eiements REYER'S

Dates Package

TARMS Inc.

September 07, 2000

TARMS Inc. http://www.tarms.com

http://www.tarms.com

Copyright(©2000 TARMS Inc.

Permission is hereby granted, free of charge, to any person obtaining a
copy of this model and associated documentation files (the “Model”),

to deal in the Model without restriction, including without limitation

the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Model, and to permit persons to whom the
Model is furnished to do so, subject to the following conditions:

1. The origin of this model must not be misrepresented; you must
not claim that you wrote the original model. If you use this
Model in a product, an acknowledgment in the product
documentation would be appreciated but is not required.
Similarly notification of this Model's use in a product would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and
must not be misrepresented as being the original software.

3. This notice, including the above copyright notice shall be
included in all copies or substantial portions of the Model.

THE MODEL IS PROVIDED “AS IS”, WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS
OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE MODEL OR THE USE OR
OTHER DEALINGS IN THE MODEL.

Typeset inATEX.

Contents

1 Use Cases 11
1.1 Simple Date Arithmetic 11
1.2 DayCountConventions. 12
1.3 Date Rolling Conventions. 12
1.4 Date Rolling Example - Modified Following 14
1.5 Date Rolling Example - Following 14
1.6 Date Rolling Example - FX Following 14
1.7 EXSpot. 14
1.8 FXOneMonth. 14
1.9 Sixonemonthpayments 15
1.10 3 month payments until 12-Dec-2000. 15
1.11 SaturdayandSunday, 15
1.12 Friday and Saturday. 15
1.13 Friday, Saturdayand Sunday. 15
1.14 Malaysian Weekends 15
1.15 Taiwanese Weekends. 15
1.16 Lithuanian Holiday Weekends 16
1.17 Christmas. e 16
1.18 Easter (Western). 16
1.19 Good Friday (Western) 16
1.20 YomKippur. e e 16
1.21 Independence Day. 16
1.22 Melbourne CupDay., 16
1.23 GreeneryDay 17
1.24 NewYear (Coptic) i 17
1.25 New Year (Chinese). 17
126 Beltane 17
1.27 NOTUZ o 17
1.28 IslamicHolidays 17

2 Interfaces 17
21 Date. 17

2.1.1 Relationships 18
21.2 Operations. 18
22 DateBasis. 21
2.21 Relationships 22
222 Operations. i 22
2.3 DateClassifier. 23

2.3.1 Relationships 24

23.2 Operations. 24
2.4 SimpleDateClassifier. 26
241 Relationships 26
242 Operations. 26
25 DateFormat. 28
25.1 Relationships 28
252 Operations. 28
2.6 DatePosition 33
2.6.1 Relationships, 33
26.2 Operations. 33
27 DateRoller. 34
271 Relationships 35
2.7.2 Operations. i 35
2.8 DateRollerProgram 36
2.8.1 Relationships 36
2.82 Operations. i 37
29 DayBasis. e 37
2.9.1 Relationships 37
29.2 Operations. 37
210 Period. 38
2.10.1 Relationships 38
2.10.2 Operations. o 39
2.11 PeriodWithRoller. 39
2.11.1 Relationships 39
2.11.2 Operations. e 40
212 PeriodUnit 40
2.12.1 Relationships oL 40
2.12.2 Operations. e 40
2.13 RepeatedPeriod 43
2.13.1 Relationships 44
2.13.2 Operations. 44
214 YearBasis. 45
2.14.1 Relationships 45
2.14.2 Operations. e 45
Classes 45
3.1 DateBasisModel 45
3.1.1 Relationships 45
3.1.2 Attributes. 46

3.2 DateClassifierReferenceDataModel 46

3.2.1 Relationships 46
3.3 DateClassifierUnionModel 46
3.3.1 Relationships, 46
3.3.2 Attributes. 47
3.3.3 Operations. 47
3.4 DateClassifierCompositeModel. 48
3.4.1 Relationships L. 48
3.4.2 Operations. i 48
3.5 DateClassifierWeekendModel 49
3.5.1 Relationships, 49
3.5.2 Attributes. 49
353 Operations. 0. 50
3.6 DateConditionPrimitiveModel. 51
3.6.1 Relationships, 51
3.7 DateConditionCrossModel 51
3.7.1 Relationships 51
3.7.2 Operations. i 51
3.8 DateConditionDayTypeModel. 52
3.8.1 Relationships, 52
3.9 DateConditionNonBusinessDayModel. 52
3.9.1 Relationships 53
3.9.2 Operations. 53
3.10 DateConditionWeekendDayModel. 53
3.10.1 Relationships 53
3.10.2 Operations. i 54
3.11 DateConditionPositionModel 54
3.11.1 Relationships 54
3.12 DateConditionAfterModel. 54
3.12.1 Relationships 55
3.12.2 Operations. i 55
3.13 DateConditionBeforeModel. 55
3.13.1 Relationships 55
3.13.2 Operations. 55
3.14 DateConditionOnModel. 56
3.14.1 Relationships 56
3.14.2 Operations. i 56
3.15 DateFormatModel 57
3.15.1 Relationships L. 57
3.15.2 Attributes. 57

3.15.3 Operations. 58

3.16 DateFormatReferenceDataModel 59
3.16.1 Relationships 59
3.16.2 Operations. i 59

3.17 DateModel 60
3.17.1 Relationships 60
3.17.2 Attributes. 60

3.18 DatePositionModel. L 60
3.18.1 Relationships 61
3.18.2 Attributes. 61

3.19 DatePositionBusinessDayModel. 61
3.19.1 Relationships 61
3.19.2 Operations. i 61

3.20 DatePositionCalendarDayModel. 62
3.20.1 Relationships 62
3.20.2 Operations. 62

3.21 DatePositionDayOfWeekModel 62
3.21.1 Relationships 62
3.21.2 Attributes. 62
3.21.3 Operations. i 63

3.22 DatePositionMonthModel. 63
3.22.1 Relationships 63
3.22.2 Operations. 63

3.23 DatePositionNonWeekendModel. 64
3.23.1 Relationships L 64
3.23.2 Operations. i 64

3.24 DatePositionQuarterModel 64
3.24.1 Relationships L. 64
3.24.2 Attributes. 64
3.24.3 Operations. 64

3.25 DatePositionWeekModel 65
3.25.1 Relationships L. 65
3.25.2 Operations. i 65

3.26 DateRollerFollowingModel 66
3.26.1 Relationships 66
3.26.2 Operations. 66

3.27 DateRollerForeignExchangeModel 66
3.27.1 Relationships L 67
3.27.2 Operations. 67

3.28 DateRollerModifiedFollowingModel 68

4

3.28.1 Relationships L 68

3.28.2 Operations. i 68
3.29 DateRollerModifiedPreceedingModel 69
3.29.1 Relationships 69
3.29.2 Operations. i 69
3.30 DateRollerPrecedingModel. 70
3.30.1 Relationships 70
3.30.2 Operations. 70
3.31 DateRollerPrimitiveModel. 70
3.31.1 Relationships 71
3.32 DateRollerAdditionModel 71
3.32.1 Relationships 71
3.32.2 Operations. i 71
3.33 DateRollerCallingModel. 71
3.33.1 Relationships 72
3.33.2 Operations. 72
3.34 DateRollerForcingModel 72
3.34.1 Relationships 73
3.34.2 Operations. 73
3.35 DateRollerProgramModel. 73
3.35.1 Relationships 73
3.35.2 Attributes. 74
3.35.3 Operations. 74
3.36 DateRollerReferenceDataModel. 74
3.36.1 Relationships 74
3.37 DayBasisModel 74
3.37.1 Relationships 74
3.37.2 Attributes. 75
3.38 DayBasis30Abstract., 75
3.38.1 Relationships 75
3.39 DayBasis30. e 75
3.39.1 Relationships 75
3.39.2 Operations. i 75
3.40 DayBasis30E. 76
3.40.1 Relationships 76
3.40.2 Operations. 76
3.41 DayBasis30PSA. 77
3.41.1 Relationships 77
3.41.2 Operations. 77
3.42 DayBasisActual 78

3.42.1 Relationships L. 78

3422 Operations. i 78
3.43 DayBasisNL 79
3.43.1 Relationships 79
3.43.2 Operations. i 79
3.44 NullDateClassifierModel. 80
3.44.1 Relationships 80
3.44.2 Operations. 80
3.45 NullDateRollerModel. 81
3.45.1 Relationships 81
3.45.2 Operations. i 81
3.46 PeriodModel 82
3.46.1 Relationships 82
3.46.2 Attributes. 82
3.47 PeriodWithRollerModel, 82
3.47.1 Relationships L. 83
3.47.2 Operations. 83
3.48 PeriodReferenceDataModel 83
3.48.1 Relationships 83
3.49 PeriodUnitModel. Lo 83
3.49.1 Relationships 84
3.50 BusinessDayPeriodUnitModel 84
3.50.1 Relationships 84
3.51 CalendarDayPeriodUnitModel 84
3.51.1 Relationships 84
3.52 MonthPeriodUnitModel 84
3.52.1 Relationships 85
3.53 NonWeekendDayPeriodUnitModel. 85
3.53.1 Relationships 85
3.54 QuarterPeriodUnitModel 85
3.54.1 Relationships 85
3.55 WeekPeriodUnitModel. 85
3.55.1 Relationships 85
3.56 YearPeriodUnitModel 86
3.56.1 Relationships 86
3.57 RepeatedPeriodModel 86
3.57.1 Relationships 86
3.57.2 Attributes. 86
3.58 RepeatedPeriodBasicModel 87
3.58.1 Relationships 87

3.58.2 Attributes. 87

3.58.3 Operations. 87
3.59 RepeatedPeriodEndModel 88
3.59.1 Relationships 89
3.59.2 Operations. 89
3.60 RepeatedPeriodEndDateModel 90
3.60.1 Relationships 90
3.60.2 Operations. 90
3.61 RepeatedPeriodEndPeriodModel 90
3.61.1 Relationships 90
3.61.2 Operations. 90
3.62 RepeatedPeriodReferenceDataMadel. 91
3.62.1 Relationships 91
3.63 SimpleDateClassifierModel. 91
3.63.1 Relationships 91
3.63.2 Attributes. 91
3.63.3 Operations. 92
3.64 DateClassifierHolidayArbitraryModel 93
3.64.1 Relationships 93
3.64.2 Attributes. 93
3.64.3 Operations. 93
3.65 DateClassifierHolidayRegularModel. 94
3.65.1 Relationships 95
3.65.2 Attributes. 95
3.65.3 Operations. 95
3.66 DateClassifierHolidayRelativeModel. 95
3.66.1 Relationships 96
3.66.2 Attributes. 96
3.66.3 Operations. 96
3.67 YearBasisModel 97
3.67.1 Relationships 97
3.68 YearModel360 97
3.68.1 Relationships 97
3.68.2 Operations. 97
3.69 YearModel365 98
3.69.1 Relationships 98
3.69.2 Operations. 98
3.70 YearModelActual. 98
3.70.1 Relationships 99
3.70.2 Operations. i 99

4 Exceptions

4.1 DateArithmeticException
411 Operations. o
4.2 ImmobileDateException.
421 Operations. e

Enumerations

5.1 DateDirectionEnum L.
5.1.1 Relationships
51.2 Operations. i

5.2 DayOfWeekEnum
5.2.1 Relationships L.
5,22 Operations. e

53 EraEnum
5.3.1 Relationships,
532 Operations. i

54 MonthEnum.
5.4.1 Relationships,
542 Operations.

55 QuarterEnum.
5,51 Relationships
552 Operations. 0.

Associations

6.1 model.
6.2 model.
6.3 model.o
6.4 within
6.5 program. e
6.6 unit e
6.7 initial
6.8 model.
6.9 model.
6.10 roller.
6.11 model
6.12 stopPeriod
6.13 unit
6.14 model
6.15 modelo
6.16 reference holiday.

6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26

precedence. 111
model 111
Predecessors. 111
reference holiday. 111
roller. 111
POSItION 111
COMPONENES e e e e e 112
roller. 112
UNIS. . . . o 112
endPeriod. 112

List of Figures

1 ClassDiagram—Dates. 113
2 Class Diagram— Period Units 114
3 Class Diagram— Date Arithmetic (Date Bases) 115

4 Class Diagram— Date Printing. 116
5 Class Diagram— DateRolling 117
6 Class Diagram— Date Examples. 118
7 Class Diagram— Date Forcing. 119
8 Class Diagram— Date Rolling Examples 120
9 Class Diagram— Date Rolling - Primitive Conditions. 121

10 Class Diagram—Periods. 122
11 Class Diagram— Period Examples 123
12 Class Diagram— Repeated Periods. 124
13 Class Diagram— Weekend Examples. 125
14 Class Diagram— Holiday Examples. 126
15 Class Diagram— Date Classifiers (Null and Weekend) 127

16 Class Diagram— Date Classifier (Holidays). 128
17 Class Diagram— Date Classifiers (Complex). 129

18 Class Diagram— Date Rolling - Primitive Actions 130

19 Class Diagram— Date Rolling - Standard Rollers 131

List of Tables

1 Example Date Arithmetic 11
2 Example Day Count Calculations. 13
3 Date Format Escape Sequences. 31
4 Example Date Formats 32

5 parseDate Format Escape Sequences. 32

6 Dates— Associations 106
6 ...continued ... L L L L L 107
6 ...continued ... L L L 108

Package Description

The Dates package provides the core classes for dates, date printing and date arith-
metic. These classes form the basic structures to which more complex business
rules (such as rolling to a business day) can be added. The Date package also
provides the classes for performing term arithmetic over non-Actual/Actual date
bases.

Currently, only the standard 'common era’ (CE) calendar is supported. Struc-
tural differences in calendar conventions (eg. for the Islamic or Asian calendars)
are not supported. Days of the week follow the ISO 8601 conventions, rather than
the more common Sunday = 1 conventi@h.[

Most financial transactions occur at times in the future. For example, the ma-
turity date of a spot FX deal is, normally, two business days after the date the deal
was made on. Other transactions are composed of complex sequence of transac-
tions at several future dates. For example, the coupon payments and the return of
principal of a bond.

Periods encode the specification of these future dates. Periods add rolling con-
ventions to the ordinary addition of an amount of time to some date. Periods may
also be composite — describing the addition of a series of periods to a date — or
repeating — describing a sequence of dates.

When a date falls on a non-business day, or a day that is unacceptable for some
other reason, then the date needs todiied to a new date that is acceptable.

The basic mechanisms for date rolling are also discussed in this package. This
package allows extended date rolling conventions, where the conventions can be
constructed from a general program-like model, allowing date rolling conventions
of arbitrary complexity.

Date classification for weekends and holidays is also modelled.

Basic weekends consist of lists of the days of the week that are considered to be
weekends. Holidays and more complex weekends can be constructed in a number
of ways: as a particular date within some period, relative to another holiday or as
an arbitrary list of dates.

In some cases, groups of holidays and weekends can interact. Holidays which
fall on weekends can be moved to business days. Holidays which fall on another
holiday can be moved to other days. Working out which holidays move under

10

Unit Amount 12-Jan-98 1-Jun-98 1-Dec-98 25-Dec-98
days 1 13-Jan-98 2-Jun-98 2-Dec-98 28-Dec-98
days -1 12-Jan-98 1-Jun-98 30-Nov-98 24-Dec-98
days 38 19-Feb-98 8-Jul-98 8-Jan-99 1-Feb-99
bdays 2 14-Jan-98 3-Jun-98 3-Dec-98 29-Dec-98
bdays -1 9-Jan-98 29-May-98 30-Nov-98 24-Dec-98
bdays 7 21-Jan-98 10-Jun-98 10-Dec-98 5-Jan-99
nwdays 1 12-Jan-98 2-Jun-98 2-Dec-98 28-Dec-98
nways -1 9-Jan-98 29-May-98 30-Nov-98 24-Dec-98
nways 12 28-Jan-98 17-Jun-98 17-Dec-98 12-Jan-99
weeks 1 19-Jan-98 8-Jun-98 8-Dec-98 4-Jan-99
weeks -1 5-Jan-98 25-May-98 24-Nov-98 18-Dec-98
months 1 12-Feb-98 1-Jul-98 2-Jan-99 25-Jan-99
months -1 12-Dec-97 1-May-98 2-Nov-98 25-Nov-98
months 5 12-Jun-98 2-Nov-98 3-May-99 25-May-99
years 1 12-Jan-99 1-Jun-99 1-Dec-99 27-Dec-99
years -1 13-Jan-97 2-Jun-97 1-Dec-97 26-Dec-97
years 10 14-Jan-08 2-Jun-08 1-Dec-08 26-Dec-08

Table 1: Example Date Arithmetic

such circumstances can lead to cycles of interacting holidays. To prevent cycles,
holidays and weekends are assignedaler.

Holidays and weekends are considered to fall on single dates from midnight to
midnight. Holidays which run from (for example) evening to evening are assumed
to fall on the day that contains the business portion of the holiday. The dates that
holidays fall on are expected to be determinable before the holiday actually occurs.

1 Use Cases

1.1 Simple Date Arithmetic

Assuming Saturday and Sunday as weekends, the first of January and 25th of De-
cember as holidays and a following date rolling convention, example date arith-
metic is shown in tablé.

11

1.2 Day Count Conventions

The elapsed time between two dates is often calculated by using some convention
other than the actual number of days. Common day count conventions are:

Actual The actual number of days between two dates.
NL Non-leap year. Any leap-days are ignored when calculating the elapsed time.

30 30 day month. All months are treated as being 30 days long. If dates fall on the
31st, then the date is adjusted.

30E 30 day month (European convention). Dates falling on the 31st obey different
adjustment rules to the standard 30 day basis.

30 PSA 30 day month (Public Securities Association convention). Dates falling
on the 31st obey different adjustment rules to the standard 30 day basis.

Sample day count calculations for each convention are shown in2able

1.3 Date Rolling Conventions

Date rolling conventions describe the process used to move a date that falls on a
holiday or weekend to a new business day. Common conventions are:

Following Move the date on to the closest business day after the date.
Preceding Move the date on to the closest business day before the date.

Modified Following Move the date on to the closest business day after the date,
unless the new date crosses a month boundary, in which case move the date
back to the closest business day before the date.

Modified Preceding Move the date on to the closest business day before the date,
unless the new date crosses a month boundary, in which case move the date
forwards to the closest business day after the date.

Null Leave the date as itis.

12

From To Actual NL 30 30E 30PSA
1-Jan-1986 1-Feb-1986 31 31 30 30 30
1-Jan-1986 1-Jan-1987 365 365 360 360 360
15-Jan-1986 1-Feb-1986 17 17 16 16 16
1-Feb-1986 1-Mar-1986 28 28 30 30 30
15-Feb-1886 1-Apr-1986 45 45 46 46 46
15-Mar-1986 15-Jun-1986 92 92 90 90 90
31-Mar-1986 1-Apr-1986 1 1 1 1 1
31-Mar-1986 30-Apr-1986 30 30 30 30 30
31-Mar-1986 31-Dec-1986 275 275 270 270 270
15-Jul-1986 15-Sep-1986 62 62 60 60 60
21-Aug-1986 11-Apr-1987 233 233 230 230 230
1-Nov-1986 1-Mar-1987 120 120 120 120 120
15-Dec-1986 30-Dec-1986 15 15 15 15 15
15-Dec-1986 31-Dec-1986 16 16 16 15 16
31-Dec-1986 1-Feb-1987 32 32 31 31 31
1-Feb-1988 1-Mar-1988 29 28 30 30 30
30-Aug-1991 31-Aug-1991 1 1 0 0 0
31-Aug-1991 27-Feb-1992 180 180 177 177 177
31-Aug-1991 28-Feb-1992 181 181 178 178 178
31-Aug-1991 29-Feb-1992 182 181 179 179 179
31-Aug-1991 1-Mar-1992 183 182 181 181 181
15-Jan-1992 28-Feb-1992 44 44 43 43 43
15-Jan-1992 29-Feb-1992 45 44 44 44 44
15-Jan-1992 1-Mar-1992 46 45 46 46 46
1-Apr-1992 15-Jul-1992 105 105 104 104 104
29-Feb-1992 2-Mar-1992 2 2 3 3 2

Table 2: Example Day Count Calculations

13

1.4 Date Rolling Example - Modified Following

Themodified followingdate rolling convention has the following definition:

If the current date is not a business day, then move the date forward to the clos-
est following date that is a business day. If, as a result of rolling the date forward,
the date passes into another month, then roll the date backwards instead.

1.5 Date Rolling Example - Following

Thefollowing date rolling convention has the following definition:
If the current date is not a business day, then move the date forward to the
closest following date that is a business day.

1.6 Date Rolling Example - FX Following

The FX followingdate rolling convention has the following definition:

An FX period is calculated from the spot date (eg. FX 1 month is spot date + 1
month). If the date is not a business day, then move the date forward to the closest
following date that is a business day. If the spot date, before any other period was
added, falls at the end of the business month, then force the rolled date to the end
of the business monttg]

Note that the FX following convention should not be used by periods of less
than a month.

1.7 FX Spot

The spot date for foreign exchange transactions is normally two business days after
the date on which the agreement was made.

Deals involving USD or CAD have different spot date rules. The USD spot date
is two non-weekend days after the trade date. The CAD spot date is one business
day after the trade date.

1.8 FX One Month

The one month period for foreign exchange transactions involves first adding the
FX Spot period to the current date and then adding one month to that date. If
the resulting date is on a non-business day, then the date is rolled forward to the
following business day. If the date calculated after the addition of the spot date falls
at the end of a month, then the rolled date is also forced to the end of the month.
eg. Deal Date = 29th May. Spot = 31st May = End of Month. +1M = 30 June.

14

If necessary, the forward value date is bought back to the nearest previous
business day in order to stay within the same calendar month rather than move
forward to the beginning of the next month.

eg. Deal Date = 28th Jan. Spot = 30th Jan. +1M = 1st Mar, roll this back to
28th (or 29th) Feb.

1.9 Six one month payments

One month is added repeatedly to the current date, with each resulting date being
rolled forward to a business day.

1.10 3 month payments until 12-Dec-2000

Three months are added to the current date until 12-Dec-2000 is reached or passed.
The last payment date is 12-Dec-2000.

1.11 Saturday and Sunday

The standard Western weekend. Any day falling on a Saturday or Sunday is con-
sidered to be a weekend day.

1.12 Friday and Saturday

The extended Islamic weekend. Any day which falls on a Friday or Saturday is
considered to be a weekend.

1.13 Friday, Saturday and Sunday

The result of a trade between two countries, one of which observes a Friday and
Saturday weekend, the other of which observes a Saturday and Sunday week-
end.

1.14 Malaysian Weekends

In Malaysia, Sundays and the first Saturday in the month are weekend days.

1.15 Taiwanese Weekends

In Taiwan, the weekend consists of each Sunday and the second and fourth Satur-
day of each month.

15

1.16 Lithuanian Holiday Weekends

In Lithuania, if there is a holiday on Thursday, then Friday is a weekend day and
Saturday a working day, in contrast to the normal Saturday and Sunday week-
end.

1.17 Christmas

Christian Religious Holiday. Falls on the 25th of December each year.

1.18 Easter (Western)

Western Christian Religious Holiday.
Easter tends to be somewhere in either March or April. Definitionally, this hol-
iday is held on the Sunday following the full moon on or after the vernal equinox.
Rather than use the astronomical definition, the church uses standardized tables
of ecclesiastical moons so that the dates of Easter can be determined in advance.
See http://aa.usno.navy.mil/AA/fag/docs/easter.html

1.19 Good Friday (Western)
Western Christian Religious Holiday.
The Friday immediately before Easter Sunday.

1.20 Yom Kippur

Jewish Religious Holiday.
Beginning at sunset on Tishri 9 of the Jewish calendar and lasting until three
stars are visible on Tishri 10.

1.21 Independence Day
United States National Holiday.
Held on the 4th of July each year.

1.22 Melbourne Cup Day

Victorian (Australia) State Holiday.
Held on the first Tuesday of November each year.

16

1.23 Greenery Day

Japanese National Holiday.

Falls on the 29th of April of each year. If the 29th of April is a Sunday then the
holiday is moved to the following Monday.
1.24 New Year (Coptic)

Coptic Christian Religious Holiday.
Falls on the 11th of September, or the 12th of September during leap-years.

1.25 New Year (Chinese)
Chinese and East Asian National Holiday.

Celebrated on the first day of the Chinese lunar calendar.
1.26 Beltane

Wiccan Religious Holiday.
Either the 30th of April or the 1st of May each year, depending upon Wiccan
convention.

1.27 Noruz
Persian Calendar New Year.
Occurs on the day of the vernal equinox - the 20th to the 22nd of March.

1.28 Islamic Holidays

Islamic Religious Holidays.

The holidays of Islam, as well as the start of the month are decided by religious
authorities, based on the actual observation of the moon. Holiday dates may vary
from country to country.

2 Interfaces

2.1 Date

Date objects represent dates without any additional time information being at-
tached. For most financial calculations, date calculations are more useful than
time calculations.

17

Dates obey value semantics. Any operation on a date such as addition or sub-
traction produces a new date, rather than altering the internal structure of the date
object.

The date specifications generally follow ISO 862]1pxcept where more con-
figurability is allowed.

2.1.1 Relationships

Class Description Notes
I+ Datestamp
{ ValueSemantics
| DateModel 8.17
M:Inherits |:Realized by

2.1.2 Operations

Boolean equals(Object arg) equals
arg: Object
Equality test. Two dates are equal if they refer to the same date.

Boolean lessThanOrEqualTo(Date) lessThanOrE-
Date qualTo

Less than or equal to relationship. Date a is less than or equal to date b if a
precedes b or a and b fall on the same date.

Integer day() day
Day of month. Return the day within the month, with the first day of the month
being 1.

MonthEnum month() month
Month of year. Return the month that the date falls into.

Integer year() year
Year number. Return the year number, including the century. 1 CE returns 1, 1
BCE returns O.

Integer dayOfYear() dayOfYear
Day within year. Return the number of days from the start of the year, with 1st
January being 1 and 31st of December being 365 or 366, depending on whether

18

this year is a leap year or not.

DayOfWeekEnum dayOfWeek() dayOfWweek
Day of week. Return the day of the week that this date falls upon.

Integer century() century
Century number. Return the century number in CE terms. Years 1-100 CE
return 1 (1st century), the year 2000 returns 20 (20th century).

QuarterEnum quarter() quarter
Quarter of the year. Return the quarter of the year, with January - March being
the first quarter through to October—-December being the fourth.

print(OutputStream stream, DateFormat format) print
stream: OutputStream The stream to print onto.
format: DateFormat The format to use when printing the date.

Print a string representation of this date according to a date format. Add this
date to the output stream, formatted by the supplied format.

print(OutputStream stream) print
stream: OutputStream The stream to print onto.
Standard text representation. Print using the DateFormat.local() date format.

printShort(OutputStream stream) printShort
stream: OutputStream The stream to print onto.

Short text representation. Print this date using the DateFormat.localShort() date
format.

printLong(OutputStream stream) printLong
stream: OutputStream The stream to print onto.

Long text representation. Print this date using the DateFormat.localLong() date
format.

printVeryLong(OutputStream stream) printVeryLong
stream: OutputStream The stream to print onto.

Full text representation. Print this date using the DateFormat.localVeryLong()
date format.

19

Date add(PeriodWithRoller periodWithRoller, DateClassifier classifier)
add

periodWithRoller: PeriodWithRoller A period with roller contains a pe-
riod to add to the date and the roller indicating the rolling to be done for the
date.
classifier: DateClassifierDate classifier for date rolling. The default value
is NullDateClassifierModel.default().
Raises:ImmobileDateException

Add an amount of a period (with a rolling convention). The returned date is
this date plus the amount given. Once calculated, the date is rolled to a suitable
date according to the supplied date roller and classifier.

Date nextBusinessDay(DateClassifier classifier) nextBusiness-
classifier: DateClassifierClassifier to determine the type of day. Day

Date which is the next business day from this date. Return the closest date (that
is not this date) that is a business day following this date.

Date previousBusinessDay(DateClassifier classifier) previousBusi-

classifier: DateClassifierClassifier to determine the type of day. nessDay
Date which is the previous business day to this date. Return the closest date

(that is not this date) that is a business day preceding this date.

Date nextNonWeekendDay(DateClassifier classifier) nextNonWeek-
classifier: DateClassifierClassifier to determine the type of day. endDay

Date which is the next non-weekend day from this date. Return the closest date
(that is not this date) that is a non-weekend day following this date.

Date previousNonWeekendDay(DateClassifier classifier) previousNon-

classifier: DateClassifierClassifier to determine the type of day. WeekendDay
Date which is the previous non-weekend day to this date. Return the closest

date (that is not this date) that is a non-weekend day preceding this date.

Date closestBusinessDay(DateClassifier classifier) closestBusi-

classifier: DateClassifierClassifier to determine the type of day. nessDay
Date which is the closest business day to this date. Return the closest date (that

is not this date) that is a business day either preceding or following this date. If

both dates are equally close, then the following date is returned.

20

Date closestNonWeekendDay(DateClassifier classifier) closestNon-

classifier: DateClassifierClassifier to determine the type of day. WeekendDay
Date which is the closest non-weekend day to this date. Return the closest date

(that is not this date) that is a non-weekend day either preceding or following this

date. If both dates are equally close, then the following date is returned.

Integer daysinMonth() daysIinMonth
Number of days in the month for this date.

30 days hath September,

April, June and November.

All the rest have 31.

Except February alone,

Which has 28 days,

And 29 days on each leap year.

Boolean isLeapYear() isLeapYear
This date falls in a leap year?
The rules for leap years are as follows:
Any year evenly divisible by 4 is a leap year, except any year evenly divisible
by 100 is not a leap year, except any year evenly divisible by 400 is a leap year.
(An additional rule for every 4000 year is being considered)
Examples:
1999 is not a leap year. 1996 is a leap year. 2100 is not a leap year. 2000 is a
leap year.

Integer daysinYear() daysInYear
Number of days in this date’s year. Return 366 if the year is a leap year, 365
otherwise.

2.2 DateBasis

A date basis encodes the conventions used when calculating the elapsed time be-
tween two dates, usually for interest rate calculations.

The most obvious date basis is Actual/Actual; you calculate the actual number
of days between the two dates to get the term in days and divide it by the actual

21

year length to get the term in years. However, certain financial instruments use
other conventions.
Date bases are essentially stateless and obey ValueSemantics.

2.2.1 Relationships

Class Description Notes
{ ValueSemantics
| DateBasisModel 8.1
M:Inherits |:Realized by

2.2.2 Operations

Boolean equals(Comparable arg) equals
arg: Comparable

The equality relationship. Two date bases are equal if they would return the
same day and year counts for any arbitrary pair of dates. In practical terms, equality
means the same day- and year-count conventions.

print(OutputStream stream) print
stream: OutputStream The stream to print onto.

Print the object. Date bases are conventionally printed by first printing the day
count convention, printing a slash and then the year count convention.

Eg. “30E/Actual” or “30/360".

DayBasis dayBasis() dayBasis
The day count convention. Return the day count convention used by this date
basis.

YearBasis yearBasis() yearBasis
Year length convention. Return the year length convention used by this date
basis.

Integer terminDays(Date from, Date to) terminDays
from: Date The start date of the period.
to: Date The end date of the period.
Day count between two dates. Returns the number of days between from and
to, according to this date basis’ conventions.

22

Double termIinYears(Date from, Date to) terminYears
from: Date The start date of the period.
to: Date The end date of the period.
Year count between two dates. Returns the number of years between from and
to, according to this date basis’ conventions.

2.3 DateClassifier

In business date calculations, it is necessary to distinguish between business days
and non-business days. Non-business days may be either weekend days or hol-
idays. What is a business day or non-business day will change from location to
location and financial instrument type to instrument type. Date classifiers provide
the means of deciding whether a day is a business day or not.

A classifier can class a date as both a holiday and a weekend.

Date classifiers may be used recursively in some holiday definitions, so that
holidays which depend on other holidays or which are moved when they conflict
with another holiday can be correctly handled. Date classifiers are partially ordered
by precedence A date classifier which is “less than” another date classifier by
precedence is moved to avoid a clash. Ehgironmenibof a date classifier is the
set of potentially clashing holidays within a location (or, in the case of a union of
two classifiers, locations).

Usually, date classifiers classify according to a single location. However, some
instruments (eg. FX) are dependent upon the business conventions of a number of
different locations. As a result, classifiers need to be composable; two classifiers
can be combined to provide a single classifier. Classifiers that are not composites
aresimple

There are two methods for joining date classifiers together. The composition
of two date classifiers merges the weekends and holidays of a single location, tak-
ing precedence into account. Within a location, certain holidays have precedence
over other holidays. This can cause holidays to move to the following day. Thus,
composition can be used to construct all of the holidays, correctly rolled, within a
location.

The union of two date classifiers merges the holidays and weekends of two lo-
cations together, ignoring precedence issues. With FX deals, two currencies hence,
two locations, are involved in a transaction. Both locations’ holidays and week-
ends need to be known when determining the matuirty date of a deal. There are
no precedence concerns between holidays and weekends in two different locations
The union of two date classifiers will contain both locations’ holidays and week-
ends.

23

2.3.1 Relationships

Class Description Notes
Identifiable
SimpleDateClassifierg4
NullDateClassifierModel .44
DateClassifierWeekendModeB S
DateClassifierUnionModel3$3
DateClassifierReferenceData-
Model 8.2
< DateClassifierReferenceData- model 0..1
Model 8.2
< DateClassifierUnionModel&3
+ DateClassifierUnionModel33 components 0..n
M:Inherits{:Inherited by |:Realized by <«:Association—:Navigable®:Aggregate¢:Composite

e

2.3.2 Operations

Boolean isHoliday(Date date, DateClassifier environment) isHoliday
date: Date The date to test.

environment: DateClassifierThe set of date classifiers that may affect this

date classifier. The default value is this.

Date falls on a holiday? Return true if this classifier classifies date as a holiday,
false otherwise.

Boolean isWeekend(Date date, DateClassifier environment) isWeekend
date: Date The date to test.
environment: DateClassifierThe set of date classifiers that may affect this
date classifier. The default value is this.

Date falls on a weekend? Return true if this classifier classifies date as a week-
end, false otherwise.

Boolean isNonBusinessDay(Date date, DateClassifier environment) isNonBusiness-
date: Date The date to test. Day
environment: DateClassifierThe set of date classifiers that may affect this

date classifier. The default value is this.

24

A date that falls on a holiday or a weekend is classified as a hon-business day,
and will return true.

1sNonBusinessDay < isHoliday V isWeekend

Boolean isBusinessDay(Date date, DateClassifier environment) isBusinessDay
date: Date The date to test.
environment: DateClassifierThe set of date classifiers that may affect this
date classifier. The default value is this.
Date falls on a business day? A business day is classified as a day which does
not fall on either a holiday nor a weekend.

isBusinessDay < —isNonBusinessDay

Boolean isSimple() isSimple
Return true if this date classifier is neither a composite or union of other date
classifiers. Return false otherwise.

DateClassifier compose(DateClassifier arg) compose
arg: DateClassifier The date classifier to compose this classifier with.

Compose two date classifiers so that the two classifiers are affected by prece-
dence considerations. This operation has similar semantics to the union() opera-
tion, however, certain holidays may be moved if they clash with other holidays.

Boolean precedes(DateClassifier other) precedes
other: DateClassifier The date classifier to compare this classifier against.

Compare two date classifiers for precedence. Return true if this date classifier
has a higher precedence than the other date classifier.

DateClassifier predecessorsOf(DateClassifier test) predecessorsOf
test: DateClassifierThe date classifier to test against.

The predecessors of a date classifier. Return a date classifier that is equivalent
to removing all the basic date classifiers that make up this classifier that do not
preceed the test classifier. If there are no such classifiers, return an instance of the
NullDateClassifier.

DateClassifier union(DateClassifier arg) union

25

arg: DateClassifier The date classifier to combine this classifier with.

Join two date classifiers so that the classifiers are unaffected by precedence
considerations. Let ¢ be the join of this classifier (a) and the argument date classi-
fier, (b).

c.isHoliday(date) < a.isHoliday(date) V b.isHoliday(date)

c.isWeekend < a.isWeekend(date) V b.isW eekend(date)

2.4 SimpleDateClassifier

A variant of date classifier that computes a date for a holiday or weekend, relative
to a supplied date and tests the supplied date against the holiday.

2.4.1 Relationships

Class Description Notes
1+ DateClassifier 8.3
f+ ldentifiable
J SimpleDateClassifierModel3863
+» SimpleDateClassifierModel3g63 predecessors 0..n
+» DateClassifierHolidayRelative- reference holi-
Model §3.66 day 1..1

f:Inherits |:Realized by <«»:Association —:Navigable®:Aggregate¢:Composite

2.4.2 Operations

Boolean isWeekend(Date date, DateClassifier environment) isWeekend
date: Date The date to test.

environment: DateClassifierThe surrounding date classifier context. The

default value is NulDateClassifierModel.defaultinstance().

Date falls on a weekend? Return true if weekendFlag() is true and the argument
date is the same as the reference date for date and environment, false otherwise.

Boolean isHoliday(Date date, DateClassifier environment) isHoliday
date: Date The date to test.

26

environment: DateClassifierThe surrounding date classifier context. The
default value is NulDateClassifierModel.defaultinstance().

Date falls on a holiday? Return true if weekendFlag() is false and the argument
date is the same as the date that a holiday is found to fall on.

Date nthClosestHolidayTo(Date date, Integer n, DateClassifier environ-

ment) nthClosestHoli-
date: Date The reference date for computing the holiday. dayTo

n: Integer The nth closest holiday to a date.

environment: DateClassifierThe set of potentially clashing holidays within

alocation. The default value is NullDateClassifierModel.defaultinstance().

Return the nth closest holiday to the date, aDate. If there are no holidays, return
null.

Whenn is positive, it indicates that you are looking for the nth closest holiday
after the date, aDate. Whenmis negative, it indicates that you are looking for the
nth closest holidaye f ore the date, aDate.

Return the date that this holiday specifies, for the supplied date (eg. if the holi-
day falls, annually, on the 27th of July then the closest holiday for the 12th of June
2023 is the 27th of July 2023).

Boolean weekendFlag() weekendFlag
The date is a weekend, instead of a holiday? Return true if this date classifier
classifies a weekend, rather than a holiday.

Boolean isSimple() isSimple
This classifier is simple? Return true.

DateClassifier compose(DateClassifier arg) compose
arg: DateClassifier The date classifier to compose this classifier with.

Compose two date classifiers so that the two classifiers are affected by prece-
dence considerations. Return a DateClassifierCompositeM8deivgh this clas-
sifier and the argument classifier as components. Thus, all holidays within a loca-
tion have been consolidated and rolled where two holidays within the one location
fall on the same day.

DateClassifier union(DateClassifier arg) union

arg: DateClassifier The date classifier to combine this classifier with.
Join two date classifiers so that the classifiers are unaffected by precedence

27

considerations. Return a DateClassifierUnionMod®3%vith this classifier and
the argument classifier as components.

2.5 DateFormat

An object that implements the DateFormat interface can be used to print dates in
whatever form is appropriate for a locality.

2.5.1 Relationships

Class Description Notes
1 ldentifiable
J DateFormatModel 8.15
i}

DateFormatReferenceData-
Model 8.16

+ DateFormatReferenceData- model 0..1
Model 8.16

f:Inherits |:Realized by <«s:Association —:Navigable®:Aggregate¢:Composite

2.5.2 Operations

String dayName(Integer day) dayName
day: Integer Day number.

Long day of month. Return the day of the month in text format, with a suitable
suffix appended.
Eg. 1 becomes “1st”, 12 becomes “12th”, 22 becomes “22nd”

String dayOfYearName(Integer day) dayOfYear-
day: Integer Day number. Name
Long day of year. Return the day of the year in text format, with a suitable
suffix appended.
Eg. 1 becomes “1st”, 120 becomes “120th”, 22 becomes “22nd”

String dayOfWeekName(DayOfWeekEnum day) dayOfWeek-
day: DayOfWeekEnum Day of week Name

Short day of the week name. Return the day of the week in an abbreviated text
format.

28

Eg. In English, monday becomes “Mon”, thursday becomes “Thu”, etc.

String longDayOfWeekName(DayOfWeekEnum day) longDay-
day: DayOfWeekEnum Day of week. OfweekName
Full day of the week name. Return the day of the week in an full text format.
Eg. In English, monday becomes “Monday”, thursday becomes “Thursday”,
etc.

String monthName(MonthEnum month) monthName
month: MonthEnum The month in the year.

Short month name. Return the month name in an abbreviated text format.

Eg. In English, january becomes “Jan”, april becomes “Apr”, etc.

String longMonthName(Integer month) longMonth-
month: Integer Month number. (1=January to 12=December) Name

Full month name. Return the full month name.

Eg. In English, january becomes “January”, april becomes “April”, etc.

String yearName(Integer year) yearName
year: Integer Year number.

Possibly abbreviated year name. Returns the conventionally abbreviated form
of the year if the year falls within 50 years of the current date, otherwise return the
result of longYearName().

Eg. in English, during the year 2000, 1998 will result in “98”, 2035 in “35”,
1937 in “1937” and 1815 in “1815".

String longYearName(Integer year) longYearName
year: Integer Year number.
Full year name. Returns the full 4-digit year in string format. For years under
1000, preceding Os are added to make a 4-digit year.
Eg. in English, during the year 2000, 1998 will result in “1998", 2035 in
“2035”, 1937 in “1937” and 1815 in “1815".

String centuryName(Integer century) centuryName
century: Integer Century number. (1st century = 1, 20th century = 20)

Name of the century. Return the century in text format, with a suitable suffix
appended.

Eg. 1 becomes “1st”, 20 becomes “20th”, 22 becomes “22nd”

29

String quarterName(QuarterEnum quarter) quarterName
quarter: QuarterEnum Quarter number.
Quarter name. Return the name of the quarter (eg. first returns “Q1”, etc.)

String eraName(Integer year) eraName
year: Integer Year number.

Era of date. Returns the dating convention.

Eg. in English, 2037 will return “AD” or “CE”

String format() format
Date format. Returns the format to use when printing a date. The format is a
string into which appropriate date components can be inserted. All characters in
the string are interpreted as themselves, apart from a character preceded (escaped)
by "Escape sequences are summarized in t8bland are based on the escape
sequences provided in Unix when specifying dates.
Some examples are shown in tadle

printDate(OutputStream stream, Date date, String format) printDate
stream: OutputStream The stream to print onto.
date: Date The date to print.
format: String The format (see format()) to use when printing. The default
value is self.format().

Print a date in a suitable format. Print the date supplied onto the stream, using
the result of format() to guide printing.

Date parseDate(InputStream stream, String format) parseDate
stream: InputStream The stream to parse.

format: String The format to parse the date against. The default value is
self.format().

Raises:ParseException

Parse a date by loosely matching it against the format supplied in format.

Some formats cannot be used as a parsing format, due to the presence of al-
phanumeric characters that make parsing ambiguous. A ParseException should be
raised in the case of a bad format.

Loose parsing is accepted:

Any whitespace or punctuation character in the format can match any sequence
of zero or more whitespace and punctuation characters.

The Escape sequences supported during parsing are summarised f table

30

Sequence Description

%%
%a

%A
%b
%B

%:cC
%C

%d
%D

%E

%f
%F

%m
%M

%q
%Q
%w
%y
%Y

%z

%Z

A single "%’ character.

The abbreviated weekday name, as returned by day-
OfWeekName().

The full weekday name, as returned by longDay-
OfWeekName().

The abbreviated month name, as returned by month-
Name().

The full month name, as returned by longMonth-
Name().

The century number.

The century number, padded with a preceding O if
necessary to make a two digit number.

The day of month number.

The day of month number, padded with a preceding
0 if necessary to make a two digit number.

The day of month number, as returned by day-
Name().

The day of year number.

The day of the year number, as returned by day-
OfYearName().

The month number.

The month number, padded with a preceding O if
necessary to make a two digit number.

The quarter number.

The quarter number, as returned by quarterName().
The weekday number.

The year number, as returned by yearName().

The full year number, as returned by longYear-
Name().

The year number within a century, padded with a
preceding 0 if necessary to make a two digit number.
The era name, as returned by eraName().

Table 3: Date Format Escape Sequences

31

Date %D-%b-%y %D/%M/%z %E %B %Y
23-Apr-1999 23-Apr-99 23/04/99 23rd April 1999
01-Jan-2005 01-Jan-05 01/01/05 1st January 2005
12-Jun-1830 12-Jun-1830 12/06/30 12th June 1830

Table 4: Example Date Formats

Sequence
%Db
%B
%D
%E
%F
%M
%y
%Y

Table 5: parseDate Format Escape Sequences

The "%y’ format interprets a two digit number as being the year with those last
two digits closest to the current date (eg. in 1999, ‘45’ is interpreted as ‘2045’ and
‘78’ is interpreted as ‘1978’).

Date parseDate(String dateString, String format) parseDate
dateString: String
format: String
Raises:ParseException

Parses the date given in the dateString parameter. See the parseDate(inputStream,
format) method for full documentation.

Date parseDateStrictly(InputStream stream, String format) parseDat-
stream: InputStream The stream to parse. eStrictly
format: String The format to parse the date against. The default value is
self.format().
Raises:ParseException

Parse a date by matching it against the format supplied in format.

Apart from surrounding whitespace, and whitespace in the format matching O
or more whitespace characters, the supplied stream must match the format exactly.

32

Some formats cannot be used as a parsing format, due to the presence of al-
phanumeric characters that make parsing ambiguous. A ParseException should be
raised in the case of a bad format.

2.6 DatePosition

A specification of where a date should fall within some period. Example date
positions arehe first Sunday in the montr the last business day of the year

2.6.1 Relationships

Class Description Notes
| DatePositionModel .18
J:Realized by

2.6.2 Operations

Date force(Date date, DateClassifier classifier) force

date: Date The date to force.

classifier: DateClassifierThe date classifier for business/non-weekend day
classification, if needed. The default value is NullDateClassifierModel.defaultinstance().
Raises:ImmobileDateException

Force a date to a position within some span. Subclasses of DatePositionModel
provide differing semantics for this operation. In general, however, the date is
forced to a date that is the nth instance of something within a given periodUnit.
Counting can be either forwards (from the start of the period) or backwards (from
the end of the period).

If no such date exists, then an ImmobileDateException is raised.

Examples of date forcing would include:

(i) Force a date to the 3rd business day of the month. (ii) Force a date to the
7th tuesday of the year. (iii) Force a date to the 3rd-last weekday of the quarter.

Boolean testOn(Date date, DateClassifier classifier) testOn
date: Date The date to force.
classifier: DateClassifierThe date classifier for business/non-weekend day
classification, if needed. The default value is NullDateClassifierModel.default().
Raises:ImmobileDateException

Test a date to see whether it falls on the date that this datePosition specifies.
Test date to see whether it is the same as the forced date:

33

date = force(date, classifier)

Boolean testBefore(Date date, DateClassifier classifier) testBefore
date: Date The date to force.
classifier: DateClassifierThe date classifier for business/non-weekend day
classification, if needed. The default value is NullDateClassifierModel.default().
Raises:ImmobileDateException

Test a date to see whether it falls before or on the date that this datePosition
specifies. Test date to see whether it precedes, or is the same as the forced date:

date < force(date, classifier)

Boolean testAfter(Date date, DateClassifier classifier) testAfter
date: Date The date to force.
classifier: DateClassifierThe date classifier for business/non-weekend day
classification, if needed. The default value is NullDateClassifierModel.default().
Raises:ImmobileDateException

Test a date to see whether it falls on or after the date that this datePosition
specifies. Test date to see whether it follows, or is the same as the forced date:

date > force(date, classifier)

2.7 DateRoller

Date rollers move a date to a suitable business date according to some convention.
Date rolling can be applied to a date even if that date falls on a business day.

34

2.7.1 Relationships

Class Description

Notes

e

Identifiable

DateRollerProgram&8

NullDateRollerModel 8.45
DateRollerReferenceDataMode3.86
DateRollerFollowingModel 8.26
DateRollerPrecedingModel3§30
DateRollerModifiedFollowing-

Model 8§3.28

DateRollerModifiedPreceeding-

Model §3.29

DateRollerForeignExchange-

Model 83.27

DateRollerReferenceDataMode3.86 model 0..1
PeriodWithRollerModel 8.47 roller 0..n
DateClassifierHolidayRelative- roller 0..n
Model §3.66

DateClassifierHolidayRegular- position 0..n
Model 83.65

RepeatedPeriodModeB&7 roller 0..n

M:Inherits{:Inherited by |:Realized by <« :Association—:Navigable®:Aggregate¢:Composite

2.7.2 Operations

Date roll(DateClassifier classifier, Date date, Date startDate, Date last-
Date)

roll

classifier: DateClassifierThe classifier for determining whether this date
falls on an acceptable date.
date: Date The date to roll.

startDate: Date In the case of dates constructed by addinga period to an-
other date, the original date before any addition occurred. This is relevant,

for example, in the case of the Foreign Exchange rolling convention.

default value is date.
lastDate: Dateln the case of dates constructed by adding a complex series
of periods to a start date, last date refers to the date immediately prior to this
date being constructed. The default value is startDate.
Raises:ImmobileDateException

35

The

Roll the supplied date.

The behavior of roll is essentially undefined. Generally, if a classifier classifies
date as falling on a business day then date is returned, otherwise the date is moved
in some manner to some date that classifier regards as a business day. This behavior
is not necessary, however; a null date roller may simply return date whether it is on
a business day or not.

An ImmobileDateException is raised if the date roller is unable to apply itself
to that date. An example is a date roller which continually moves the date to an
end of month position that is a holiday.

The roll method takes three date parameters: (i) 'date’. This is the date to be
rolled (i) If the date to be rolled has been determined by adding a period to another
date, then we are sometimes interested in this other date, which is referred to as
‘lastDate’. (iii) If the date to be rolled has been determined by adding a sequence
of periods to another date, then we are sometimes interested in this original date,
which is referred to as 'startDate’.

For example, in foreign exchange markets, periods are defined from spot date.
Thus a 1-month period would produce a date 1 month from spot date. In this
situation, the 1-month date would be 'date’, the spot date would be ’lastDate’, and
today’s date would be 'startDate’.

2.8 DateRollerProgram

A generalized date roller that uses a general program to compute a rolled date.
DateRollerProgramModel allows date rollers to be defined using the scripting lan-
guage in the 'Program’ package, together with primitive date rolling tests and ac-
tions defined in this package.

Note that it is not necessary to define date rollers using this scripting language.
Date rollers can be coded directly if this is preferred. The most common date
rollers are defined separately in this package, without reference to the 'Program’
package scripting language.

2.8.1 Relationships

Class Description Notes
1+ DateRoller .7
| DateRollerProgramModel335
M:Inherits |:Realized by

36

2.8.2 Operations

Function program() program

The rolling program. Return the function that this roller uses to roll a supplied
date.

Date roll(DateClassifier classifier, Date date, Date startDate, Date last-
Date) roll
classifier: DateClassifierThe classifier for determining whether this date
falls on an acceptable date.
date: Date The date to roll.
startDate: Date In the case of dates constructed by adding to another date,
the original date before any addition occurred. The default value is date.
lastDate: Dateln the case of dates constructed by adding a complex series
of elements to a start dates, last date refers to the date immediately prior to
this date being constructed. The default value is startDate.
Raises:ImmobileDateException

Roll the supplied date. Evaluate the function returned by program() and return
the result of the function. The associated function should expect 4 arguments:
classifier, date, start date and last date. The result should be a date.

2.9 DayBasis

The day basis interface provides an interface to the conventions for calculating day
counts between two dates. Day bases are essentially stateless and obey ValueSe-
mantics.

2.9.1 Relationships

Class Description Notes
{ ValueSemantics
| DayBasisModel §.37
M:Inherits |:Realized by

2.9.2 Operations

print(OutputStream stream) print
stream: OutputStream The stream to print onto.

37

Print the object. Print the conventional name for this day count convention
onto the output stream. Day counts that include the last day when calculating day
counts have a “+" appended to them.

Integer terminDays(Date from, Date to) terminDays
from: Date The start date of the calculation.
to: Date The end date of the calculation.

Elapsed time in days between two dates. Return the elapsed period in days
between from and to. See the subclasses of DayBasisM3d&l ®r more detail
on these calculations.

Boolean includeLastDay() includeLastDay
Include the last day in determining day counts?
Generally, the final day is not counted when calculating day counts — the
elapsed number of days is counted. However, in certain cases, such as accrued
interest calculations for Italian and Spanish bonds, the final day is included in the
count.fL] This day simply adds an extra day to the day count, it does not shift the
end date on an extra day.

2.10 Period

An amount of some time unit for date arithmetic purposes. Periods obey ValueSe-
mantics, making them suitable for use as attributes.

2.10.1 Relationships

Class Description Notes
ValueSemantics

Identifiable

PeriodWithRoller .11

PeriodModel 8.46

PeriodReferenceDataModeB 38

PeriodReferenceDataModeB 88 model 0..1
RepeatedPeriodEndPeriod- endPeriod

Model §3.61

M:Inherits{:Inherited by |:Realized by <« :Association—:Navigable®:Aggregate¢:Composite

L EeE=>=>

38

2.10.2 Operations

PeriodUnit unit() unit

The unit of the period. Return the period unit that this period is expressed in.
Examples of period units are days, weeks, months, etc...

Number amount() amount
The amount of period. Return the amount of period unit to add/subtract.

Period add(Period arg) add
arg: Period The amount to add to this period.
Raises:DateArithmeticException

Add two periods together. Both periods must have the same units; if the two
units differ, then a DateArithmeticException is raised. The resulting Pedibds
the property that, when applied to a ddiel + a = d + this + arg.

Period negated() negated
The negation of this amount. The resulting Perigchas the property that,
when added to a period, the resulting perioadt = d + a hasr + this = d.

Period subtract(Period arg) subtract
arg: Period The amount to subtract from this period.
Raises:DateArithmeticException

Subtract one period from another. Both periods must have the same units; if the
two units differ, then a DateArithmeticException is raised. The resulting Period,
has the property that, when applied to a pedod + a = d + this — arg.

2.11 PeriodWithRoller
2.11.1 Relationships

Class Description Notes
1+ Period .10
1 PeriodWithRollerModel §.47
1:Inherits |:Realized by

39

2.11.2 Operations

DateRoller roller() roller

2.12 PeriodUnit

A unit of elapsed time, in the form of days, months, years, etc. PeriodUnits obey
ValueSemantics, making them suitable for use as attributes.

2.12.1 Relationships

Class Description Notes
1 ValueSemantics
J PeriodUnitModel 8.49
+» DatePositionModel 8.18 within 1..1
+ RepeatedPeriodModeB&7 units 0..n
f:Inherits |:Realized by <«s:Association —:Navigable®:Aggregate¢:Composite

2.12.2 Operations

Date addToDate(Date date, Number n, DateClassifier classifier) addToDate
date: Date The date to add to.

n: Number The amount of this unit to add to the date. This amount may be

a non-integer.

classifier: DateClassifierThe classifier to use for determining whether the

date is a business day, non-weekend day, etc. The default value is Null-
DateClassifierModel.defaultinstance().

Add n units of this unit to the date.

If n is a non-integer value, then the integer value is added to the date and the
fractional value is then added as the rounded number of days that makes up that
fraction for the period length. If adding that number of days would cause the date
to cross this period’s boundary, then the fractional part is allocated to each part of
the period by calculating the number of days to take the date over the period, sub-
tracting the ratio of those number of days and the period length from the fractional
part and then adding the remaining fractional part to the new period.

Eg. Suppose we add5 calendar months to 27-Sep-1999.

1. Add the integer number of months first to give 27-Oct-1999.

40

2. Adding (0.5 x 31) days to 27-Oct-1999 will take the date into November,
so:

3. Add5 days to 27-Oct-1999 to take it to 1-Nov-1999.

4. Add (0.5 — (5/31)) x 30 = 10.16 = 10 days to 1-Nov-1999 to take it to

11-Nov-1999.
Date firstCalendarDay(Date date, DateClassifier classifier) firstCalendar-
date: Date The date to add to. Day

classifier: DateClassifierThe classifier to use for determining whether the
date is a business day, non-weekend day, etc. The default value is Null-
DateClassifierModel.defaultinstance().

The first day of the unit that a date falls within. Return the first calendar day
which falls within the period given by this unit and this date.

Eg. The first calendar day of the week for 1-Jan-1999 is 27-Dec-1998.

Date lastCalendarDay(Date date, DateClassifier classifier) lastCalendar-
date: Date The date to add to. Day
classifier: DateClassifierThe classifier to use for determining whether the
date is a business day, non-weekend day, etc. The default value is Null-
DateClassifierModel.defaultinstance().

The last day of the unit that a date falls within. Return the last calendar day
which falls within the period given by this unit and this date.

Eg. The last calendar day of the week for 1-Jan-1999 is 2-Jan-1999

Date firstNonWeekendDay(Date date, DateClassifier classifier) firstNonWeek-
date: Date The date to add to. endDay
classifier: DateClassifierThe classifier to use for determining whether the
date is a business day, non-weekend day, etc. The default value is Null-
DateClassifierModel.defaultinstance().

The first non-weekend day of the unit that a date falls within. Return the first
non-weekend day which falls within the period given by this unit and this date.

Eg. The first non-weekend day of the month for 8-May-1999 is 3-May-1999,
given a Saturday/Sunday weekend.

Date lastNonWeekendDay(Date date, DateClassifier classifier) lastNonWeek-
date: Date The date to add to. endDay

41

classifier: DateClassifierThe classifier to use for determining whether the
date is a business day, non-weekend day, etc. The default value is Null-
DateClassifierModel.defaultinstance().
The last non-weekend day of the unit that a date falls within. Return the last
non-weekend day which falls within the period given by this unit and this date.
Eg. The last non-weekend day of the month for 8-May-1999 is 31-May-1999,
given a Saturday/Sunday weekend.

Date firstBusinessDay(Date date, DateClassifier classifier) firstBusiness-
date: Date The date to add to. Day
classifier: DateClassifierThe classifier to use for determining whether the
date is a business day, non-weekend day, etc. The default value is Null-
DateClassifierModel.defaultinstance().

The first business day of the unit that a date falls within. Return the first busi-
ness day which falls within the period given by this unit and this date.

Eg. The first business day of the year for 8-May-1999 is 2-Jan-1999, given a
Saturday/Sunday weekend and the 1st of January as a Holiday.

Date lastBusinessDay(Date date, DateClassifier classifier) lastBusiness-
date: Date The date to add to. Day
classifier: DateClassifierThe classifier to use for determining whether the
date is a business day, non-weekend day, etc. The default value is Null-
DateClassifierModel.defaultinstance().

The last business day of the unit that a date falls within. Return the last business
day which falls within the period given by this unit and this date.

Eg. The last business day of the year for 8-May-1999 is 31-Dec-1999, given a
Saturday/Sunday weekend and the 1st of January as a Holiday.

Date startDate(Date date) startDate
date: Date
What is the start date of the period unit in which the parameter date falls?

Date endDate(Date date) endDate
date: Date
What is the end date of the period unit in which the parameter date falls?

Boolean testDatesInSamePeriod(Date testDate, Date baseDate) testDateslIn-

testDate: Date SamePeriod
baseDate: Date

42

Do the two parameter dates fall in the same period unit? e.g. Are two dates in
the same month?

If the start date of the period unit for the testDate is on or before the baseDate,
and the end date of this periodUnit is on or after baseDate, then return true. Other-
wise return false.

2.13 RepeatedPeriod

A repeated period represents the repeated application of a period to a date to pro-
vide either a single end date or a series of dates.

Repeated periods can bbained In a chained repeated period, each date is
generated by adding the period once to thevious date and then rolling the
result.

In an unchained repeated period, ttik date in the sequence of dates generated
by the repeated period is calculated by adding the peritiches and then rolling
the resulting date.

Using the notation/ + n - u for the application of. units of period unit: to
dated andd, = date, then:

If the repeated period is chained, then

d; = d;_1 4 sizeO f Roll Period - unit
If the repeated period is not chained, then

d; = do + (sizeO f Roll Period X i) - unit

For example, a chained roller:
period = 1 Month
sizeOfRollPeriod = 2
numberOfRollPeriods = 3

dy = StartDate
di = StartDate + (1M x 2) roll
do = di+ (lM X 2) roll

d3 = dy+ (lM X 2) roll

43

Unchained:

dy = StartDate

dy StartDate + (1 x (1M x 2)) roll
da StartDate + (2 x (1M x 2)) roll
d3 = StartDate+ (3 x (1M x 2)) roll

2.13.1 Relationships

Class Description Notes
1 RepeatedPeriodModeB&7
J RepeatedPeriodReferenceData-

Model §3.62
+ RepeatedPeriodReferenceData- model 0..n

Model 83.62

J:Realized by <»:Association —:Navigable:Aggregate¢:Composite

2.13.2 Operations

Date stopDate(Date date, DateClassifier classifier) stopDate
date: Date

classifier: DateClassifier

Raises:ImmobileDateException

Apply this period to the supplied date. In the case of a repeated period, this
operation returns the last date in the sequence of dates that this repeated period
generates.

Collection<Date> dates(Date date, DateClassifier classifier) dates
date: Date The date to start the repeated period at.
classifier: DateClassifierThe date classifier for date rolling.
Raises:ImmobileDateException

Returns a sorted collection of dates that represents the application of this re-
peated period to an initial date. Implementations of this interface provide the be-
haviour for this operation.

Boolean isChained() isChained

Is this a chained repeated period? Return true if the dates generated by this
repeated period are to be chained, false otherwise.

44

2.14 YearBasis

A year basis calculates the number of years in some elapsed time, based on the year
convention. Year bases are essentially stateless and implement ValueSemantics.

2.14.1 Relationships

Class Description Notes
{ ValueSemantics
l YearBasisModel 8.67
M:Inherits |:Realized by

2.14.2 Operations

print(OutputStream stream) print
stream: OutputStream The stream to print onto.

Print the object. Print the conventional name for this year count convention
onto the output stream.

Double termIinYears(Date from, Date to, DayBasis basis) terminYears
from: Date The start date of the calculation.

to: Date The end date of the calculation.

basis: DayBasisThe day count convention to use.

Elapsed time in years between two dates. Return the elapsed period in years
between from and to. This calculation may be fairly complex, due to the need to
handle variable length years. See the subclasses of YearBasisNdogl&idg more
detail on these calculations.

3 Classes

3.1 DateBasisModel

A concrete implementation of the DateBasis interface.

3.1.1 Relationships

Class Description Notes
1T DateBasis 8.2
1:Realizes

45

3.1.2 Attributes
dayBasis: DayBasis The day count convention.

yearBasis: YearBasis The year length convention.

3.2 DateClassifierReferenceDataModel

DateClassifierReferenceDataModel allows date classifiers to be manipulated in the
form of reference data. The actual data classifier model is held in an associated
DateClassifier.

Note that the model may be DateClassifierCompositeMo8el & DateClas-
sifierUnionModel 8.3, allowing grouping of related holidays.

3.2.1 Relationships

Class Description Notes
1+ ReferenceDataModel
1+ DateClassifier 8.3
<> DateClassifier 8.3 model 1..1 —
f:Inherits 1:Realizes <»:Association —:Navigable¢:Aggregate¢:Composite

3.3 DateClassifierUnionModel

The union of two date classifiers merges the holidays and weekends for two lo-
cations, disregarding precedence considerations. Thus a date classifier union is
built by combining a series of holidays and weekends, with the resulting classifier
representing the union of its components.

This kind of composite date classifier can be used to represent the combined
holidays of two different locations, in which case the relative holidays in each
location do not affect each other.

3.3.1 Relationships

Class Description Notes
1+ DateClassifier 8.3
| DateClassifierCompositeModeB &
+» DateClassifier 8.3 —
+ DateClassifier 8.3 components 0..n —
U:Inherited byt:Realizes <s:Association —:Navigable®:Aggregate¢:Composite

46

3.3.2 Attributes

identifier: String The unique identifier for this object, if one is needed. If this
object is an anonymous combination of holidays, this attribute may be nil.

An example of an anonymous combination of holidays would be in the sit-
uation where an FX deal between USD and FRF is done between parties in
Melbourne and Havana. You don’t want to name all of the holiday combina-
tions that result.

3.3.3 Operations

Boolean isWeekend(Date date, DateClassifier environment) isWeekend
date: Date The date to test.

environment: DateClassifierThe surrounding date classifier context. The

default value is NulDateClassifierModel.defaultinstance().

Date falls on a weekend? Return true if there exists a component date classifier
that returns true for isWeekend with the supplied date and environment, false oth-
erwise.

Boolean isHoliday(Date date, DateClassifier environment) isHoliday
date: Date The date to test.
environment: DateClassifierThe surrounding date classifier context. The
default value is NulDateClassifierModel.defaultinstance().

Date falls on a holiday? Return true if there exists a component date classifier
that returns true for isHoliday with the supplied date and environment, false other-
wise.

Boolean isSimple() isSimple
This classifier is simple? Return false since this classifier is made up of more
than one classifier.

DateClassifier compose(DateClassifier arg) compose
arg: DateClassifier The date classifier to compose this classifier with.

Compose two date classifiers so that the two classifiers are affected by prece-
dence considerations. Return a DateClassifierCompositeM8deigh this clas-
sifier and the argument classifier as components.

Boolean precedes(DateClassifier other) precedes

47

other: DateClassifier The date classifier to compare this classifier against.
Compare two date classifiers for precedence. Return false.

DateClassifier predecessorsOf(DateClassifier test) predecessorsOf
test: DateClassifierThe date classifier to test against.

The predecessors of a date classifier.

ReturnlJ c.predecessorsO f(test) where represents the union
operation.

cEcomponents

DateClassifier union(DateClassifier arg) union
arg: DateClassifier The date classifier to combine this classifier with.

Join two date classifiers so that the classifiers are unaffected by precedence
considerations. Return a DateClassifierUnionMod&i38vith the union of the
components of this classifier and the arg classifier as components.

«Static Method» DateClassifier local() local
Local date classifier. Return the date classifier which encodes the holidays and
weekends of the location running the system.

3.4 DateClassifierCompositeModel

A date classifier built by combining a series of holidays and weekends. The result-
ing classifier represents the composite of its components. Composite date classi-
fiers allow the composite to affect the placement of other elements within the date
classifier so as to reflect precedence relationships.

This kind of composite date classifier can be used to represent the combined
holidays of a single location.

3.4.1 Relationships

Class Description Notes
{+ DateClassifierUnionModel3&3
1:Inherits

3.4.2 Operations

Boolean isWeekend(Date date, DateClassifier environment) isWeekend
date: Date The date to test.

48

environment: DateClassifierThe surrounding date classifier context. The
default value is NulDateClassifierModel.defaultinstance().

Date falls on a weekend? Letwv be the composite of the environment and this
date classifier. Return true if there exists a component date classifier that returns
true for isWeekend with the supplied date amd, false otherwise.

Boolean isHoliday(Date date, DateClassifier environment) isHoliday
date: Date The date to test.
environment: DateClassifierThe surrounding date classifier context. The
default value is NulDateClassifierModel.defaultinstance().

Date falls on a holiday? Letnv be the composite of the environment and this
date classifier. Return true if there exists a component date classifier that returns
true for isHoliday with the supplied date ardv, false otherwise.

DateClassifier compose(DateClassifier arg) compose
arg: DateClassifier The date classifier to compose this classifier with.

Compose two date classifiers so that the two classifiers are affected by prece-
dence considerations. Return a DateClassifierCompositeM8d&lgh the union
of the components of this classifier and the arg classifier as components.

3.5 DateClassifierWeekendModel

A basic implementation of the most common form of fixed weekend. A number of
days during the week are set aside for the weekend.
This form of weekend takes precedence over any other holiday model.

3.5.1 Relationships

Class Description Notes
1T DateClassifier 8.3
1:Realizes

3.5.2 Attributes

weekendDays: Set<DayOfWeekEnum>The days of the week that constitute
this weekend.

identifier: String The identifier for this weekend type (may be nil if this is an
anonymous weekend classifier).

49

3.5.3 Operations

Boolean isHoliday(Date date, DateClassifier environment) isHoliday
date: Date

environment: DateClassifierThe surrounding date classifier context. The

default value is NulDateClassifier.defaultinstance().

Test a date for being a holiday. Always returns false.

Boolean isWeekend(Date date, DateClassifier environment) isWeekend
date: Date
environment: DateClassifierThe surrounding date classifier context. The
default value is NulDateClassifier.defaultinstance().

Test a date for being a weekend day. Return true if weekendDays includes the
result returned by date.dayOfWeek().

Boolean isBasic() isBasic
This classifier is basic? Return true.

DateClassifier compose(DateClassifier arg) compose
arg: DateClassifier The date classifier to compose this classifier with.

Compose two date classifiers so that the two classifiers are affected by prece-
dence considerations. Return a DateClassifierCompositeM8deivgh this clas-
sifier and the argument classifier as components.

Boolean precedes(DateClassifier other) precedes
other: DateClassifier The date classifier to compare this classifier against.

Compare two date classifiers for precedence. Return true if the argument clas-
sifier is a DateClassifierWeekendModel, false otherwise.

DateClassifier predecessorsOf(DateClassifier test) predecessorsOf
test: DateClassifierThe date classifier to test against.

The predecessors of a date classifier. If the test argument is a DateClassifier-
WeekendModel, return an instance of the NullDateClassifier, otherwise return this
date classifier.

DateClassifier union(DateClassifier arg) union
arg: DateClassifier The date classifier to combine this classifier with.

50

Join two date classifiers so that the classifiers are unaffected by precedence
considerations. Return a DateClassifierUnionMod#&B3vith this classifier and
the argument classifier as components.

«Static Method» DateClassifier local() local
Local date classifier. Return the date classifier which encodes the holidays and
weekends of the location running the system.

3.6 DateConditionPrimitiveModel

An abstract superclass for the various date rolling tests.

3.6.1 Relationships

Class Description Notes
SystemFunction
DateConditionDayTypeModel3E8
DateConditionPositionModel3%11
DateConditionCrossModel3§7

:Inherited byt:Realizes

cleese—

3.7 DateConditionCrossModel

Test to see whether a date rolling operation has crossed some boundary, such as a
month boundary.

3.7.1 Relationships

Class Description Notes
{ DateConditionPrimitiveModel 36
1:Inherits

3.7.2 Operations

Object executeWith(Collection<Object> passedParameters) executeWith
passedParameters: Collection<ObjectThe function parameters.

Execute this function. Three parameters are passed into the operation: 2Date §
called the test date, a Date called the base date and a Perio@Uit §

51

Pass these parameters to the 'testCrossingPeriodUnit’ method and return the
result.

String identifier() identifier
The unique identifier for the function. Return “dateCrosses”

«Static Method» Boolean testCrossingPeriodUnit(Date date, Date base-
Date, PeriodUnit periodUnit) testCrossingPe-
date: Date riodUnit
baseDate: Date
periodUnit: PeriodUnit

Test whether the testDate and the baseDate fall in different calendar period
units. This is done by sending the 'testDatesinSamePeriod’ method to the Perio-
dUnit with testDate and baseDate as parameters.

For example, testing 23-Jan-1999 against 29-Jan-1999 and a month periodUnit
returns false, as both dates fall within the same month. Testing the same dates
against a week period returns true, as the dates fall into different weeks.

3.8 DateConditionDayTypeModel

An abstract superclass for the various day-type tests.

3.8.1 Relationships

Class Description Notes
{ DateConditionPrimitiveModel 36
| DateConditionNonBusinessDay-
Model §3.9
| DateConditionWeekendDay-
Model §3.10
Mr:Inherits|}:Inherited by

3.9 DateConditionNonBusinessDayModel

Test to see if this day is a non-business day.
Note that this test is the negation of the usual business day tests. In most cases,
rolling will occur on a non-business day, rather than a business day and, rather than

force users to constantly use a negation operation, the negation operation has been
built in.

52

3.9.1 Relationships

Class Description Notes
1+ DateConditionDayTypeModel%8
M:Inherits

3.9.2 Operations

Object executeWith(Collection<Object> passedParameters) executeWith
passedParameters: Collection<Objecthe function parameters.

Execute this function. Two parameters are passed into the operation: éate §
and a DateClassifier283.

Pass these parameters to the 'testNonBusinessDay’ method, and return the re-
sult.

String identifier() identifier
The unique identifier for the function. Return “isNonBusinessDay”

«Static Method» Boolean testNonBusinessDay(Date date, DateClassifier
classifier) testNonBusi-
date: Date nessDay
classifier: DateClassifier

If the date classifier classifies the date as a non-business day, then return true,
otherwise return false.

3.10 DateConditionWeekendDayModel

Test to see if this day is a weekend day.

Note that this test is the negation of the usual non-weekend tests. In most cases,
rolling will occur on a weekend day, rather than a non-weekend day and, rather than
force users to constantly use a negation operation, the negation operation has been
built in.

3.10.1 Relationships

Class Description Notes
1 DateConditionDayTypeModel3%8
1:Inherits

53

3.10.2 Operations

Object executeWith(Collection<Object> passedParameters) executeWith
passedParameters: Collection<ObjectThe function parameters.

Execute this function. Two parameters are passed into the operation: aZDhte §

and a DateClassifier283.
Pass these parameters to the 'testWeekendDay’ method and return the result.

String identifier() identifier
The unique identifier for the function. Return “isWeekendDay”

«Static Method» Boolean testWeekendDay(Date date, DateClassifier clas-
sifier) testWeekend-
date: Date Day
classifier: DateClassifier

If the date classifier classifies the date as a weekend day, then return true, oth-
erwise return false.

3.11 DateConditionPositionModel

Test to see whether a date satisfies some position requirement; whether the date is
before, on or after some reference date.

3.11.1 Relationships

Class Description Notes
DateConditionPrimitiveModel 36
DateConditionOnModel £ 14
DateConditionBeforeModel313
DateConditionAfterModel 8.12
:Inherits}:Inherited by

Eee=>

=

3.12 DateConditionAfterModel

Test to see whether a date is on or after a reference date.

54

3.12.1 Relationships

Class Description Notes
1+ DateConditionPositionModel311
M:Inherits

3.12.2 Operations

Object executeWith(Collection<Object> passedParameters) executeWith
passedParameters: Collection<Objecthe function parameters.

Execute this function. Three parameters are passed into the operation: 2Date §
a DatePosition 8.6 and a a DateClassifie2&.

Pass these parameters to the 'testDateAfterPosition’ method, and return the re-
sult.

String identifier() identifier
The unique identifier for the function. Return “isDateBefore”

«Static Method» Boolean testDateAfterPosition(DatePosition datePosi-

tion, Date date, DateClassifier classifier) testDateAfter-
datePosition: DatePosition Position
date: Date

classifier: DateClassifier
Send the testAfter message to the datePosition and return the result.

3.13 DateConditionBeforeModel

Test to see whether a date is on or before a reference date.

3.13.1 Relationships

Class Description Notes
1+ DateConditionPositionModel311
M:Inherits

3.13.2 Operations

Object executeWith(Collection<Object> passedParameters) executeWith
passedParameters: Collection<Objecthe function parameters.

55

Execute this function. Three parameters are passed into the operation: 2Date §
a DatePosition 8.6 and a a DateClassifie28.

Pass these parameters to the 'testDateBeforePosition’ method, and return the
result.

String identifier() identifier
The unique identifier for the function. Return “isDateBefore”

«Static Method» Boolean testDateBeforePosition(DatePosition datePo-

sition, Date date, DateClassifier classifier) testDateBe-
datePosition: DatePosition forePosition
date: Date

classifier: DateClassifier
Send the testOn message to the datePosition and return the result.

3.14 DateConditionOnModel

Test to see if a date is the same as a reference date.

3.14.1 Relationships

Class Description Notes
1+ DateConditionPositionModel311
M:Inherits

3.14.2 Operations

Object executeWith(Collection<Object> passedParameters) executeWith
passedParameters: Collection<Objecthe function parameters.

Execute this function. Three parameters are passed into the operation: 2Date §
a DatePosition 8.6 and a a DateClassifie28.

Pass these parameters to the 'testDateOnPaosition’ method, and return the re-
sult.

String identifier() identifier
The unique identifier for the function. Return “isDateOn”

«Static Method» Boolean testDateOnPosition(DatePosition datePosition,

Date date, DateClassifier classifier) testDateOnPosi-
tion

56

datePosition: DatePosition
date: Date
classifier: DateClassifier
Send the testOn message to the datePosition and return the result.

3.15 DateFormatModel

The DateFormatModel class provides a concretization of the DateFormat interface.
Dictionaries of names and suffixes are used to provide a language and location
dependent format.

The operations specified in DateFormat are implemented by appropriate lookups
on the supplied dictionaries.

If more language modeling is done in future releases, then some parts of this
model will probably be moved to the language model.

3.15.1 Relationships

Class Description Notes
1 DateFormat 8.5
1 Validatable
1:Realizes

3.15.2 Attributes

weekdaysShort: Dictionary<DayOfWeekEnum, String> Holds a dictionary which
maps a day of the week onto an abbreviated weekday name.

weekdaysLong: Dictionary<DayOfWeekEnum, String> Holds a dictionary which
maps a day of the week onto a full weekday name.

monthsShort: Dictionary<MonthEnum, String> Holds a dictionary which maps
a month onto an abbreviated month name.

monthsLong: Dictionary<MonthEnum, String> Holds a dictionary which maps
a month onto a full month name.

eras: Dictionary<EraEnum, String> Holds a dictionary which maps the ele-
ments of EraEnumS3 onto appropriate era strings (eg. before maps onto
HBCH).

quartersShort: Dictionary<QuarterEnum, String> Holds a dictionary which
maps a quarter onto an abbreviated quarter name.

57

quartersLong: Dictionary<QuarterEnum, String> Holds a dictionary which
maps a quarter onto a full quarter name.

suffixes: Dictionary<Integer, String> Holds a partial dictionary that maps inte-
gers in the range 0—99 onto strings. Suffixes are added to numbers to indicate
placement (eg. 6 has 'th’ added to become '6th’, 1 has 'st’ added to become
"1st’). In general, the default suffix is used; this dictionary contains excep-
tional cases.

defaultSuffix: String Holds the suffix to use if a number is not found inside the
suffix dictionary.

zeroFlag: Boolean If true, this flag indicates that this date format counts the year
0 as 0, rather than as 1 from the previous era. (eg. in the common era
calendar, year O is set to be 1 BCE).

identifier: String The unique identifier for the date format.

format: String This stores the format to use when printing a date. For example,
if the 23rd of april 1999 is to be prined as 23/04/99, then the format would
be “

3.15.3 Operations

Reportable validate() validate

Validate this piece of data.
A DateFormatModel is valid if the following conditions hold:

e weekdaysShort and weekdaysLong have a mapping for all elements of Day-
OfWeekEnum 8.2 Two different key values may not map onto the same
string.

e monthsShort and monthsLong have a mapping for all elements of Mon-
thEnum %.4. Two different key values may not map onto the same string.

e Eras must have a mapping for all elements of EraEn&i8. 8Two different
key values may not map onto the same string.

e quartersShort and quartersLong have a mapping for all elements of Quar-
terEnum %.5. Two different key values may not map onto the same string.

e defaultSuffix is a non-empty string.

e Suffixes should only have keys in the range 0-99.

58

Additionally, if format has an alphanumeric character in it that is not part of a
“%” escape sequence, then a warning should be added, indicating that the format
may not be parsable.

«Static Method» DateFormat local() local
Local common date format. Return the date format that encodes the common
local convention used when printing dates.

«Static Method» DateFormat localShort() localShort
Local common short date format. Return the date format that encodes the com-
mon local convention used when printing dates in an abbreviated form.

«Static Method» DateFormat localLong() localLong
Local common long date format. Return the date format that encodes the com-
mon local convention used when printing dates in a long form.

«Static Method» DateFormat localVeryLong() localVeryLong
Local common very long date format. Return the date format that encodes the
common local convention used when printing dates in a very long form.

3.16 DateFormatReferenceDataModel

The DateFormatReferenceDataModel provides a means of storing and using date
formats as reference data. Essentially, this class acts as a wrapper around an actual
DateFormatModel, although it responds to the same methods and can be used in
place of a DateFormatModel instance.

3.16.1 Relationships

Class Description Notes
1+ ReferenceDataModel
+ DateFormat 8.5
+» DateFormat 8.5 model 1..1 —
f:Inherits 1:Realizes <»:Association —:Navigable¢:Aggregate¢:Composite

3.16.2 Operations

Reportable validate() validate

59

Validate this piece of data. Compose the normal reference data validation with
the results of validating the associated DateFormatModel.

3.17 DateModel

The Date Model class implements the Date class by placing the count of days into
a year and the year number.

The range of this class is dependent on the implementation of Integer within
the target language. In most cases, implementation limits will not be a problem, as
even a 16 bit year will extend to about 32,000 CE.

3.17.1 Relationships

Class Description Notes
+ Date .1
T:Realizes

3.17.2 Attributes

dayOfYear: Integer The day count into the year, with the 1st of January being
day 1.

year: Integer The year number in the CE calendar.

3.18 DatePositionModel

A concrete implementation of the DatePosition interface. Subclasses encode the
type of position that we wish to force a date to.

The start and end dates of the period within which the date is to be forced are
supplied, relative to the reference date, by the associated PeriodJhzt §

60

3.18.1 Relationships

Class Description Notes
1 DatePosition 8.6

| DatePositionCalendarDayModeB.20
| DatePositionNonWeekend-

Model 8§3.23

|l DatePositionBusinessDayMode3.89
|l DatePositionWeekModelF25
4
Y
4
“
U:

DatePositionMonthModel 322

DatePositionDayOfWeekModeB&1

DatePositionQuarterModel3®4

PeriodUnit .12 within 0..* —
Inherited byt:Realizes <:Association —:Navigable®:Aggregate¢:Composite

3.18.2 Attributes

direction: DateDirectionEnum = forwards If set to forwards, the position is
found by moving forward from the start of the associated period. If set to
backwards, the position is found by moving backward from the end of the
period.

nth: Integer Move to the nth date that satisfies the criteria set out in the subclass.
Counting starts with 1 being the first/last date that satisfies the subclass.

3.19 DatePositionBusinessDayModel

A position in terms of business days. Eg. the 3rd business day in the month.

3.19.1 Relationships

Class Description Notes
1+ DatePositionModel 8.18
1:Inherits

3.19.2 Operations

Date force(Date date, DateClassifier classifier) force

date: Date The date to force.

classifier: DateClassifierThe date classifier for business/non-weekend day
classification, if needed. The default value is NullDateClassifierModel.defaultinstance().
Raises:ImmobileDateException

61

Force a date to a position within a date unit. Move forwards/backwards to the
nth business day, as specified by classifier, from the start/end of the associated pe-
riodUnit.

3.20 DatePositionCalendarDayModel

A position in terms of calendar days. Eg. The 25th calendar day in the year.

3.20.1 Relationships

Class Description Notes
1+ DatePositionModel .18
M:Inherits

3.20.2 Operations

Date force(Date date, DateClassifier classifier) force

date: Date The date to force.

classifier: DateClassifierThe date classifier for business/non-weekend day
classification, if needed. The default value is NullDateClassifierModel.defaultinstance().
Raises:ImmobileDateException

Force a date to a position within a date unit. Move forwards/backwards to the
nth calendar day from the start/end of the associated date amount.

3.21 DatePositionDayOfWeekModel

Force a date to the nth occurrence of particular day of the week within the chosen
period. For example, the 4th Monday in the month, the 5th Sunday in the year.

3.21.1 Relationships

Class Description Notes
1+ DatePositionModel .18
1:Inherits

3.21.2 Attributes
day: DayOfWeekEnum The day of the week.

62

3.21.3 Operations

Date force(Date date, DateClassifier classifier, Integer targetOrder) force
date: Date The date to force.

classifier: DateClassifierThe date classifier for business/non-weekend day
classification, if needed. The default value is NullDateClassifierModel.defaultinstance().
targetOrder: Integer The order of date classifier to use. The default value

is MaxInteger.

Raises:ImmobileDateException

Force a date to a position within a date unit. Move forwards/backwards to the
nth date which corresponds to the same day of the week from the start/end of the
associated date unit.

For example, the 2nd Saturday of the month would have nth = 1, direction =
forwards, day = saturday and a date amount of 1 month. Applying this position to
23-Jul-1998 would force the date to 11-Jul-1998.

3.22 DatePositionMonthModel

A date position in terms of months. Eg. the 3rd month before the end of the year.

3.22.1 Relationships

Class Description Notes
1+ DatePositionModel 8.18
1:Inherits

3.22.2 Operations

Date force(Date date, DateClassifier classifier) force

date: Date The date to force.

classifier: DateClassifierThe date classifier for business/non-weekend day
classification, if needed. The default value is NullDateClassifierModel.defaultinstance().
Raises:ImmobileDateException

Force a date to a position within a period unit. Move forwards/backwards to
the nth month from the start/end of the associated date unit. The day of the month
remains the same.

If the day of the month would cause an illegal date (eg. forcing the 30th of June
to February) then the day of month is adjusted to be the last day of the month.

63

3.23 DatePositionNonWeekendModel

A position in terms of non-weekend days. Eg. The 2nd non-weekend day in the
week.

3.23.1 Relationships

Class Description Notes
1+ DatePositionModel .18
M:Inherits

3.23.2 Operations

Date force(Date date, DateClassifier classifier) force
date: Date The date to force.
classifier: DateClassifierThe date classifier for business/non-weekend day
classification, if needed. The default value is NullDateClassifierModel.defaultinstance().
Raises:ImmobileDateException

Force a date to a position within a date unit. Move forwards/backwards to the
nth non-weekend day, as specified by classifier, from the start/end of the associated
date unit.

3.24 DatePositionQuarterModel

A date position in terms of a number of calendar quarters. Eg: the third quarter in
ayear.

3.24.1 Relationships

Class Description Notes
1+ DatePositionModel 8.18
1:Inherits

3.24.2 Attributes

quarter: QuarterEnum

3.24.3 Operations

Date force(Date date, DateClassifier classifier) force
date: Date

64

classifier: DateClassifier The default value is NullDateClassifierModel.defaultinstance().

Force a date to a position within a period unit. Move forwards/backwards to
the nth quarter from the start/end of the associated period unit.

Force a date to a position within a period unit. Move forwards/backwards to
the nth quarter from the start/end of the associated date unit. The day of the quarter
remains the same.

The first day of the quarter is the first day of the first month of the quarter. The
last day of the quarter is the last day of the last month of the quarter.

If the day of the quarter would cause an illegal date then the day of month is
adjusted to be the last day of the quarter. For example, forcing 31 December (the
92nd day of the october quarter) to the january quarter would give 31 March (the
90th day of the January quarter), since this is the last day of the quarter.

3.25 DatePositionWeekModel

A position in terms of weeks. Eg. the 3rd week of the year.

3.25.1 Relationships

Class Description Notes
1+ DatePositionModel 8.18
1:Inherits

3.25.2 Operations

Date force(Date date, DateClassifier classifier) force

date: Date The date to force.

classifier: DateClassifierThe date classifier for business/non-weekend day
classification, if needed. The default value is NullDateClassifierModel.defaultinstance().
Raises:ImmobileDateException

Force a date to a position within a date unit. Move forwards/backwards to the
nth week from the start/end of the associated date unit. The relative position within
the week (Sunday, Monday, etc.) remains the same as that of the supplied date.

For a month, the first week of the month is the week into which the first day of
the month falls and the last week of the month is the week before the first week of
the next month.

For a quarter, the first week of the quarter is the first week of the first month of
the quarter and the last week is the last week of the last month of the quarter..

65

For a year, the first week of the year is the week into which the 4th of January
falls.[2] The last week of the year is the week before the first week of the next year.

3.26 DateRollerFollowingModel

Under the ’following’ date rolling convention, if the day occurs on a non-business
day, the day is rolled to the next business day.

For example, 4 August 1999 + 1 month = 4 September 1999 (a Saturday), then
roll forward to 6 September 1999.

3.26.1 Relationships

Class Description Notes
1T DateRoller 8.7
T:Realizes

3.26.2 Operations

String identifier() identifier
Return "Following".

Date roll(DateClassifier classifier, Date date, Date startDate, Date last-
Date) roll
classifier: DateClassifier
date: Date
startDate: Date
lastDate: Date

test whether the dateClassifier classifies date as a non business day. If it does,
then add a period of 1 calendar day to date. Repeat the process until we get a
business day.

3.27 DateRollerForeignExchangeModel

Under the 'foreign exchange’ date rolling convention, if the day occurs on a non-
business day, the day is rolled to the next business day. No adjustment in the

66

forward value date is made for any weekends or public holiday between the spot
date and the forward delivery date. An exception to this rule is when the spot
value is the last working day of the month. Then the forward value date is the
last working day of the corresponding forward month. However, if necessary, the
forward value date is brought back to the nearest previous business day in order to
stay in the same calendar month, rather than moved forward to the beginning of
next month.

For example, Dealing date: 26 June 1996 Spot date: 28 June 1996 (last working
day of June) 1 month: 31 July 1996 2 months: 30 August 1996

Additionally, even if the spot value date is earlier than the last working day
of the month, but the forward value date would fall on a non-business day, this is
still brought back rather than moved later, if necessary to keep it in the appropriate
month.

3.27.1 Relationships

Class Description Notes
1T DateRoller 8.7
1:Realizes

3.27.2 Operations

String identifier() identifier
Return "ForeignExchange".

Date roll(DateClassifier classifier, Date date, Date startDate, Date last-

Date) roll
classifier: DateClassifier

date: Date

startDate: Date

lastDate: Date

test whether lastDate (the spot date) is the last business day of the month. This
is done by creating a DatePositionBusinessDayModel with direction = 'backwards’
and nth = 1, then sending the testOn() method with 'lastDate’ as parameter.

If lastDate is not the last business day of the month then use the 'modifiedFol-
lowing’ rollowing convention. i.e. roll the date forward to the next business date,
unless this crosses a month boundary, in which case roll the date backwards to the
previous business date.

67

If lastDate is the last business day of the month then the required date is the
last business day of the month in which 'date’ falls. This is done by creating a
DatePositionBusinessDayModel with direction = 'backwards’ and nth = 1, then
sending the force() method with 'date’ as parameter.

3.28 DateRollerModifiedFollowingModel

Under the 'modified following’ date rolling convention, if the day occurs on a non-
business day, the day is rolled to the next business day unless the next business
day crosses a month boundary, in which case the day is rolled back to the previous
business day.

For example, 30 April 1998 + 1 month = 30 May 1998 (a Saturday), then roll
forward to 1 June 1998. This crosses a boundary month so the date will roll back
to 29 May 1998

3.28.1 Relationships

Class Description Notes
1 DateRoller 8.7
T:Realizes

3.28.2 Operations

String identifier() identifier
Return "ModifiedFollowing"

Date roll(DateClassifier classifier, Date date, Date startDate, Date last-
Date) roll
classifier: DateClassifier
date: Date
startDate: Date
lastDate: Date

test whether the dateClassifier classifies date as a non business day. If it does,
then add a period of 1 calendar day to date. Repeat the process until we get a
business day.

Test whether this resulting business day falls in the same month as the original
date. This is done by sending 'testDatesInSamePeriod’ to a MonthPeriodUnit-

68

Model with the two dates as parameters. If this is false, then add a period of -1 day
to 'date’ until a business day is reached.

3.29 DateRollerModifiedPreceedingModel

Under the 'modified preceding’ date rolling convention, if the day occurs on a
non-business day, the day is rolled to the previous business day unless the previous
business day crosses a month boundary, in which case the day is rolled forward to
the next business day.

For example, 1 December 1998 + 1 month = 1 January 1999 (a public holiday),
then roll back to 31 December 1998. This crosses a boundary month so the date
will roll forward to 4 January 1999.

3.29.1 Relationships

Class Description Notes
1 DateRoller 8.7
T:Realizes

3.29.2 Operations

String identifier() identifier
Return "ModifiedPreceding".

Date roll(DateClassifier classifier, Date date, Date startDate, Date last-

Date) roll
classifier: DateClassifier

date: Date

startDate: Date

lastDate: Date

test whether the dateClassifier classifies date as a non business day. If it does,
then add a period of -1 calendar day to date. Repeat the process until we get a
business day.

Test whether this resulting business day falls in the same month as the original
date. This is done by sending 'testDatesInSamePeriod’ to a MonthPeriodUnit-
Model with the two dates as parameters. If this is false, then add a period of 1 day
to 'date’ until a business day is reached.

69

3.30 DateRollerPrecedingModel

Under the 'preceding’ date rolling convention, if the day occurs on a non-business
day, the day is rolled to the previous business day.

For example, 4 August 1999 + 1 month = 4 September 1999 (a Saturday), then
roll backward to 3 September 1999.

3.30.1 Relationships

Class Description Notes
1 DateRoller 8.7
T:Realizes

3.30.2 Operations

String identifier() identifier
Return "Preceding".

Date roll(DateClassifier classifier, Date date, Date startDate, Date last-
Date) roll
classifier: DateClassifier
date: Date
startDate: Date
lastDate: Date

test whether the dateClassifier classifies date as a non business day. If it does,
then add a period of -1 calendar day to date. Repeat the process until we get a
business day.

3.31 DateRollerPrimitiveModel

An abstract superclass of the various primitive date rolling functions.

70

3.31.1 Relationships

Class Description Notes
SystemFunction
DateRollerAdditionModel §.32
DateRollerForcingModel £34
DateRollerCallingModel 8.33
:Inherited byt:Realizes

cleee—

3.32 DateRollerAdditionModel
Add (or subtract) to a date.

3.32.1 Relationships

Class Description Notes
1+ DateRollerPrimitiveModel 8.31
1:Inherits

3.32.2 Operations
Object executeWith(Collection<Object> passedParameters) executeWith
passedParameters: Collection<ObjectThe function parameters.

Execute this function. Two parameters are passed into the operation: aZDhte §
and a Period 3.10
Pass these parameters to the addPeriodToDate method, and return the result.

String identifier() identifier
The unique identifier for the function. Return “dateRollerAdd”

«Static Method» Date addPeriodToDate(Date date, Period period) addPeriodTo-
date: Date Date
period: Period

Return the result of adding the period parameter to the date parameter.

3.33 DateRollerCallingModel

Roll a date by calling another date roller.

71

3.33.1 Relationships

Class Description Notes
1+ DateRollerPrimitiveModel 8.31
M:Inherits

3.33.2 Operations

Object executeWithOn(Collection<Object> passedParameters, Object

targetObject) executeWithOn
passedParameters: Collection<ObjectThe function parameters.

targetObject: Object

Execute this operation. Four parameters are passed into the operation: a Date-
Classifier .3 Date 8.1 called the date, a Date called the last date and

The target object must be a DateRoll&. 8

Pass these parameters to the 'callDateRoller’ static method on the receiver, and
return the result.

String identifier() identifier
The unique identifier for the function. Return “dateRollerCall”

«Static Method» Date callDateRoller(DateRoller targetRoller, DateClas-
sifier classifier, Date date, Date lastDate) callDateRoller
targetRoller: DateRoller
classifier: DateClassifier
date: Date
lastDate: Date
If the start date is absent, it defaults to the last date. If the last date is absent, it
defaults to the date.
The date, lastDate and classifier parameters are passed to the roll() operation
on the targetRoller object and the result returned.

3.34 DateRollerForcingModel

Force a date to a suitable position. This function can be used to force dates to, eg.
the end of the quarter, or the 15th of the month.

72

3.34.1 Relationships

Class Description Notes
1+ DateRollerPrimitiveModel 8.31
M:Inherits

3.34.2 Operations

Object executeWith(Collection<Object> passedParameters) executeWith
passedParameters: Collection<Objecthe function parameters.

Execute this function. Three parameters are passed into the operation: 2Date §
a DatePosition 8.6 and a DateClassifier283. Pass these parameters to the 'force-
DateToPosition’ method and return the result.

String identifier() identifier
The unique identifier for the function. Return “dateRollerForce”

«Static Method» Date forceDateToPosition(Date date, DatePosition po-
sition, DateClassifier classifier) forceDateToPo-
date: Date sition
position: DatePosition
classifier: DateClassifier

Three parameters are passed into the operation: a Ratea®atePositionZ.6
and a DateClassifier283. Return the result of applying the date position to the date.

3.35 DateRollerProgramModel

A date roller that allows access to the generic programming structures from the
Program package. The date roller can then use these structures to build arbitrarily
complex date rolling specifications. The date to roll and the resulting rolled date
are passed to the program via a variable.

3.35.1 Relationships

Class Description Notes
+ DateRollerProgram &8
+ Function program 1..1 —
T:Realizes <«s:Association —:Navigable¢:Aggregate$:Composite

73

3.35.2 Attributes

identifier: String The unique identifier for the date roller. This attribute may be
nil if this is an anonymous date roller.

3.35.3 Operations

Function program() program
The program to perform the date roll. Return the associated program.

3.36 DateRollerReferenceDataModel

Date rollers tend to be applied in a large number of areas. This class provides
a wrapper so that common date rollers can be managed as reference data. The
reference data object implements the DateRoller interface by delegating to the held
DateRoller instance.

Generally, only program-based date rollers need to be managed as reference
data.

3.36.1 Relationships

Class Description Notes
1 ReferenceDataModel
1 DateRoller 8.7
+» DateRoller 8.7 model 1..1 —
f:Inherits 1:Realizes <»:Association —:Navigable:Aggregate¢:Composite

3.37 DayBasisModel

The DayBasisModel provides an abstract superclass for the various day count con-
ventions.

3.37.1 Relationships

Class Description Notes
DayBasis 8.9
DayBasisActual §.42
DayBasis30Abstract$38
DayBasisNL 8.43
:Inherited byt:Realizes

cleese—

74

3.37.2 Attributes

includeLastDay: Boolean = falselnclude the final day in the day count?

3.38 DayBasis30Abstract

The 30 day date basis calculates day counts based on all months having an even
length of 30 days, with a year, therefore, having 360 days. The last days of the
month tend to be treated as a special case, with several different conventions.

3.38.1 Relationships

Class Description Notes
DayBasisModel 8.37
DayBasis30E 8.40
DayBasis30 §.39
DayBasis30PSA341
:Inherits}:Inherited by

Eee=>

=

3.39 DayBasis30

The Day 30 Model reflects the International Swap Dealers Association (ISDA)
convention; the most common form of 30 day date basis.

3.39.1 Relationships

Class Description Notes
1+ DayBasis30Abstract®38
1:Inherits

3.39.2 Operations
print(OutputStream stream) print
stream: OutputStream The stream to print onto.

Print the object. Add “30” to the output stream. If includeLastDay is true, add
a “+” to the output stream.

Integer terminDays(Date from, Date to) terminDays

from: Date The start date of the calculation.
to: Date The end date of the calculation.

75

Elapsed time in days between two dates.

If di, mq andy; are, respectively, the day, month and year numbers for the
from date andiy, mo andy, are, respectively, the day, month and year numbers
for the to date, then the term in days is given by:

360 % (y2 —y1) + 30 x (o —mq) + (22 — 21)
wherez; andz, are defined by the following table:

d1 d2 AR
< 30 dy ds
>30 <30 30 do
>30 >30 30 30

Note thatz; can, on occasion, be greater than 30.
If includeLastDay is true, add 1 to the calculated term in days.

3.40 DayBasis30E

The DayBasis30E model reflects the common European interpretation of the 30
day basis.

3.40.1 Relationships

Class Description Notes
1+ DayBasis30Abstract®38
M:Inherits

3.40.2 Operations
print(OutputStream stream) print
stream: OutputStream The stream to print onto.

Print the object. Add “30E” to the output stream. If includeLastDay is true,
add a “+” to the output stream.

Integer terminDays(Date from, Date to) terminDays

from: Date The start date of the calculation.
to: Date The end date of the calculation.

76

Elapsed time in days between two dates.

If di, mq andy; are, respectively, the day, month and year numbers for the
from date andiy, mo andy, are, respectively, the day, month and year numbers
for the to date, then the term in days is given by:

360 % (y2 —y1) + 30 x (o —mq) + (22 — 21)
wherez; andz, are defined by the following table:

d1 dg zZ1 29
<30 <30 di d2
<30 >30 d; 30
>30 <30 30 do
>30 >30 30 30

If includeLastDay is true, add 1 to the calculated term in days.

3.41 DayBasis30PSA

The Day30PSA model reflects the common Public Securities Association (PSA)
interpretation of the 30 day basis.

3.41.1 Relationships

Class Description Notes
f DayBasis30Abstract338
1:Inherits

3.41.2 Operations

print(OutputStream stream) print
stream: OutputStream The stream to print onto.

Print the object. Add “30PSA" to the output stream. If includeLastDay is true,
add a “+” to the output stream.

Integer terminDays(Date from, Date to) terminDays

from: Date The start date of the calculation.
to: Date The end date of the calculation.

77

Elapsed time in days between two dates.

If di, mq andy; are, respectively, the day, month and year numbers for the
from date andiy, mo andy, are, respectively, the day, month and year numbers
for the to date, then the term in days is given by:

360 X (y2 — y1) + 30 x (m2 —m1) + (22 — 21)
wherez; andz, are defined by the following table:

1 leap year? d; do z21 2
<29 dl d2
>29 <30 30 dy
>29 >30 30 30
< 28 dy dy
>28 <30 30 do
>28 >30 30 30
2 < 30 dy dy
2 >30 <30 30 d2
>30 >30 30 30

3
<

A

M NN N NN

th
B

If includeLastDay is true, add 1 to the calculated term in days.

3.42 DayBasisActual

The actual date basis calculates day counts by simply counting the elapsed days
between the two dates.

3.42.1 Relationships

Class Description Notes
1 DayBasisModel §.37
1:Inherits

3.42.2 Operations

print(OutputStream stream) print
stream: OutputStream The stream to print onto.

Print the object. Add “Actual” to the output stream. If includeLastDay is true,
add a “+” to the output stream.

78

Integer terminDays(Date from, Date to) terminDays
from: Date The start date of the calculation.
to: Date The end date of the calculation.

Elapsed time in days between two dates.

The term in days is simply the actual number of days between the two dates. If
includeLastDay is true, add 1 to the calculated term in days.

3.43 DayBasisNL

The DayBasisNL class is essentially an actual day count, with the existence of leap
years ignored.

3.43.1 Relationships

Class Description Notes
1 DayBasisModel §.37
M:Inherits

3.43.2 Operations

print(OutputStream stream) print
stream: OutputStream The stream to print onto.

Print the object. Add “NL" to the output stream. If includeLastDay is true, add
a “+" to the output stream.

Integer terminDays(Date from, Date to) terminDays
from: Date The start date of the calculation.
to: Date The end date of the calculation.
Elapsed time in days between two dates.
If di, andy, are, respectively, the day of year and year numbers for the from
date andi,, andy- are, respectively, the day of year and year numbers for the to
date, then the term in days is given by:

365 % (y2 —y1) + (22 — 21)

wherez; andz, are defined by the following table:

79

month leap year?d z
1 d
2 <28 d
2 Y 29 d—1
> 2 N d
> 2 Y d—1

If includeLastDay is true, add 1 to the calculated term in days.

3.44 NullDateClassifierModel

This classifies all dates as business days.

3.44.1 Relationships

Class Description Notes
1T DateClassifier 8.3
1:Realizes

3.44.2 Operations

Boolean isHoliday(Date date, DateClassifier environment)

date: Date The date to test.

environment: DateClassifierThe set of date classifiers that may affect this
date classifier. The default value is this.

Date falls on a holiday? Return false.

Boolean isWeekend(Date date, DateClassifier environment)
date: Date The date to test.
environment: DateClassifierThe set of date classifiers that may affect this
date classifier. The default value is this.
Date falls on a weekend? Return false.

DateClassifier compose(DateClassifier arg)

arg: DateClassifier
Compose two date classifiers. Return arg.

80

isHoliday

isWeekend

compose

String identifier() identifier
Unique identifier. Return “Null”

Boolean precedes(DateClassifier other) precedes
other: DateClassifier The date classifier to compare this classifier against.
Compare two date classifiers for precedence. Return false.

DateClassifier union(DateClassifier arg) union
arg: DateClassifier
Create the union of two date classifiers. Return arg.

Boolean isSimple() isSimple
This is a simple date classifier? Return true.

DateClassifier predecessorsOf(DateClassifier test) predecessorsOf
test: DateClassifierThe date classifier to test against.
The predecessors of a date classifier. Return this classifier.

«Static Method» DateClassifier defaultinstance() defaultinstance
The default null date classifier. Return an instance of this class.

«Static Method» DateClassifier local() local

Local date classifier. Return the date classifier which encodes the holidays and
weekends of the location running the system.

3.45 NullDateRollerModel

A date roller that ignores business calendars.

3.45.1 Relationships

Class Description Notes
1T DateRoller 8.7
T:Realizes

3.45.2 Operations

Date roll(DateClassifier classifier, Date date, Date startDate, Date last-
Date) roll

81

classifier: DateClassifierThe classifier for determining whether this date
falls on an acceptable date.

date: Date The date to roll.

startDate: Date In the case of dates constructed by adding to another date,
the original date before any addition occurred. The default value is date.
lastDate: Dateln the case of dates constructed by adding a complex series
of elements to a start dates, last date refers to the date immediately prior to
this date being constructed. The default value is startDate.
Raises:ImmobileDateException

Roll the supplied date. Return date.

String identifier() identifier
The unique identifier. Return “Null”.

3.46 PeriodModel

A concrete implementation of the Period interface.

3.46.1 Relationships

Class Description Notes
+ Period .10
1 ldentifiable
| PeriodWithRollerModel §.47
U:Inherited byt:Realizes

3.46.2 Attributes

amount: Number The amount of the unit to add.
unit; PeriodUnit The time unit to add/subtract.

identifier: String The identifier for the period. In the case of anonymous periods,
this may be nil.

3.47 PeriodWithRollerModel

A period which consists of an amount of time to add to the date and a date rolling
convention to roll the resulting date to an acceptable date.

82

3.47.1 Relationships

Class Description Notes
1 PeriodModel 8.46
1T PeriodWithRoller .11
< DateRoller 8.7 roller 0..1 —
f:Inherits 1:Realizes <»:Association —:Navigable¢:Aggregate¢:Composite

3.47.2 Operations

Date applyTo(Date date, DateClassifier classifier) applyTo
date: Date

classifier: DateClassifier

Raises:ImmobileDateException

Apply this period to the supplied date. If there is an initial period, then ap-
ply the initial period todate to give date;, otherwisedate; = date. Add the
associated amount tfute; to give date,. If there is an associated roller, use the
associated roller to roWates, usingdate as the start date antlite; as the last
date, and return the resulting date.

3.48 PeriodReferenceDataModel

A wrapper for a period so that periods can be managed as reference data. All period
operations are passed through to the associated model.

3.48.1 Relationships

Class Description Notes
1+ ReferenceDataModel
1+ Period .10
< Period 2.10 model 1..1 —
f:Inherits 1:Realizes <»:Association —:Navigable¢:Aggregate¢:Composite

3.49 PeriodUnitModel

A concrete realization of the PeriodUnit interface. This class is an abstract class;
subclasses provide implementation behavior.

83

3.49.1 Relationships

Class Description Notes
1T PeriodUnit 8.12

| CalendarDayPeriodUnitModeRB&1
I NonWeekendDayPeriodUnit-

Model 83.53

|l BusinessDayPeriodUnitModeB&0
| WeekPeriodUnitModel 855
U
4
U
Y-

MonthPeriodUnitModel §.52

YearPeriodUnitModel 8.56

QuarterPeriodUnitModel 354
Inherited byt:Realizes

3.50 BusinessDayPeriodUnitModel

A period unit in terms of business days.

3.50.1 Relationships

Class Description Notes
1+ PeriodUnitModel 8.49
M:Inherits

3.51 CalendarDayPeriodUnitModel

A period unit in terms of days, without reference to holidays or weekends.

3.51.1 Relationships

Class Description Notes
1+ PeriodUnitModel 8.49
1:Inherits

3.52 MonthPeriodUnitModel

A period unit in terms of calendar months.

84

3.52.1 Relationships

Class Description Notes
1+ PeriodUnitModel 8.49
M:Inherits

3.53 NonWeekendDayPeriodUnitModel

A period unit in terms of non-weekend days.
Deals involving USD or CAD have different spot date rules. The USD spot
date is two non-weekend days after the trade date.

3.53.1 Relationships

Class Description Notes
1+ PeriodUnitModel 8.49
M:Inherits

3.54 QuarterPeriodUnitModel

A period unit in terms of calendar quarters. Quarters are assumed to be 3 months
in length, with the first quarter being January to March and the last quarter being
October to December.

3.54.1 Relationships

Class Description Notes
1+ PeriodUnitModel 8.49
1:Inherits

3.55 WeekPeriodUnitModel

A period unit of weeks. Weeks are assumed to be 7 days in length, with the first
day being Monday and the last day being Sunday.

3.55.1 Relationships

Class Description Notes
1+ PeriodUnitModel 8.49
1:Inherits

85

3.56 YearPeriodUnitModel

A period unit in terms of calendar years.

3.56.1 Relationships

Class Description Notes
1+ PeriodUnitModel 8.49
M:Inherits

3.57 RepeatedPeriodModel

A concrete model for the RepeatedPeriod interface. Subclasses of this model allow

the creation of the associated sequence of dates.

3.57.1 Relationships

Class Description Notes
RepeatedPeriod2813

7
|l RepeatedPeriodBasicMode3.§8
|l RepeatedPeriodEndModeB &9
“
“~
U:

DateRoller .7 roller 0..1 —
PeriodUnit .12 units 1..1 —

Inherited byt:Realizes <»:Association —:Navigable®:Aggregate¢:Composite

3.57.2 Attributes

isChained: Boolean = falseChain the dates together when creating this period?

sizeOfRollPeriod: Integer =1 The amount of the associated period unit to add
to a date for each step of the repeated period. For example if the period is 1
month and the sizeOfRollPeriod = 2 then each roll will add 2 months to the

date.

identifier. String The unique identifier for the repeated period. This attribute

may be nil for anonymous periods.

stopDate: Date The end date for this period.

86

3.58 RepeatedPeriodBasicModel

This is a repeated period where a sequence of dates is generated by a repeated
application of the roll period. The roll period is given by multiplying the period

unit by the 'sizeOfRollPeriod’ attribute. The number of applications is given by
the 'numberOfRollPeriods’ attribute.

3.58.1 Relationships

Class Description Notes
{1 RepeatedPeriodModeB&H7
M:Inherits

3.58.2 Attributes

numberOfRollPeriods: Integer =0 The number of periods that make up this re-
peated period. For example. Period = 1 Month. sizeOfRollPeriod = 2 (2
months/roll). numberOfRollPeriods = 3 (roll 3 times).

3.58.3 Operations

Collection<Date> dates(Date date, DateClassifier classifier) dates
date: Date The date to start the repeated period at.

classifier: DateClassifierThe date classifier for date rolling.
Raises:ImmobileDateException

Returns a sorted collection of dates that represents the application of this re-
peated period to an initial date.

Let {dy,...,d,} be the sequence of dates generated. In all céges, date.
Using the notationl + n - u for the application of units of period unit: to date
d then:

If the repeated period is chained, then

d; = di_1 4 sizeO f Roll Period - unit
If the repeated period is not chained, then

d; = do + (sizeO f Roll Period X i) - unit

87

For example, a chained roller:

period = 1 Month

sizeOfRollPeriod = 2
numberOfRollPeriods = 3

Unchained:

do
dy
do
ds3

Duplicate dates are reduced to singlefoni§ d, > d,, then a single datei,,,

is returned.

Date stopDate()

stopDate = startDate+ numberO f Roll Periods [timessizeO f Roll Period

do
dy
da
ds3

= StartDate

StartDate + (1M x 2) roll
di + (1M x 2) roll

= do+ (1M x 2) roll

StartDate

StartDate + (1 x (1M x 2)) roll
StartDate + (2 x (1M x 2)) roll
StartDate + (3 x (1M x 2)) roll

3.59 RepeatedPeriodEndModel

A repeated period with an explicit end point. The dates associated with this period
are generated until the end point has been reached. Subclasses define the way that
the end date is derived.

'Duplicate dates are possible where rolling conventions force several dates to the same date. eg.
Friday is a US holiday. a USD deal done in Australia on Thursday or Friday have spot on following

Tuesday.

88

3.59.1 Relationships

Class Description Notes
1 RepeatedPeriodModeB&7
| RepeatedPeriodEndDateModd&.€0
|l RepeatedPeriodEndPeriod-
Model §3.61
1r:Inherits|}:Inherited by

3.59.2 Operations

Collection<Date> dates(Date date, DateClassifier classifier) dates
date: Date The date to start the repeated period at.

classifier: DateClassifierThe date classifier for date rolling.
Raises:ImmobileDateException

Returns a sorted collection of dates that represents the application of this re-
peated period to an initial date.
Let {do,...,d,} be the sequence of dates generated. In all cdges, date.
The end date],, is given by the end date provided by the applyTo() operation.
Using the notationl + i - u, for the application of units of period unit, to date
d then:
If the repeated period is chained, then the ddtes. ., d,,_1 are generated by:

d; = di_1 4 sizeO f Roll Period - unit

If the repeated period is not chained, then the détes. ., d,,_, are generated

by:
d; = do + (sizeO f Roll Period X i) - unit

Duplicate dates are reduced to singlefons

In both casesd,, 1 is the last date generated befakgis reached or passed. If
dy > d, then a single datel,,, is returned.

It is possible to have a partial period at the end of the sequence.

Date stopDate(Date date, DateClassifier classifier) stopDate
date: Date

classifier: DateClassifier

Raises:ImmobileDateException

%Duplicate dates are possible where rolling conventions force several dates to the same date.

89

Apply this period to the supplied date. This operation must be explicitly im-
plemented by subclasses, as it is used to provide the stop point for the period.

3.60 RepeatedPeriodEndDateModel

A repeated period where the end date is explicitly fixed.

3.60.1 Relationships

Class Description Notes
1+ RepeatedPeriodEndModeB &9
1:Inherits

3.60.2 Operations

Date stopDate(DateClassifier classifier) stopDate
classifier: DateClassifier

The end date for the period. Return the stopDate.

3.61 RepeatedPeriodEndPeriodModel

A repeated period where the final date is determined by adding a period unrelated
to the repeated period to the start date.

3.61.1 Relationships

Class Description Notes
1 RepeatedPeriodEndModeB &9
< Period .10 endPeriod —
f:Inherits «»:Association —:Navigable:Aggregate¢:Composite

3.61.2 Operations

Date stopDate(Date date, DateClassifier classifier) stopDate
date: Date

classifier: DateClassifier

Raises:ImmobileDateException

90

Return the result of applying the associated stop period to the supplied date.
stopDate = startDate + stopPeriod.

3.62 RepeatedPeriodReferenceDataModel

A wrapper for a repeated period model so that repeated periods can be managed
as pieces of reference data. All operations of the period unit interface are imple-
mented by delegating to the associated model.

3.62.1 Relationships

Class Description Notes
1+ ReferenceDataModel
1T RepeatedPeriod2§13
+» RepeatedPeriod2g13 model 1..1 —
f:Inherits 1:Realizes <»:Association —:Navigable¢:Aggregate¢:Composite

3.63 SimpleDateClassifierModel

An abstract class for grouping simple holiday specifications (ie: those not invlolv-
ing union or composition) together.

3.63.1 Relationships

Class Description Notes
SimpleDateClassifierg4

DateClassifierHolidayArbitrary-

Model §3.64

DateClassifierHolidayRegular-

Model 83.65

DateClassifierHolidayRelative-

Model §3.66

+» SimpleDateClassifierg4 predecessors 0..n —
U:Inherited byt:Realizes <:Association —:Navigable¢:Aggregate¢:Composite

= = =

3.63.2 Attributes

weekendFlag: Boolean True if this is a weekend definition, rather than a holi-
day.

91

identifier: String The identifier for this holiday. This may be nil in the case of a
anonymous holiday definition.

3.63.3 Operations

Date nthClosestHolidayTo(Date date, DateClassifier environment, Inte-

gern) nthClosestHoli-
date: Date The reference date for computing the target. dayTo
environment: DateClassifierThe set of potentially clashing holidays within

a location.

n. Integer The nth closest holiday. This number is signed. Positiviedi-

cates that you are looking for the nth closest holidgyer a date. Negative

n indicates that you are looking for the nth closest holidagore a date.

The nth closest holiday to the date, aDate. Implemented by subclasses.

Boolean precedes(DateClassifier argDateClassifier) precedes
argDateClassifier: DateClassifierThe date classifier to compare this clas-
sifier against.

Compare two date classifiers for precedence. If the argDateClassifier is not a
SimpleDateClassifier then return false.

Each date classifier holds a collection of date classifiers that take precedence
over it. This is a collection of predecessors. Each date classifier within the prede-
cessors collection may have their own predecessors and each of these date classi-
fiers may have their own predecessors and so on. The closure of all predecessors is
the union of these predecessors, and their predecessors, etc....

To establish whether this date classifier has precedence over the argDateClas-
sifier, hence returning true, both must be SimpleDateClassifiers and this date clas-
sifier must appear in the closure of predecessors of the argDateClassifier.

DateClassifier predecessorsOf(DateClassifier argDateClassifier) predecessorsOf
argDateClassifier: DateClassifierThe date classifier to test against.

The predecessors of a date classifier. If this classifier precedes the argDate-
Classifier, as defined by the precedes() operation, return this classifier. Otherwise
return an instance of the NullDateClassifierMod&|4!

«Static Method» DateClassifier local() local

Local date classifier. Return the date classifier which encodes the holidays and
weekends of the location running the system.

92

3.64 DateClassifierHolidayArbitraryModel

The DateClassifierHolidayArbitraryModel class can be used to model holidays that
follow no simple rule or are essentially arbitrary. These holidays usually occur
annually but the date may change from year to year. Hence, the easiest approach is
to manually enter the date for the holiday, when known.

For example, the date that Easter Sunday falls upon is based upon the equinoxes
and the phase of the moon, as well as an official church calendar. Thus, for 2000,
Easter Sunday falls on 23rd April.

3.64.1 Relationships

Class Description Notes
1+ SimpleDateClassifierModel3§63
1:Inherits

3.64.2 Attributes

dates: Collection<Date> The dates on which the holidays fall.

3.64.3 Operations

Date nthClosestHolidayTo(Date date, Integer n, DateClassifier environ-

ment) nthClosestHoli-
date: Date The reference date for computing where the holiday is. dayTo

n: Integer The nth closest holiday. This number is signed. Positiwedi-

cates that you are looking for the nth closest holiddyer a date. Negative

n indicates that you are looking for the nth closest holidajore a date.

environment: DateClassifierThe set of potentially clashing holidays within

a location.

The date that this holiday falls upon.

First find the start and end points of the period that date falls within, using the
period attribute. The start and end points are calculated by overlapping the period
that date falls within and the preceeding and following perfds.

If there are no associated holiday dates within this period, then return nil. If
these is a single associated holiday date in this period then return that date. If
there is more than one holiday date between the start and end dates then the closest

3 See DateClassifierHolidayRegularMod@&l&5for a discussion of this “feature”.

93

holiday date to the supplied date is returned; if two dates are equidistant, then the
earlier holiday date is returned.

Boolean isWeekend(Date date) isWeekend
date: Date The date to test.

Date falls on a weekend? Return true if weekendFlag() is true and the argument
date is contained in the dates collection.

Boolean isHoliday(Date date) isHoliday
date: Date The date to test.

Date falls on a holiday?

Return true if weekendFlag() is false and the argument date is in the dates col-
lection.

3.65 DateClassifierHolidayRegularModel

A regularly recurring holiday. That is a holiday that falls upon a given date reg-
ularly (usually annually). For example Christmas day is the 25th of December of
each year. These holidays usually occur once a year. This model, however, allows
arbitrary periods over which the holiday can occur. Thus a holiday can be modelled
in terms of day and month, and recur according to the associated period.

Once the period within which the date falls has been identified, the date is then
rolled to the correct position. Composite rollers may be required (eg. Christmas
may be modeled by first taking the date to the 12th month and then the 25th day
within that month.)

The date you are finding is calculated by taking thesestdate to the test
date. This convention may mean that the date you are finding and the test date may
fall into different periods. Using the closest date allows sensible behaviour for
the DateClassifierHolidayRelativeModeB.&6 model where relative holidays can
cross period boundaries. For example, the new year is the first of January in a year.
New year’s eve is the preceding 31st of December. If the new year is defined as a
day after New Years Eve, then the new year for 2-Jan-2005 should be 1-Jan-2005.
However, without the closest date formulation, the target New Years Eve will be
31-Dec-2005 and the new year 1-Jan-2006.

94

3.65.1 Relationships

Class Description Notes
1+ SimpleDateClassifierModel3863
+ DateRoller .7 position 1..1 —
f:Inherits «»:Association —:Navigable:Aggregate¢:Composite

3.65.2 Attributes

period: Period The period over which the holiday repeats

3.65.3 Operations

Date nthClosestHolidayTo(Date date, DateClassifier environment) nthClosestHoli-
date: Date The date to test. dayTo
environment: DateClassifierThe set of potentially clashing holidays.

Determine the date for the holiday, and if one exists on the date passed in,
return true.

Let e = environment.predecessorsOf(this). Take the date and move it to
the first day of period. Then use the associated position date roller to move the date
to the correct position, usingand the date, start date and last date set to the start
of the period. The resulting dateds.

Apply the process in the above paragraph to a date created by subtracting and
adding the period to the date, giviag andd., .

Return the closest ofd_, dy,d} to date. If two dates are equidistant then
returnd.

As an example, let the supplied date be 2-Jan-2003 and the target date defined
as the 31st of October of each yeal = 31-Oct-2003,d_ = 31-Oct-2002 and
d4 = 31-Oct-2004. The closest date to 2-Jan-2008_iswhich is the returned
target date.

3.66 DateClassifierHolidayRelativeModel

A holiday that is relative to another holiday in terms of some period of time (the
offset). For example, Good Friday falls on the Friday before the Easter holiday.

95

3.66.1 Relationships

Class Description Notes
1+ SimpleDateClassifierModel3863
+ SimpleDateClassifierg4 reference holi- —
day 1..1
+ DateRoller 8.7 roller 0..1 —
f:Inherits «»:Association —:Navigable:Aggregate¢:Composite

3.66.2 Attributes

offset: Period The amount to move the holiday (forwards or backwards) from the
reference holiday.

3.66.3 Operations

Boolean precedes(DateClassifier other) precedes
other: DateClassifier The date classifier to compare this classifier against.

Compare two date classifiers for precedence. As well as the precedence rules
of the super class, the reference holiday (and, transitively, anything that precedes
the reference holiday) also precedes this classifier.

Boolean isHoliday(Date aDate) isHoliday
aDate: DateThe date to test for being a holiday
Returns true if the date passed in, aDate, is found to be a holiday.
This could be implemented as follows
n=1
while(true) { Holiday testHoliday;
testHoliday = this.reference.nthClosestHolidayTo(aDate, n) + this.offset();
if (testHoliday = aDate) {return (true) }
else if (testHoliday < aDate)
{return (false) };

n=mn-+1;

h

Date nthClosestHolidayTo(Date aDate, DateClassifier environment, In-

teger n) nthClosestHoli-
aDate: DateThe date from which the closest holiday will be found. dayTo

96

environment: DateClassifierThe set of potentially clashing holidays within
a location.
n: Integer The nth closest holiday to be found.

Find the nth closest holiday to the date passed in.

Use the supplied date, aDate, to compute the date for the reference holiday (us-
ing theenvironment to account for clashing holidays). Add the amount given by
the offset and roll the resulting date by the associated roller, usingutheonment
again, to roll for clashing holidays.

3.67 YearBasisModel

The YearBasisModel provides an abstract superclass for the various year conven-
tions.

3.67.1 Relationships

Class Description Notes
YearBasis 8.14
YearModelActual 8.70
YearModel360 8.68
YearModel365 8.69
:Inherited byt:Realizes

cleese—

3.68 YearModel360

The 360 date basis assumes that a year has 360 days in it, irrespective of reality.

3.68.1 Relationships

Class Description Notes
1+ YearBasisModel 8.67
M:Inherits

3.68.2 Operations

print(OutputStream stream) print
stream: OutputStream The stream to print onto.

Print the object. Add “360” to the output stream.

97

Double termIinYears(Date from, Date to, DayBasis basis) terminYears
from: Date The start date of the calculation.
to: Date The end date of the calculation.
basis: DayBasisThe day count convention to use.
Elapsed time in years between two dates.
The term in years can be calculated by dividing the term in days given by the
day basis and the two dates by 360.

3.69 YearModel365

The 365 year count assumes that a year has 365 days in it, even if a year has a leap
year.

3.69.1 Relationships

Class Description Notes
1+ YearBasisModel 8.67
1:Inherits

3.69.2 Operations

print(OutputStream stream) print
stream: OutputStream The stream to print onto.

Print the object. Add “365” to the output stream.

Double terminYears(Date from, Date to, DayBasis basis) terminYears
from: Date The start date of the calculation.
to: Date The end date of the calculation.
basis: DayBasisThe day count convention to use.
Elapsed time in years between two dates.
The term in years can be calculated by dividing the term in days given by the
day basis and the two dates by 365.

3.70 YearModelActual

The YearModelActual performs year calculations based on an actual year length.

98

3.70.1 Relationships

Class Description Notes
1+ YearBasisModel 8.67
M:Inherits

3.70.2 Operations

print(OutputStream stream) print
stream: OutputStream The stream to print onto.

Print the object. Add “Actual” to the output stream.

Double terminYears(Date from, Date to, DayBasis basis) terminYears

from: Date The start date of the calculation.
to: Date The end date of the calculation.
basis: DayBasisThe day count convention to use.

Elapsed time in years between two dates.

The term in years needs to be calculated on a year-by-year basis, to allow for
variations in the year length.

If the two dates run from yean to yearn, with the year length of yearbeing
l;, the calendar start date of yeaseings; and the term in days between two dates,
d1 andd, (under the supplied day count basis) being denoted,by d; then the
term in years is given by:

ifm=n (to— from)/ln,
otherwise (s; 41 — from)/ly, + (to — sp)/ly, + E?:_T}H_l(siﬂ —38:)/l;

There is a complexity when calculating terms with some 30-day day bases and
an Actual year basis. If a date falls on the end of a month, 30-day date bases
usually adjust the number of days in the month according to a complex convention
involving both the from and to dates in an asymmetrical manner. Applied strictly,
the above formula will not reflect this adjustment when summing year segments,
as the date at the start of the year will not cause the correct adjustments to occur.

As an example, consider the term calculated by a 30/Actual date basis from
31-Dec-1996 to 31-Dec-1997. The day count calculated by the 30 day basis is 360.
However, the day count calculated from 31-Dec-1996 to 1-Jan-1997 is 1, and the
day count from 31-Jan-1997 is 360, giving a discrepancy of 1 day.

If the sequence of year segments sums to a day count different to the directly
calculated day count, then the final segment is adjusted to reflect the difference
between the summed and directly calculated day counts. In the above example, the
segment from 1-Jan-1997 to 31-Dec-1997 would be adjusted to be 359 days.

99

4 Exceptions

4.1 DateArithmeticException

The DateArithmeticException is raised when a piece of date arithmetic produces
an illegal value.

4.1.1 Operations

Date date() date
Target date. Return the date that was having the date arithmetic applied to it.

Object arg() arg
The argument. Return the argument that was being applied to the date.

4.2 ImmobileDateException

The Immobile date exception is raised if it is not possible to roll a date onto a
business or non-weekend day for some reason.

4.2.1 Operations

Date date() date
The immobile date.

DateRoller roller() roller
The rolling convention. Return the date roller that was attempting to move the
date.

DateClassifier classifier() classifier

The date classifier. Return the date classifier that was being used to classify the
date.

100

5 Enumerations

5.1 DateDirectionEnum

An enumeration listing the direction to move when finding a position from an as-
sociated period.

5.1.1 Relationships

Class Description Notes
1+ Enum
1:Inherits

5.1.2 Operations

«Static Method» DateDirectionUnum forwards() forwards
Returns a unique instance with a name of "forwards".

«Static Method» DateDirectionEnum backwards() backwards
Returns a unique instance with a nmae of "backwards".

Collection elements() elements
Returns an ordered collection with elements returned from forwards and back-
wards.

5.2 DayOfWeekEnum

An enumeration of the days of the week. The days of the week start on Monday
and end on Sundag]

English is used to name the elements of this enumeration. These names are
used for programming purposes only. The DateForn2ab iterface describes
how to translate these elements into another language.

5.2.1 Relationships

Class Description Notes
1+ OrderedEnum
M:Inherits

101

5.2.2 Operations

«Static Method» DayOfWeekEnum monday() monday
Return a unique instance with a name of “Monday” and an order of 1.

«Static Method» DayOfWeekEnum tuesday() tuesday
Return a unique instance with a name of “Tuesday” and an order of 2.

«Static Method» DayOfWeekEnum wednesday() wednesday
Return a unique instance with a name of “Wednesday” and an order of 3.

«Static Method» DayOfWeekEnum thursday() thursday
Return a unique instance with a name of “Thursday” and an order of 4.

«Static Method» DayOfWeekEnum friday() friday
Return a unique instance with a name of “Friday” and an order of 5.

«Static Method» DayOfWeekEnum saturday() saturday
Return a unique instance with a name of “Saturday” and an order of 6.

«Static Method» DayOfWeekEnum sunday() sunday
Return a unique instance with a name of “Sunday” and an order of 7.

«Static Method» Collection<Enum> elements() elements
Return an ordered collection of the instances returned from the monday(), tues-
day(), wednesday(), thursday() friday(), saturday() and sunday() operations.

Integer isoNumber() isoNumber
The number of the day of the week, using the ISO conventidhseturn the
order attribute.

«Static Method» DayOfWeekEnum fromlsoNumber(Integer dayOfWeek)
fromlsoNumber
dayOfWeek: Integer The numeric day of the week.
Raises:EnumOutOfRangeException
Return the enumeration instance that has the same order as the dayOfWeek ar-
gument. If there is no such instance then raise a EnumOutOfRangeException.

102

5.3 EraEnum

An enumeration for the possible eras.

English is used to name the elements of this enumeration. These names are
used for programming purposes only. The DateForn2ab iterface describes
how to translate these elements into another language.

5.3.1 Relationships

Class Description Notes
1+ OrderedEnum
1:Inherits

5.3.2 Operations

«Static Method» EraEnum before() before
Return an era with a name of “before” and an order of 1.

«Static Method» EraEnum after() after
Return an era with a name of “after” and an order of 2.

«Static Method» Collection<Enum> elements() elements
Return an ordered collection of the instances returned from the before() and
after() operations.

5.4 MonthEnum

An enumeration listing the months of the year.

English is used to name the elements of this enumeration. These names are
used for programming purposes only. The DateForn2ab iterface describes
how to translate these elements into another language.

5.4.1 Relationships

Class Description Notes
1+ OrderedEnum
1:Inherits

103

5.4.2 Operations

«Static Method» MonthEnum january()
Return a unique instance with a name of “january” and an order of 1.

«Static Method» MonthEnum february()
Return a unique instance with a name of “february” and an order of 2.

«Static Method» MonthEnum march()
Return a unique instance with a name of “march” and an order of 3.

«Static Method» MonthEnum april()
Return a unique instance with a name of “april” and an order of 4.

«Static Method» MonthEnum may()
Return a unique instance with a name of “may” and an order of 5.

«Static Method» MonthEnum june()
Return a unique instance with a name of “june” and an order of 6.

«Static Method» MonthEnum july()
Return a unique instance with a name of “july” and an order of 7.

«Static Method» MonthEnum august()
Return a unique instance with a name of “august” and an order of 8.

«Static Method» MonthEnum september()
Return a unique instance with a name of “september” and an order of 9.

«Static Method» MonthEnum october()
Return a unique instance with a name of “october” and an order of 10.

«Static Method» MonthEnum november()
Return a unique instance with a name of “november” and an order of 11.

«Static Method» MonthEnum december()
Return a unique instance with a name of “december” and an order of 12.

«Static Method» Collection<Enum> elements()

104

january

february

march

april

may

june

july

august

september

october

november

december

elements

Return an ordered collection of the instances returned from the january(), febru-
ary(), march(), april(), may(), june(), july(), august(), september(), october(), novem-
ber() and december() operations.

Integer monthNumber() monthNumber
The number of the month from the start of the year. Return the order attribute.

«Static Method» MonthEnum fromMonthNumber(Integer month) fromMonth-
month: Integer The numeric month number. Number
Raises: EnumOutOfRangeException

Return the enumeration instance that has the same order as the month argu-
ment. If there is no such instance then raise a EnumOutOfRangeException.

5.5 QuarterEnum

An enumeration for the quarters within a year.

English is used to name the elements of this enumeration. These names are
used for programming purposes only. The DateForn2ab iterface describes
how to translate these elements into another language.

5.5.1 Relationships

Class Description Notes
1+ OrderedEnum
1:Inherits

5.5.2 Operations

«Static Method» QuarterEnum firstQuarter() firstQuarter
Return an instance with a name of “first” and an order of 1.

«Static Method» QuarterEnum secondQuarter() secondQuarter
Return an instance with a name of “second” and an order of 2.

«Static Method» QuarterEnum thirdQuater() thirdQuater
Return an instance with a name of “third” and an order of 3.

«Static Method» QuarterEnum fourthQuarter() fourthQuarter

105

Return an instance with a name of “fourth” and an order of 4.
«Static Method» Collection<Enum> elements() elements

Return an ordered collection of the instances returned from the firstQuarter(),
secondQuarter(), thirdQuarter() and fourthQuarter() operations.

6 Associations

Table 6: Dates— Associations

Association
Role Class Card. Notes
model
model DateFormat&5 1.1 —
reference data DateFormatReferenceData- 0..1
Model 83.16
model
model DateRollerProgran2& 1.1 —
reference data DateRollerReferenceDataMo@B& 0..1
model
DateRoller 8.7 1.1 —
DateRollerReferenceDataMode3.86 0..1
within
PeriodUnit .12 0..x —
DatePositionModel .18 1.1
program
Function 1.1 —
DateRollerProgramModel%&35 0.*
unit
unit PeriodUnit .12 1.1 —
period PeriodModelUnit 0..n
initial
initial period Period 8.10 0.1 —
period PeriodModel .46 0..n
model
model Period 8.10 1.1 —
reference data PeriodReferenceDataMo@e4§ 0..1
model

106

Table 6: ... continued

Association
Role Class Card. Notes
Period 2.10 1.1 —
PeriodReferenceDataModeB 88 0.1
roller
DateRoller 8.7 0.1 —
PeriodWithRollerModel §.47 0..n
model
model PeriodUnit 8.12 1.1 —
reference data PeriodUnitReferenceDataModel 0.1
stopPeriod
stop Period 8.10 1.1 —
repeated period RepeatedPeriodModelEndedPeriod 0..n
unit
unit PeriodUnit .12 1.1 —
repeated period RepeatedPeriodMod2bg 0..n
model
model RepeatedPerio® 8.3 1.1 —
reference data RepeatedPeriodReferenceData- 0..n
Model §3.62
model
RepeatedPeriod2§13 1.1 —
RepeatedPeriodReferenceData- 0..n
Model §3.62
reference holiday
reference TargetedDateClassifier 1..1—
tied holiday DateClassifierHolidayModelRelative 0..n
precedence
predecessors TargetedDateClassifier 0..n~
successor TargetedDateClassifierModel 0..n
model
DateClassifier 8.3 1.1 —
DateClassifierReferenceData- 0.1
Model 8.2
predecessors
SimpleDateClassifierg4 on -
SimpleDateClassifierModel3863 0..n

reference holiday

107

Table 6: ... continued

Association
Role Class Card. Notes
SimpleDateClassifierg4 1.1 —
DateClassifierHolidayRelative- 1.1
Model §3.66
roller
DateRoller .7 0.1 —
DateClassifierHolidayRelative- 0..n
Model §3.66
position
DateRoller .7 1.1 —
DateClassifierHolidayRegular- 0..n
Model 83.65
components
DateClassifier 8.3 0.n —
DateClassifierUnionModel$3 0..n
roller
DateRoller .7 0.1 —
RepeatedPeriodModeB&7 0..n
units
PeriodUnit .12 1.1 —
RepeatedPeriodModeB&7 0..n
endPeriod
Period .10 —
RepeatedPeriodEndPeriod-
Model 83.61
—:Navigable¢:Aggregate¢:Composite
6.1 model

Role: model NavigableDateFormat, 1..1.

Role: reference data DateFormatReferenceDataModel, 0..1.

The model wrapped by the reference data object.

6.2 model

Role: model NavigableDateRollerProgram, 1..1.

Role: reference data DateRollerReferenceDataModel, O..1.

The wrapped date roller model.

108

6.3 model

Role: NavigableDateRoller, 1..1.

Role: DateRollerReferenceDataModel, 0..1.
6.4 within

Role: NavigablePeriodUnit, 0..*.

Role: DatePositionModel, 1..1.

6.5 program

Role: NavigableFunction, 1..1.
Role: DateRollerProgramModel, 0..*.

The program which, when evaluated, derives the new date. The function that
this date roller is associated with must accept the correct 5 arguments.

6.6 unit

Role: unit NavigablePeriodUnit, 1..1.
Role: period PeriodModelUnit, O..n.
The unit of period to add.

6.7 initial

Role: initial period NavigablePeriod, 0..1.
Role: period PeriodModel, 0..n.
An initial period to add to a date before the period proper is added.

6.8 model

Role: model NavigablePeriod, 1..1.
Role: reference data PeriodReferenceDataModel, O..1.
The period that is being modeled.

6.9 model

Role: NavigablePeriod, 1..1.
Role: PeriodReferenceDataModel, 0..1.
The period that is being modeled.

109

6.10 roller

Role: NavigableDateRoller, 0..1.
Role: PeriodWithRollerModel, 0..n.
The date rolling convention to apply to the period.

6.11 model

Role: model NavigablePeriodUnit, 1..1.
Role: reference data PeriodUnitReferenceDataModel, 0..1.
The underlying model for the reference data.

6.12 stopPeriod

Role: stop NavigablePeriod, 1..1.
Role: repeated period RepeatedPeriodModelEndedPeriod, 0..n.
The period over which the repeated period is to run.

6.13 unit

Role: unit NavigablePeriodUnit, 1..1.
Role: repeated period RepeatedPeriodModel, 0..n.
The unit that the repeated period is expressed in.

6.14 model

Role: model NavigableRepeatedPeriod, 1..1.
Role: reference data RepeatedPeriodReferenceDataModel, 0..n.
The mode that this piece of reference data is a wrapper for.

6.15 model

Role: NavigableRepeatedPeriod, 1..1.
Role: RepeatedPeriodReferenceDataModel, 0..n.
The mode that this piece of reference data is a wrapper for.

6.16 reference holiday

Role: reference NavigableTargetedDateClassifier, 1..1.
Role: tied holiday DateClassifierHolidayModelRelative, 0..n.
The reference holiday that this holiday moves from.

110

6.17 precedence

Role: predecessorsNavigableTargetedDateClassifier, 0..n.
Role: successorTargetedDateClassifierModel, 0..n.
The date classifiers that precede this date classifier.

6.18 model

Role: NavigableDateClassifier, 1..1.
Role: DateClassifierReferenceDataModel, 0..1.
The wrapped model for the reference data.

6.19 predecessors

Role: NavigableSimpleDateClassifier, 0..n.
Role: SimpleDateClassifierModel, 0..n.

The date classifiers that precede this date classifier.

Thatis, if two holidays fall on the same day, and one is more important than the
other, then this would mean that the less important holiday would roll to another
day, according to some business rule. Thus, for a given holiday, the precedence is
a collection of all the holidays that are more important than it. Also, note that each
of these predecessors may have their own collection of predecessors.

6.20 reference holiday

Role: NavigableSimpleDateClassifier, 1..1.
Role: DateClassifierHolidayRelativeModel, 1..1.
The reference holiday that this holiday moves from.

6.21 roller

Role: NavigableDateRoller, 0..1.
Role: DateClassifierHolidayRelativeModel, 0..n.
The roller to use when moving the target date.

6.22 position

Role: NavigableDateRoller, 1..1.
Role: DateClassifierHolidayRegularModel, 0..n.

The date roller that forces a date to a position within the period (ie, the day
within the period).

111

6.23 components

Role: NavigableDateClassifier, 0..n.
Role: DateClassifierUnionModel, 0..n.

The individual holidays, weekends and composites that make up a composite
classifier.

6.24 roller

Role: NavigableDateRoller, 0..1.
Role: RepeatedPeriodModel, 0..n.
6.25 units

Role: NavigablePeriodUnit, 1..1.
Role: RepeatedPeriodModel, 0..n.
6.26 endPeriod

Role: NavigablePeriod.
Role: RepeatedPeriodEndPeriodModel.
The end period to apply to the date.

112

<<Interface>> <<Interface>>
Datestamp ValueSemantics
(from Utilities) (from Utilities)

<<Interface>>
Date

)
nOrEqualTo()

2ar()
"eek()
)

)

art()
90
yLong()

inessDay()
sBusinessDay()
"WeekendDay()
sNonWeekendDay()
3usinessDay()
NonWeekendDay()
lonth()

rear()

ear()

DateModel

&dayOfyear: Integer
®&year : Integer

Figure 1: Class Diagram— Dates

113

|9 PO NNIUN PO1Id diduend

19PONHUNPOLB dXBBM

|apoANuNpoLId dAkeassauisng

13PO AHUN POLIS diBSA

13PONNUNPOUBUIUOIN

|apoNHUNPOLadAe gpua)aaMUON

I8PONHUNPOLI3 dhe arepusied

[apoNuNpouad

()polie dawesu|saie Qisaly,
()areapuag,

(sreqieisy
(Aegssauisngisely,
(Aegssauisngisiiy
(Ae@puaxae MuONISely
()Aeapuaxaa MUONISIly
()Aeqiepuajeisely
(AeqrepuajeDisiyy
(Jare@oLppey

nunpouad
<<ddeU3I>>

)

(senynn wouiy)
sonuewasanjean
<<3delaUI>>

Class Diagram— Period Units

Figure 2

114

[(SEENTTTIEN (sieaau|wily, [(ISEENVTIEN (shequiwialy, (shequiwialg,)sKe qujwisly
(wiidy (htidy, (iidy, (winidy (hiidy, (winidy
10 /|9PONIEDA Ieap 09€EISPONIBBA vsdogsisegheq 3oesisealeq ogsisegkeq

SIsegiea, @ sisegie akdg
sisegheq : siseghepdy

|apowsisegareq

[ISEENUTIEN
(sAequiwialy,
(sisegieaky
(siseakepy
Owiide
(srenbag,

sisegareq
<<30eIRUI>>

(steau|wiRly
Oindy

SIsegieaj
<<d'yAI>>

(sannn wouy)
sopuewasanep
<<adepaU>>

(sAequiwialy

Owiidg 1o'ASqY0ESIseghea

INSIsegheq

(skequiwialy
Owiidy

lemoysisegheq

asje) = uesjoog

[Aeaiseqapniouidg

18powsisegheq

OAeaisetapnouly
(sAequiwialg,
(wiidg,

sisegfea

<<aorpaI>>

Date Arithmetic (Date Bases)

iagram—

: Class Di

Figure 3

115

<<Interface>>
Ide ntifiable

(from Utilities)

<<Interface>>
DateFormat

*dayName()

*monthName()

SyearName()

%craName()
*format()
*printDate ()
*parseDate()
*parseDate()

*dayOfyearName()
*dayOfWeekName()
*ongDayOfWeekName()

%longMonthName()
%ongYearName()

ScenturyName()
*quarterName()

*parseDateStrictly()

ReferenceDataModel
(from Reference Data)

DateFormatReferenceDataModel

Walidate()

Validatable

(from Utilities)

model

DateFormatModel

&weekdaysShort : Dictionary<DayOfw eekEnum, String>
&weekdayslLong : Dictionary<DayOfW eekEnum, String>

®monthsShort : Dictionary<MonthEnum, String>
&monthsLong : Dictionary<MonthEnum, String>

&eras : Dictionary<EraEnum, String>

&quartersShort : Dictionary<QuarterEnum, String>
®quartersLong : Dictionary<QuarterEnum, String>

@ysuffixes : Dictionary<integer, String>
&defaultSuffix : String

&zeroFlag : Boolean

&identifier : String

&format : String

“validate ()

%<<Static Method>> local()
%<<Static Method>> localShort()
%<<Static Method>> localLong()
*<<Static Method>> localVeryLong()

Figure 4: Class Diagram— Date Printing

<<Interface>>
Ide ntifia ble
(from Utilities)

<<Interface>>
DateRoller

*0ll()

<<Interface>>
DateRollerProgram

*program()
*r0ll()

DateRollerProgramModel

®identifier : String

ReferenceDataModel
(fom Reference Data)

DateRollerReferenceDataModel

NullDateRollerModel

*roll()
*identifier()

“*program()

program

1.1

<<Interface>>
Function
(from Program)

Figure 5: Class Diagram— Date Rolling

117

8TT

so|dwex3 areq —weibelq sse|D :9 ainbi4

O

Simple Date Arithmetic

D

Day Count Conventions

O

Date Rolling Conventions

(8210)4

wnu3ueiend : Jsiien bag

|apoJauenduonisodarea

()9010}4,

wnu3ieaoAeq : Aeplg

|1apoNyeaMyOAe quonIsoderea

()221044,

19 PO AYuo NUohisodareq

()82.0}4,

JopoN@amuonisodalea

(221044,

|2 po NAe @gssaulsn guonisodareq

()220},

|9PONPUSNI 3 MUONUONISOdateq

(821044,

|9 po WA @lepud e Juonisodarea

junpouad

T

<<doeUa>>

uim

SpIemio]

1aBa : yudg

= wnu3uonoalgareq : uonoaliplg

18ponuonisodareq

018y visoly,
(2102 giSoly
(uOisaly
()a010}4,

uonisodareq
<<d9BUAIU>>

Figure 7: Class Diagram— Date Forcing

119

>

Date Rolling Example - Following

$

Date Rolling Example - Modified
Following

>

Date Rolling Example - FX
Following

Figure 8: Class Diagram— Date Rolling Examples

120

0ABQPU{03 I S31 <<POLIBIN OBEIS>>y
(saynuapy,
(un mainoaxay,

(Juonisodu 0ale aIsal <<poulan

eIS>>

19POWA® QPUB33 MUOMPUODBIEA

()12ynuaply,
(un manoaxay

|apououUoNIpU0 DaIea

(UONISO dIaNYaIL AIS3) <<PO LIS JNBIS>>g
(12unUaply,
Oui moinooxoy

(Juonisodaiojagare Qisa) <<poyian MBIS>>4
(13unuaply
Oy maInoaxay

13POI JaL Y UONIPUO D31E O

|apowaiojaguonIpu0 3led

()ke QSS3UISNEUONIS3I <<POUIDI JNBIS >>4,
(012unuaply,
(Jun mainooxa,

|9PONAR QS SaUISNEUONUONIPUO DBIEA

(OUUNPOLIEdBUISS 0101531 <<POLIAN INEIS>>4

()1aunuapiy,
Oun mainoaxay,

18P0 WUOIISO4UOLIPUO DBIEA 15pon ss0I0w0

uoo3eq

18P0 We dAL Aequoripuo Darea

(weibosg wos)
uonoaund waisks
<<doBpIRII>>

itions

Cond

imitive

-Pr

ing

Date Roll

iagram—

: Class Di

Figure 9

121

()o1A|dde

*
o
-
o

18jj04 818
12PO IO MPOLIBd 18)j01 <<@deUa>>

Buis : 1aynuapiy (1211014,

jnunpouad : jundg
2 qWINN : Junowedy J8jlodympouad
<<doepIBI>>

|apo Wpouad
19 PO INE} R 090U B1 9J0 4P OUdd N
T0 Tl
T (10enans,,
. (Jporebauy,
VAN (ppey
(hunouwey
Onung,
< Jeapow T
pouad
(e18@ 20UBIBJY WOY) SRS
[EL LT ERIVEIETEN]
(s woiy) (sar wouy)
sonuewasanjea a|qeynuapy
<<dJeldU>> <<dJBldIU>>

Periods

Figure 10: Class Diagram—
122

0002-292Q-2T
1un syjuswAed yuow € sijuswAed yuow auo XIS YIUOW 8uO X4 jods X4

o O O OO

Figure 11: Class Diagram— Period Examples

123

<<Interface>>
DateRoller

units

<<Interface>>
PeriodUnit 1.1

0.*

<<Interface >>
RepeatedPeriod

“stopDate()
“dates() i.1
%isChained()

ReferenceDataModel
(from Reference Data)

model

‘ RepeatedPeriodReferenceDataModel ‘
!

roller '
0.1 —
RepeatedPeriodModel

&isChained : Boolean = false

#yidentifier : String
#ystopDate : Date

#ysize OfRolIPeriod : Integer=1

B

RepeatedPeriodEndModel

*dates()
%stopDate()

A

RepeatedPeriodBasicModel

&numberOfRollPeriods : Integer

=0

*dates()
“*stopDate()

RepeatedPeriodEndDateModel

RepeatedPeriodEndPeriodModel

endP eriod

“*stopDate ()

%stopDate()

<<Interface>>
Period

Figure 12: Class Diagram— Repeated Periods

124

spuaxaam AeplloH uelueny

Aepuns pue Aepinies ‘AeplH

O

Spuay s M\ 8sauemie |

Aepinyes pue Aepu-

O

spuayaa ueishelep

Aepuns pue Aepinjes

O

Figure 13: Class Diagram— Weekend Examples

125

Christmas Easter (Western) Good Friday (Westem) Yom Kippur

Figure 14: Class Diagram— Holiday Examples

126

<<Interface>>
Identifiable
(from Utilities)

<<Interface>>
DateClassifier

%isHoliday()
Yisweekend()
“%isNonBusinessDay()
%isBusinessDay()
*isSimple()
*compose()
“*precedes()
“predecessorsOf()
Sunion()

NullDateClassifierM od el DateClassifierweekendModel
&weekendDays : Set<DayOfWeekEnum>
*isHoliday() &id entifier : String
*isw eekend ()
%compose () %isHoliday()
%identifier() %isW eekend ()
precedes() %isBasic()
“union() “compose()
*isSimple() *precedes()
*predecessorsOf() *predecessorsOf()
%< <Static Method>> defaultinstance () *union()
*<<Static Method>> local() *<<Static Method>> local()

Figure 15: Class Diagram— Date Classifiers (Null and Weekend)

127

<<Interface>>
DateClassifier

<<Interface>>
SimpleDateClassifier

*isweekend()
%isHoliday()
“*nthClosestHolidayTo()
“weekendFlag()
%isSimple()

1.1 | %compose()

“union()

0.*

predecessors

reference holiday

SimpleDateClassifierModel 0.*

&weekendFlag : Boolean
&identifier : String

#nthClosestHolidayTo()

%precedes()
*predecessorsOf()
%<<Static Method>> local()

<<Interface>>
DateRoller

B

1.1

roller

0.*

DateClassifierHolidayRelativeModel

DateClassifierHolidayRegularModel
#yoffset : Period

&period : Period

%precedes() #nthClosestHolidayTo()
%isHoliday() o
“#nthClosestHolidayTo () i
position
1

Date ClassifierHolidayArbitraryModel : 1<<|merface>>
&dates : Collection<Date> DateRoller

“nthClosestHolidayTo()
*isweekend()
“isHoliday()

Figure 16: Class Diagram— Date Classifier (Holidays)

128

(Jesodwoog,
(OKepioHsly
(Opuaxaamsly

|9pONEIe @92UBIa)aYyIalIsse|Daleq

(ere@ aoualajey wol)
|apoNelIe aouala)ay

|apoNaNsodwoDiayisse|Daleq

(1eo0] <<poyIB N ONBIS>>e
Quoiung
(}Osi0ssa0apaldy
()sepadaidy

(@sodwoog,

0o dwissly,

(AeplioHsly,

(0 puax aa MSle

Buin s :1aynua piag

1ay1sse|0aea
<<3ddelau>>

[PONUOIUNIBYISSBIDANET 4"

Figure 17: Class Diagram— Date Classifiers (Complex)

129

(181031 [||BO <<POYIBIN JNEIS>>4
()laynuaply
(uoulMaINoexay

(Juonisodo181e 8210} <<POUIBIN INEIS>>4
()1aynuaply
Oynmeinoexay

|12 po WBulje D190 Y3 eq

|apoBuioiodiaoyareq

(@re@oLpoliadppe <<pPoyidN JNBIS >>4

(43nuaply
Ounmainoaxag,

|13poNuonIppvIs|loyaieq

9P 0 WaA wiidisjjoMarea

(weiboid woy)
uonoun4walsAks
<<9deuaduI>>

Figure 18: Class Diagram— Date Rolling - Primitive Actions

130

()1aunuaply,

Onoly,

japoabueyox3ubialo4is|oyareq

Ololg
(0laynuaply,

|apolN BuipasdaldpalIpoNIaoyaleq

Onole
(1eynusply,

[opoBuimojo4paliponiajjoyaled

Onoig,
(1aynuaply,

|2 po NBulpadaldigjoyaled

Olloig

Jajj0oM91a
<<doep3U>>

Orolq,
()1aynuaply,

japo N Buimolo4isjjodareq

Figure 19: Class Diagram— Date Rolling - Standard Rollers

131

References

[1] Patrick J. BrownBond Markets: Structures and Yield Calculatiodgnacom,
1998.

[2] International Organization for Standardization (IS@ata Elements and In-
terchange Formats — Information Interchange — Representation of Dates and
Times number 1ISO 8601, 1988.
http://www.iso.ch/markete/8601.pdf

[3] Robert SteinerMastering Financial CalculationsPitman Publishing, 1998.

132

http://www.iso.ch/markete/8601.pdf

	Use Cases
	Simple Date Arithmetic
	Day Count Conventions
	Date Rolling Conventions
	Date Rolling Example - Modified Following
	Date Rolling Example - Following
	Date Rolling Example - FX Following
	FX Spot
	FX One Month
	Six one month payments
	3 month payments until 12-Dec-2000
	Saturday and Sunday
	Friday and Saturday
	Friday, Saturday and Sunday
	Malaysian Weekends
	Taiwanese Weekends
	Lithuanian Holiday Weekends
	Christmas
	Easter (Western)
	Good Friday (Western)
	Yom Kippur
	Independence Day
	Melbourne Cup Day
	Greenery Day
	New Year (Coptic)
	New Year (Chinese)
	Beltane
	Noruz
	Islamic Holidays

	Interfaces
	Date
	Relationships
	Operations

	DateBasis
	Relationships
	Operations

	DateClassifier
	Relationships
	Operations

	SimpleDateClassifier
	Relationships
	Operations

	DateFormat
	Relationships
	Operations

	DatePosition
	Relationships
	Operations

	DateRoller
	Relationships
	Operations

	DateRollerProgram
	Relationships
	Operations

	DayBasis
	Relationships
	Operations

	Period
	Relationships
	Operations

	PeriodWithRoller
	Relationships
	Operations

	PeriodUnit
	Relationships
	Operations

	RepeatedPeriod
	Relationships
	Operations

	YearBasis
	Relationships
	Operations

	Classes
	DateBasisModel
	Relationships
	Attributes

	DateClassifierReferenceDataModel
	Relationships

	DateClassifierUnionModel
	Relationships
	Attributes
	Operations

	DateClassifierCompositeModel
	Relationships
	Operations

	DateClassifierWeekendModel
	Relationships
	Attributes
	Operations

	DateConditionPrimitiveModel
	Relationships

	DateConditionCrossModel
	Relationships
	Operations

	DateConditionDayTypeModel
	Relationships

	DateConditionNonBusinessDayModel
	Relationships
	Operations

	DateConditionWeekendDayModel
	Relationships
	Operations

	DateConditionPositionModel
	Relationships

	DateConditionAfterModel
	Relationships
	Operations

	DateConditionBeforeModel
	Relationships
	Operations

	DateConditionOnModel
	Relationships
	Operations

	DateFormatModel
	Relationships
	Attributes
	Operations

	DateFormatReferenceDataModel
	Relationships
	Operations

	DateModel
	Relationships
	Attributes

	DatePositionModel
	Relationships
	Attributes

	DatePositionBusinessDayModel
	Relationships
	Operations

	DatePositionCalendarDayModel
	Relationships
	Operations

	DatePositionDayOfWeekModel
	Relationships
	Attributes
	Operations

	DatePositionMonthModel
	Relationships
	Operations

	DatePositionNonWeekendModel
	Relationships
	Operations

	DatePositionQuarterModel
	Relationships
	Attributes
	Operations

	DatePositionWeekModel
	Relationships
	Operations

	DateRollerFollowingModel
	Relationships
	Operations

	DateRollerForeignExchangeModel
	Relationships
	Operations

	DateRollerModifiedFollowingModel
	Relationships
	Operations

	DateRollerModifiedPreceedingModel
	Relationships
	Operations

	DateRollerPrecedingModel
	Relationships
	Operations

	DateRollerPrimitiveModel
	Relationships

	DateRollerAdditionModel
	Relationships
	Operations

	DateRollerCallingModel
	Relationships
	Operations

	DateRollerForcingModel
	Relationships
	Operations

	DateRollerProgramModel
	Relationships
	Attributes
	Operations

	DateRollerReferenceDataModel
	Relationships

	DayBasisModel
	Relationships
	Attributes

	DayBasis30Abstract
	Relationships

	DayBasis30
	Relationships
	Operations

	DayBasis30E
	Relationships
	Operations

	DayBasis30PSA
	Relationships
	Operations

	DayBasisActual
	Relationships
	Operations

	DayBasisNL
	Relationships
	Operations

	NullDateClassifierModel
	Relationships
	Operations

	NullDateRollerModel
	Relationships
	Operations

	PeriodModel
	Relationships
	Attributes

	PeriodWithRollerModel
	Relationships
	Operations

	PeriodReferenceDataModel
	Relationships

	PeriodUnitModel
	Relationships

	BusinessDayPeriodUnitModel
	Relationships

	CalendarDayPeriodUnitModel
	Relationships

	MonthPeriodUnitModel
	Relationships

	NonWeekendDayPeriodUnitModel
	Relationships

	QuarterPeriodUnitModel
	Relationships

	WeekPeriodUnitModel
	Relationships

	YearPeriodUnitModel
	Relationships

	RepeatedPeriodModel
	Relationships
	Attributes

	RepeatedPeriodBasicModel
	Relationships
	Attributes
	Operations

	RepeatedPeriodEndModel
	Relationships
	Operations

	RepeatedPeriodEndDateModel
	Relationships
	Operations

	RepeatedPeriodEndPeriodModel
	Relationships
	Operations

	RepeatedPeriodReferenceDataModel
	Relationships

	SimpleDateClassifierModel
	Relationships
	Attributes
	Operations

	DateClassifierHolidayArbitraryModel
	Relationships
	Attributes
	Operations

	DateClassifierHolidayRegularModel
	Relationships
	Attributes
	Operations

	DateClassifierHolidayRelativeModel
	Relationships
	Attributes
	Operations

	YearBasisModel
	Relationships

	YearModel360
	Relationships
	Operations

	YearModel365
	Relationships
	Operations

	YearModelActual
	Relationships
	Operations

	Exceptions
	DateArithmeticException
	Operations

	ImmobileDateException
	Operations

	Enumerations
	DateDirectionEnum
	Relationships
	Operations

	DayOfWeekEnum
	Relationships
	Operations

	EraEnum
	Relationships
	Operations

	MonthEnum
	Relationships
	Operations

	QuarterEnum
	Relationships
	Operations

	Associations
	model
	model
	model
	within
	program
	unit
	initial
	model
	model
	roller
	model
	stopPeriod
	unit
	model
	model
	reference holiday
	precedence
	model
	predecessors
	reference holiday
	roller
	position
	components
	roller
	units
	endPeriod

