: ActualRateParameter

Return True if:
lower Boundary < parameter < upper Boundary

4.19 RateNameModel

A concrete implementation of the RateName interface.

4.19.1 Relationships

inside

Class Description Notes
1T RateName 8.23
T:Realizes
4.19.2 Attributes
rateName: String The rate name.
4.20 RatePieceModel
A concrete implementation of the RatePiece interface.
4.20.1 Relationships
Class Description Notes
1T RatePiece 824
< QuotationMethod 28.13 guotation —
method 1..1
T:Realizes <«s:Association —:Navigable¢:Aggregate$:Composite

4.20.2 Attributes

identifier: String The name of the rate piece.

value: Number The value of the rate piece.

59

4.21 RateQuoteModel

A basic implementation of the RateQuote interface. This model describes a rate in
terms of a single base value and a series of margins over that base value.

4.21.1 Relationships

Class Description Notes
1+ RateQuote 8.25
1:Realizes

4.21.2 Attributes

identifier: String The quote name.

base: RatePiece The base rate piece (may be nil).

margins: Collection<RatePiece> A collection of RatePieces. This attribute may
be implemented as a dictionary-like collection.

4.21.3 Operations

RatePiece margin(String name) margin
name: String The name of the margin component.

Return the margin for a specific margin element. Return the matching value
from the margins collection that has the same identifier as the margin argument.

Boolean validate() validate
An item is valid if:

e Each element of the margins collection has a different identifier and must be
in margin form.

e No element of the margins collection may have the same identifier as the
base value

e The base attribute value may not be in margin form.

60

4.22 RateSourceModel

A concrete implementation of the RateSource interface.

4.22.1 Relationships

Class Description Notes
1T RateSource 226
< RateNameDecoder3§3 decoding 1..1 —
+ RateNameCoderE2 encoding 1..1 —
T:Realizes <«»:Association —:Navigable¢:Aggregate¢:Composite

4.22.2 Attributes
identifier. String The unique identifier for the rate source.

stream: Boolean Is this a stream source?

4.23 RateSourceReferenceDataModel

An implementation of the RateSource interface that is a subclass of Reference-
DataModel, so that rate sources can be managed by the reference data systems.
This class holds an instance of a RateSource and delegates all RateSource queries
to the held model.

4.23.1 Relationships

Class Description Notes
1+ ReferenceDataModel
+ RateSource 326
+» RateSource 226 model 1..1 —
f:Inherits 1:Realizes <»:Association —:Navigable¢:Aggregate¢:Composite

4.24 RectangularRegionModel

The region consists of rectangular regions. The use of the description rectangular’
region is somewhat misleading. This is actually a type of hyper rectangles. In 1-D
the larger region being defined is a curve and the RectangularRegionModel holds a
collection of 1 Interval that defines the end points of a line. In 2-D the larger region
is a surface and this model holds a pair of Interval objects that define the boundaries
of a rectangle. In 3D the model holds an interval triplet that define a rectangular
prism. In an n-D curve there will be n intervals that define an n-D rectangle .

61

4.24.1 Relationships

Class Description Notes
1 LogicalRateParameterRegio.g
< Interval .8 intervals 1..n —
T:Realizes <«»:Association —:Navigable(:Aggregate¢:Composite

5 Exceptions

5.1 RateConstructorException

An exception raised when a rate constructor is unable to construct a rate, either
through some error in the supplied sources, through some missing information or
through the sources being outside the domain of application.

5.1.1 Operations

RateConstructor constructor() constructor
The constructor. Returns the constructor that was attempting to build the rate.

Collection<Rate> sources() sources
The source rates. Returns the sources that were being used to build the rate.

String description() description
A description of the error. Returns a description of the error that has occurred.

5.2 RateConversionException

An exception that is raised when a price or rate cannot convert a supplied Instru-
ment.

5.2.1 Operations

Instrument instrument() instrument

The instrument that could not be converted.

Price price() price
The rate or price that was attempting to perform the conversion.

62

5.3 RateNameException

An exception raised when a RateNam2Zis being expanded with escape se-
quence information.

5.3.1 Operations

RateName rateName() rateName
The rate name. Returns the rate name that caused the exception to be raised.

RateNameCoder coder() coder
The coder for the rate name. Returns the coder that was attempting to expand
the rate name.

Integer position() position

The position where the error occurred. Returns the position within the rate
name string that caused the error to occur. If the error was caused by an attempt
to expand an escape sequence (usually the case), then the position points to the
opening brace ({) of the sequence.

5.4 RateQuotationException

An exception raised when a quotation method cannot be sensibly used, usually
while converting to another quotation method.

5.4.1 Operations

QuotationMethod source() source

The source quotation method. Returns the quotation method that the rate was
initially quoted in terms of. Returns nil if there is no source quotation method.

QuotationMethod target() target
The target quotation method. Returns the quotation method that the rate was
begin converted to. Returns nil if there is no target quotation method.

Number rate() rate

The rate being converted. Returns the number that the quotation method could
not convert.

63

5.5 RateSpecificationException

This exception is raised if it is not possible to derive some constrained parameter
from rate specification and a set of parameters.

5.5.1 Operations

ActualRateParameter parameter() parameter
The parameter being derived. Returns the parameter that raised this exception.

RateFunctionSpecifier specifier() specifier
The specifier that could not be satisfied. Returns the specifier that could not be
used to fix this parameter.

6 Associations

Table 2: Basic Rates— Associations

Association
Role Class Card. Notes
constructor
constructor BasicRateCurveTre2.8 1.1 —
curve BasicRateCurveModelt8 0..n
region
region LogicalRateParameterRegidh 8 1.1 —
tree BasicRateCurveNodeModel.8 0..n
sources
source Rate 314 l.n —
requesting rate ImpliedRateCurveModdl.§ 0.n ¢
guotation method
quotation method QuotationMetho@.83 1.1 —
rate piece RatePieceModet.20 0..n
rate source
source RateSourc86 1.1 —
basic derivation BasicRateDerivationSpecifier- 0..n
Model &.6
decoding

64

Table 2: ... continued

Association
Role Class Card. Notes
decoder RateNameDecod&.8 1.1 —
source RateSourceModel 22 0..n
encoding
encoder RateNameCode3.8 1.1 —
source RateSourceModet 82 0..n
model
model RateSource2§26 1.1 —
wrapper RateSourceReferenceData- 0..1
Model &.23
constructor
constructor RateConstructoB4 1.1 —
implied rate ImpliedRateCurveMode# 8 0..n
inside
inside branch BasicRateCurveTre2 3 0.1 —
tree BasicRateCurveNodeModet.8 0..n
outside
outside branch BasicRateCurveTrea® 0.1 —
tree BasicRateCurveNodeModet.8 0..n
quotes
quote RateQuoteX25 l.n —
rate BasicPointRateModel&® 1.1 ¢
intervals
Interval 8.8 1.n —
LogicalRateParameterRegio2.8 1l.n
intervals
Interval 8.8 1.n —
RectangularRegionModek&4
formalParameter
FormalRateParamete2 % —
ActualRateParameterMode# &
quotationMethod
QuotationMethod 8.13 1.1 —

BasicRateDerivationSpecifier-
Model &.6

—:Navigable(:Aggregate¢:Composite

65

6.1 constructor

Role: constructor NavigableBasicRateCurveTree, 1..1.
Role: curve BasicRateCurveModel, 0..n.
The tree that the curve uses to build a rate.

6.2 region

Role: region NavigableLogicalRateParameterRegion, 1..1.
Role: tree BasicRateCurveNodeModel, 0..n.
The region that the tree node uses to divide the curve into segments.

6.3 sources

Role: source NavigableRate, 1..n.
Role: requesting rate AggregatedmpliedRateCurveModel, 0..n.
The sources for the curve.

6.4 quotation method

Role: quotation method NavigableQuotationMethod, 1..1.
Role: rate piece RatePieceModel, 0..n.
The quotation method for this rate piece.

6.5 rate source

Role: source NavigableRateSource, 1..1.
Role: basic derivation BasicRateDerivationSpecifierModel, 0..n.
The source for the basic rate.

6.6 decoding

Role: decoder NavigableRateNameDecoder, 1..1.
Role: source RateSourceModel, 0..n.
The decoder for a rate source.

6.7 encoding

Role: encoder NavigableRateNameCoder, 1..1.
Role: source RateSourceModel, 0..n.
The encoder for a rate source.

66

6.8 model

Role: model NavigableRateSource, 1..1.
Role: wrapper RateSourceReferenceDataModel, 0..1.
The held RateSource model for the reference data implementation.

6.9 constructor

Role: constructor NavigableRateConstructor, 1..1.
Role: implied rate ImpliedRateCurveModel, 0..n.

The constructor used to build the implied rate. The constructor must take a set
of point rates and build a resulting rate from the set of point rates.

6.10 inside

Role: inside branch NavigableBasicRateCurveTree, 0..1.
Role: tree BasicRateCurveNodeModel, O..n.

The branch to follow when inside the region.
6.11 outside

Role: outside branch NavigableBasicRateCurveTree, 0..1.
Role: tree BasicRateCurveNodeModel, 0..n.
The branch to follow when outside the region.

6.12 quotes

Role: quote NavigableRateQuote, 1..n.

Role: rate AggregateBasicPointRateModel, 1..1.
The set of quotes that make up the rate.

6.13 intervals

Role: Navigablelnterval, 1..n.

Role: LogicalRateParameterRegion, 1..n.

6.14 intervals

Role: Navigablelnterval, 1..n.
Role: RectangularRegionModel.

67

6.15

Role:
Role:

6.16

Role:
Role:

formalParameter
NavigableFormalRateParameter.
ActualRateParameterModel.
guotationMethod

NavigableQuotationMethod, 1..1.
BasicRateDerivationSpecifierModel.

68

Option Premium

Price

Commodity Price
Futures Price

Bond

FX Rats
FX Spot Rat
FX Forward Rate

ate
X C t ot Rate

FX Cross Rate

t Facts
Interest Rate
Continuous Interest Rate

Compound Interest Rate

simple Interest Rate

Discount Factol

Figure 1: Class Diagram— Example Rates

Premium

Volatility

Figure 2: Class Diagram— Example Operator Rates

70

Market Yield Curve

Yield Curve

Premium Shifted Yield Curve

Market Curve

3

g H

8 H

2 s 2

5 3 £

S <H h]

2 3 S
g 5
£ 2

¢

3

:

H

E

E

Exchange Rdte Curve

Og%CECEQ

ross Exchange Rate Cu

rve Implied (Yield) Exchange Rate Curve

Premium Curve

c

Figure 3: Class Diagram— Example Curves and Surfaces

71

Bums

()snonunuoDsiy,
()sisegerepy

uoOSiHg

Bumns : wnb‘
Buins : uonduosapdg
aynus pg

Bum s : snon

12 PO A1 913 We e da) ey e uu oo

Ja18 Weled|ewio4a1eqaley|ealbo

<<92eIRUI>>

108[q0 : anjendy

|apoNIBId WeRIR ddle Y eNOY

18] Wesed|

Orenbag,
(anjeny
(J918Wered|e wi ol

1819 Wele 431 YR Moy

<<@oElaI>>

(semn wou)
ajqeiedwo)
<<ddepalu>>

(sapumn wouy)
sonueWasanien
<<d0BIAI>>

(orepieny
Orenbag,
()snonunuoDsiy
(JodAiy,
(Juonduosapy
(1aunusply

19 Weredaley|e wio
<<90BJIRI>>

9adsguonouny orely
()poylaNuONeALIBPY

1ay109dsu agarey
<<d2BpIRI>>

(sizaweiedienoviulody,
()s1erawelediewioiulody
(Orenbag

()adhiy

()s1918 WeIRd|BNIO YBAINOY
()s1e12Wweled|eWI043AIN0,

Jay1oad suonaun-4arey
<<@BpIR>>

<<ddepalu>> <<ddepa>>

(sennn wouy)

(saniun wouy)
a/qesedwod
<<@oelIRUI>>

(samun wouy)
a/qeiedwo)
<<9epIAU>>

alqerepie

| Rates

ICal

Log

iagram—

: Class Di

Figure 4

72

<<Interface>>
Comparable
(from Utilities)

<<Interface>>
QuotationMethod

*isMargin()
®isCanonical()
Stype()

*parse()
*printRate()
*asCanonical()
*fromCanonical()
*equal()

Figure 5: Class Diagram— Quotation Methods

73

pouyrawuoneond
<<adrpaU>>

(isey
0piay
()a10nbey

dwrersawiy : Aidxodg

12qunN : anjendy
BuLns : JaynuapIdy

0

19pONa93IdareY

(pouauonelonby

20814910y
<<doBpIBI>>

(sann wouy)
sopuewasanie
<<doelIAI>>

()Ba1KiEpU0DaS,

()Bokiewidy

DUOWWOde

212 YIUI0JSS0ID
<<20BaII>>

oﬁmmu_@i UB8|00g : SINOASHY
Quibrewy dwelsa wil : awia10nbdg
J1ey0adsuonoundaley : 1ay10adsdy
<a00) ®
e ... repowawauogaises
Buins : 1o
19powalondarey ,
' Gronb (
. apyuIogoiseg
P <<adEIAI>>
(@1e1dwosly
OuiBreuw
Oreolg,
()eseqy
al0ndarey |2y
<<aoRpAI>> 0fnay,
(Oipowwo okiepuodase
(fupowwookiewdy,
0 10nbg
Opiuiy
0xseq
Opiae
Ownsy (ssninn wos) LR eED)
(anjeny ||qeynuap| 2IqEIEplEA areyuIod
<<a0RpIAI>> SEEDENED <<d0BpIBI>>
Oaeissiy
(OKindxag
(sIn0ASly
B
%‘_Mﬂ (5w 1310nbey
(senumn wos) Osouroadsy
alqeynuapl 20ud
<<ooRpAI>> <<aogIAI>> e
<<ooRjIB>>

Point Rates

iagram—

: Class Di

Figure 6

74

19P0NEE G30UBI5e Ha2IN0SaIE Y

(e 920010 prur
IsponEIEgaouUs)

uesj00g : weansey
Bus : 1ayauspg

19PONa2IN0S 1Y

f <0

jenbag,
003pg
9p0dg,
Oueanssiy

samosaey
<<a%epau>>

(samn woy)

aigesedwod

Ospoousg,

JapooawENaIEy

T1 <<eoepiaul somiS>>

Bupos

uiposap

(nonssuoag,

pouss wuoueiond

<<ag

powa wuope1onb

T

JornAsuoae Y
<<o0ppiRI 2INIBS>>

(20mnosa

sweNatey : sweNa

\ 1PoIaU23dS UoNEA I3 0aIE Y oISEE
samosaiey |“aoinos ares

0spooapy,

Jopoda gourNaLy
<<o08pI0IU PIINIBS>>

0seaimosy

Opowanuonzionby
Orenboy
Oooinosareiy

o wenaesy

s wenarely

swenaey

<<avepia>>

(sannsan wasy
aqeredwoo

(s wa
sonue wasanien

(o way)
agerepyen

(sauan wu)
aqesed woy
<<adepa>>

ivation Methods

Der

iagram—

: Class Di

Figure 7

75

aps]

apiisul

no

()erepie:
0 e
Jo1onnsuo D ate Y U009 : SINOASIAg
<<a0B}18U] 30N ooy 5
|apowaninareypaldw
L0
o:o,w@' uoibas i
o160 31010 we se Jare Yl 6o)
|9poNapoNannDaleydiseg |+ 0 T &) CREERR U IR 8 METE
<<a0RpB>> dweisawn] : awiy alonbdg| ,
) Ued00g : SINOASIA|
aypadsuonounaley : 181y10ads '
0 0 i FEIT suonoungajey : 1ayl 4y |
|8 poaaInDaleyoIseg '
) Aieuonolq : swaloya0oey <0 . 0Andx
<1318 WEJB 431 By [eN}d Y>UO0NI3] 00 : JUI0 d9Seqeg owEFm.c:w”
|apoNIusWBa SanN DarEYoIsE (sa0inosy
' (1010n05U024, (1019nn5U0%g
' . (anreny, ()anjeny,
aningaleyoISEs SVEE]
STEDEED <<3depBIUI>>
Oanjeny s99/n0s

(Oyoueigapisino,
(Juoueigapisuly
(uoiBalg

()swarona00g,

Oanjeny

(wiodaseay

apoNanINDIIeYIISEE
<<aoepaI>>

Juswbasannoayarseg
<<avepaw>>

v

T
Osnieny

0

9aiL8nInD8IEYIISEY
<<doRpBWI>>

()anjeng
()s1areWeIRd[R WOl

anngaley

Jaonnsuoo <<aoepAI>>

(alerssiy,
0Andxag
()SInN0ASly,
()awiLai0nbe,
(019y100dsy,

2y
<<aopIaWI>>

— Curves and Surfaces

iagram

: Class Di

Figure 8

76

<<Interface>>
LogicalRateParameterRegion

OpenlnfiniteIntervalModel
&lowerBoundary : Comparable

¥inside()

ClosedInfiniteintervalModel

®lowerBoundary : Comparable

®inside()

InfiniteOpenintervalModel

&upperBoundary : Comparable

®inside()

1% <<Interface>>
" Interval

IntervalModel

OpenClosedintervalModel

Q\ @plowe rBoundary: Comparable

®&upperBoundary : Comparable

%inside ()

OpenOpenintervalModel

@y we rBoundary: Comparable
&upperBoundary : Comparable

%inside ()

ClosedClosedIntervalModel

&b weBoundary: Comparable
&upperBoundary : Comparable

%inside ()

ClosedOpenintervalModel

InfiniteClosedIntervalModel

®&upperBoundary : Comparable

@lowerBoundary: Comparable
®&upperBoundary : Comparable

¥inside()

%inside()

InfiniteInfinite IntervalM odel

%inside()

Figure 9: Class Diagram— Regions

77

References

[1] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flan-
nery. Numerical Recipes in CCambridge University Press, second edition,

1992.
[2] Michael Sherris.Money and Captial MarketsAllen and Unwin, 1991.

[3] Robert SteinerMastering Financial CalculationsPitman Publishing, 1998.

78

	Use Cases
	Simple Interest Rate
	Compound Interest Rate
	Continuous Interest Rate
	Interest Rate
	Discount Factor
	FX Rate
	FX Forward Rate
	FX Cross Rate
	FX Spot Rate
	Bond Price
	Futures Price
	Option Premium
	Commodity Price
	Volatility
	Premium
	Yield Curve
	Exchange Rate Curve
	Implied (FX)
Yield Curve
	Implied (Yield)
Exchange Rate Curve
	Cross Exchange Rate Curve
	Market Yield Curve
	Premium Shifted Yield Curve
	Premium Curve
	Implied Curve
	Market Exchange Rate Curve
	Market Curve
	Volatility Smile Curve
	Volatility Surface

	Interfaces
	ActualRateParameter
	Relationships
	Operations

	BasicRateCurveTree
	Relationships
	Operations

	BasicRateCurveNode
	Relationships
	Operations

	BasicRateCurveSegment
	Relationships
	Operations

	FormalRateParameter
	Relationships
	Operations

	LogicalRateDateFormalParameter
	Relationships
	Operations

	LogicalRateParameterRegion
	Relationships
	Operations

	Interval
	Relationships

	Price
	Relationships
	Operations

	PointRate
	Relationships
	Operations

	BasicPointRate
	Relationships

	CrossPointRate
	Relationships
	Operations

	QuotationMethod
	Relationships
	Operations

	Rate
	Relationships
	Operations

	RateCurve
	Relationships
	Operations

	BasicRateCurve
	Relationships
	Operations

	ImpliedRateCurve
	Relationships
	Operations

	RateDerivationSpecifier
	Relationships

	BasicRateDerivationSpecifier
	Relationships
	Operations

	ImpliedRateDerivationSpecifier
	Relationships
	Operations

	RateFunctionSpecifier
	Relationships
	Operations

	RateDefinitionSpecifier
	Relationships
	Operations

	RateName
	Relationships
	Operations

	RatePiece
	Relationships
	Operations

	RateQuote
	Relationships
	Operations

	RateSource
	Relationships
	Operations

	Service Interfaces
	RateConstructor
	Relationships
	Operations

	RateNameCoder
	Relationships
	Operations

	RateNameDecoder
	Relationships
	Operations

	Classes
	ActualRateParameterModel
	Relationships
	Attributes

	BasicPointRateModel
	Relationships
	Attributes
	Operations

	BasicRateCurveModel
	Relationships
	Attributes

	BasicRateCurveNodeModel
	Relationships
	Operations

	BasicRateCurveSegmentModel
	Relationships
	Attributes

	BasicRateDerivationSpecifierModel
	Relationships
	Attributes
	Operations

	FormalRateParameterModel
	Relationships
	Attributes

	ImpliedRateCurveModel
	Relationships
	Attributes
	Operations

	IntervalModel
	Relationships

	ClosedClosedIntervalModel
	Relationships
	Attributes
	Operations

	ClosedInfiniteIntervalModel
	Relationships
	Attributes
	Operations

	ClosedOpenIntervalModel
	Relationships
	Attributes
	Operations

	InfiniteClosedIntervalModel
	Relationships
	Attributes
	Operations

	InfiniteInfiniteIntervalModel
	Relationships
	Operations

	InfiniteOpenIntervalModel
	Relationships
	Attributes
	Operations

	OpenClosedIntervalModel
	Relationships
	Attributes
	Operations

	OpenInfiniteIntervalModel
	Relationships
	Attributes
	Operations

	OpenOpenIntervalModel
	Relationships
	Attributes
	Operations

	RateNameModel
	Relationships
	Attributes

	RatePieceModel
	Relationships
	Attributes

	RateQuoteModel
	Relationships
	Attributes
	Operations

	RateSourceModel
	Relationships
	Attributes

	RateSourceReferenceDataModel
	Relationships

	RectangularRegionModel
	Relationships

	Exceptions
	RateConstructorException
	Operations

	RateConversionException
	Operations

	RateNameException
	Operations

	RateQuotationException
	Operations

	RateSpecificationException
	Operations

	Associations
	constructor
	region
	sources
	quotation method
	rate source
	decoding
	encoding
	model
	constructor
	inside
	outside
	quotes
	intervals
	intervals
	formalParameter
	quotationMethod

