
Deals Package

TARMS Inc.

September 07, 2000

TARMS Inc. http://www.tarms.com

http://www.tarms.com

Copyright c2000 TARMS Inc.

Permission is hereby granted, free of charge, to any person obtaining a
copy of this model and associated documentation files (the “Model”),
to deal in the Model without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Model, and to permit persons to whom the
Model is furnished to do so, subject to the following conditions:

1. The origin of this model must not be misrepresented; you must
not claim that you wrote the original model. If you use this
Model in a product, an acknowledgment in the product
documentation would be appreciated but is not required.
Similarly notification of this Model’s use in a product would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and
must not be misrepresented as being the original software.

3. This notice, including the above copyright notice shall be
included in all copies or substantial portions of the Model.

THE MODEL IS PROVIDED “AS IS”, WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS
OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE MODEL OR THE USE OR
OTHER DEALINGS IN THE MODEL.

Typeset in LATEX.

Contents

1 Interfaces 3
1.1 Deal . 3

1.1.1 Relationships. 3
1.1.2 Operations . 3

1.2 DealPurpose. 5
1.2.1 Relationships. 6

1.3 DealType . 6
1.3.1 Relationships. 6
1.3.2 Operations . 6

2 Classes 6
2.1 DealModel . 6

2.1.1 Relationships. 7
2.1.2 Attributes. 7
2.1.3 Operations . 7

2.2 DealPurposeModel. 8
2.2.1 Relationships. 8

2.3 TradePurposeModel. 8
2.3.1 Relationships. 8
2.3.2 Operations . 8

2.4 DealTypeModel. 9
2.4.1 Relationships. 9
2.4.2 Operations . 9

2.5 BondTypeModel . 10
2.5.1 Relationships. 10
2.5.2 Operations . 10

2.6 EquityTypeModel. 11
2.6.1 Relationships. 11
2.6.2 Operations . 11

2.7 FRATypeModel. 12
2.7.1 Relationships. 12
2.7.2 Operations . 12

2.8 FXTypeModel. 13
2.8.1 Relationships. 13
2.8.2 Operations . 13

2.9 IRSwapTypeModel. 14
2.9.1 Relationships. 14
2.9.2 Operations . 14

1

2.10 LoanTypeModel. 14
2.10.1 Relationships. 15
2.10.2 Operations. 15

2.11 REPOTypeModel. 15
2.11.1 Relationships. 15
2.11.2 Operations. 16

3 Enumerations 16
3.1 DealActionEnumeration. 16

3.1.1 Operations . 16

4 Associations 16
4.1 instrument. 17
4.2 book . 17
4.3 clearingBroker . 18
4.4 user . 18
4.5 broker . 18
4.6 exchange . 18
4.7 settlementForum. 18
4.8 dealType. 18
4.9 dealPurpose. 18

List of Figures

1 Class Diagram— Deals. 19
2 Class Diagram— Deal Types. 20
3 Class Diagram— Deal Purpose. 21

List of Tables

1 Deals— Associations. 16
1 . . . continued. 17

Package Description

A deal is used to record the details of financial transactions that have occurred
between (and within) organizations. This package allows deals to be constructed
to record the financial transactions of an organization.

2

Certain information is required about deals irrespective of the type of deal.
This information is specified by the Deal class. The financial instrument within the
deal records the commodities being exchanged as well as the amount and timing
of these exchanges. Note: Commodities include the exchange of a currency.

To date we have specified the construction of the following types of deals:
loans, FX, bonds, equities, FRAs, IR Swaps and standard (simple) REPOs. This
package may be extended in the future to accommodate more deal types.

This package also includes classes used to enforce authorization of operations
associated with deals. This links in with the permissions package.

1 Interfaces

1.1 Deal

A deal is a record of a trade that has occurred between a dealer and a counterparty
where some commodity(s) has been bought or sold. To be able to audit deals done
by an organization, a unique deal number and version number is associated with
each deal. The financial details of a deal can be found within the instrument.

For simplicity, the Deal interface has been designed to inherit from the Deal
Operation interface, thus enabling a deal instance to be used directly to determine
whether it is a permissible operation. As a result the deal interface must respond to
some methods that may not be relevant to a given deal. If one of the deal operation
methods is not relevant to a particular deal then null is returned.

1.1.1 Relationships

Class Description Notes
* DynamicData
DealModel §2.1
*:Inherits #:Realized by

1.1.2 Operations

Date dealDate() dealDate

The date on which a trade occurs (ie: the effective date of the deal).

Integer buyOrSell() buyOrSell

Enumeration {1, -1}. buyOrSell indicates whether the counterparty involved
in the transaction is buying or selling the commodity. A value of +1 indicates that

3

you are buying (thus the counterparty is selling), and a value of -1 indicates that
you are selling (hence, the counterparty is buying).

String dealNumber() dealNumber

The alphanumeric string used to uniquely identify the trade.
If a trade is executed within the local domain, then just the dealNumber string

will be returned. If a trade is executed outside the local domain, then the key and
the domain name will be returned as the deal number.

User user() user

The user executing the trade.

Instrument instrument() instrument

This is the financial commodity being bought or sold. The instrument can be
used to differentiate between deal types.

Book book() book

The book in which the trade is recorded.

Organization broker() broker

The broker involved in the trade (if applicable).

Organization clearingBroker() clearingBroker

The clearing broker involved in the trade (if applicable).

DealType dealType() dealType

This returns the type of deal that has been traded.

DealPurpose dealPurpose() dealPurpose

This returns the purpose of the deal that has been traded.

LifeCycleState lifeCycleState() lifeCycleState

A deal can be in various states throughout its life (ie: from start to maturity of
the deal). This returns the state that a deal is in at a particular point in time.

Details of the states will be determined later.

Date settlementDate() settlementDate

The date on which goods are exchanged and payment is made.

4

Organization settlementForum() settlementFo-
rumThe clearing house responsible for handling settlement will determine the de-

fault settlement rules. This returns an organization with the role being that of a
clearing house.

CommodityHolding bookValue() bookValue

The amount and currency recorded in the trade (usually for accounting pur-
poses).

This part will be extended and updated at a later stage.

Organization exchange() exchange

There are times when deals which have been done with a counterparty are not
settled directly with the counterparty. Instead, they are settled with an exchange.
This returns the exchange involved in the trade, if applicable.

Date maturityDate() maturityDate

The maturity date of the deal.

Party counterparty() counterparty

A deal wants knowledge of the other party involved in the transaction, be it a
book (an internal party) or an organization (external party).

Classifier classifier() classifier

Returns a classifier that will contain selective pieces of information about this
deal such that it can uniquely identify/classify this deal. This information is stored
as a dictionary. An example of part of a classifier is: [book -> bk1, bk2, counter-
party -> cpty3, cpty6, etc.].

This method returns the classifier obtained by sending the “deriveClassifier-
From” message to the dealType (returned from the dealType method) and sending
itself (this deal) as the argument. See DealType §1.3.

1.2 DealPurpose

This interface defines what the deal will be used for, or what the intended purpose
of the deal is. An example of a non-trade deal purpose is an automatic internally
generated trade. Currently the concept of a deal purpose has been modeled by a
class hierarchy, however we leave open the option of being able to represent this as

5

reference data. This can be achieved by altering the model so that it inherits from
reference data and replaces the functionality that was achieved via a class hierarchy
with attributes.

1.2.1 Relationships

Class Description Notes
* Identifiable
DealPurposeModel §2.2
$ DealModel §2.1 dealPurpose
*:Inherits #:Realized by $:Association !:Navigable�:Aggregate�:Composite

1.3 DealType

A deal type describes a particular kind of deal (eg. loans, bonds, etc).

1.3.1 Relationships

Class Description Notes
* Identifiable
DealTypeModel §2.4
$ DealModel §2.1 dealType
*:Inherits #:Realized by $:Association !:Navigable�:Aggregate�:Composite

1.3.2 Operations

Classifier deriveClassifierFrom(Deal deal) deriveClassifier-
Fromdeal: DealThe deal from which a classifier will be derived.

This method returns a classifier that contains selective pieces of information
about the given deal. This information is chosen such that it can uniquely iden-
tify/classify a deal.

2 Classes

2.1 DealModel

The DealModel class realizes the Deal interface. This class contains the specifi-
cation for the deal information common to all types of deals. Through inheritance
from DynamicDataModel, versioning information is also found on a deal.

6

The exchange, clearingHouse and broker attributes are found on the DealModel
because they do not participate in the exchange of goods. If an exchange is partic-
ipating in the exchange of goods, it will be acting as a counterparty.

2.1.1 Relationships

Class Description Notes
* DynamicDataModel
" Deal §1.1
" Validatable
$ Instrument instrument !

$ Book book !

$ Organization clearingBroker !

$ User user !

$ Organization broker !

$ Organization exchange !

$ Organization settlementForum !

$ DealType §1.3 dealType !

$ DealPurpose §1.2 dealPurpose !

*:Inherits ":Realizes $:Association !:Navigable�:Aggregate�:Composite

2.1.2 Attributes

dealDate: Date The date on which a trade occurs (ie: the effective date of the
deal).

buyOrSell: Integer = 1 (buy) Enumeration {1,-1 }. This returns either +1 or -1
to represent whether a commodity has been bought or sold. This trading of
the commodity is from the dealer’s perspective.

This value will be determined from the transaction’s buySellMultiplier and
will be the opposite value (since the transaction is from the counterparty’s
perspective).

settlementDate: Date The date on which goods are exchanged and payment is
made.

2.1.3 Operations

validate() validate

7

The validation for a deal will be defined by the business rules, and hence is left
incomplete.

Party counterparty() counterparty

This will be obtained from the transaction (found within the instrument).

Date maturityDate() maturityDate

This information will come from within the instrument.

CommodityHolding bookValue() bookValue

The bookValue information will come from the Instrument.

2.2 DealPurposeModel

This class is a concrete realization of the DealPurpose interface. It is expected that
subclasses will be added to this class as business functionality is determined.

2.2.1 Relationships

Class Description Notes
" DealPurpose §1.2
+ TradePurposeModel §2.3
+:Inherited by":Realizes

2.3 TradePurposeModel

This class represents a normally traded deal with no special purpose.

2.3.1 Relationships

Class Description Notes
* DealPurposeModel §2.2
*:Inherits

2.3.2 Operations

String identifier() identifier

Returns the string “Trade Purpose”.

8

2.4 DealTypeModel

This class is the superclass of the deal type hierarchy. Each subclass will only have
a single instance.

2.4.1 Relationships

Class Description Notes
" DealType §1.3
+ LoanTypeModel §2.10
+ FXTypeModel §2.8
+ BondTypeModel §2.5
+ EquityTypeModel §2.6
+ FRATypeModel §2.7
+ IRSwapTypeModel §2.9
+ REPOTypeModel §2.11
+:Inherited by":Realizes

2.4.2 Operations

Classifier deriveClassifierFrom(Deal deal) deriveClassifier-
Fromdeal: DealThis is the deal that a classifier will be derived from.

This method returns a classifier that will contain non-type specific information
of the given deal. This classifier will contain the general information of a deal that
will be present regardless of its type. Subclasses that override this method will call
this method and extend the returned classifier to contain information specific to the
particular type of the given deal.

This method creates a new Classifier and adds the following key/value pairs to
it:

Add to the classifier the key “Books”, with the value returned from sending the
“book” message to the given deal and then enclosing the result in a collection (or
set). Add to the classifier the key “Counterparties”, with the value returned from
sending the “counterparty” message to the given deal and then enclosing the result
in a collection (or set). Add to the classifier the key “Deal types”, with the value
returned from sending the “dealType” message to the given deal and then enclosing
the result in a collection (or set). Add to the classifier the key “Deal purposes”, with
the value returned from sending the “dealPurpose” message to the given deal and
then enclosing the result in a collection (or set).

9

2.5 BondTypeModel

This class represents the bond type.

2.5.1 Relationships

Class Description Notes
* DealTypeModel §2.4
*:Inherits

2.5.2 Operations

String identifier() identifier

Returns the string “Bond”.

Classifier deriveClassifierFrom(Deal deal) deriveClassifier-
Fromdeal: DealThis is the deal that a classifier will be derived from.

This method takes a bond deal as its parameter, and returns a classifier describ-
ing this deal. This is done in three stages:

1. This method calls its superclass’s method of the same name (with the same
argument), which returns a classifier for the given deal containing non type-specific
information. The current method now only needs to add the information specific
to the deal’s type (a bond deal).

2. This method adds to the classifier a key named “securities”, with a corre-
sponding value that is a set containing the underlying security of the deal. Perform
the following message sends to give a collection containing two transactions:
deal.instrument.transactionSequence.
One will be a price transaction the other will be an ordinary transaction. Take the
price transaction and perform the following message sends to produce the underly-
ing security of the deal:
priceTransaction.underlyingTransaction.instrument.unitInstrument.

3. This method adds to the classifier a key named “currencies excluding cur-
rency pairs”, with a corresponding value that is the set of currencies (excluding
currency pairs) in this deal. The set of currencies can be obtained by getting the
two currencies used in bond deal, namely the bond currency and the purchase cur-
rency. Note that if these currencies are the same then the set will ensure that there
is only one currency recorded. Perform the following message sends to give a col-
lection containing two transactions:
deal.instrument.transactionSequence.
One will be a price transaction the other will be an ordinary transaction. Take the

10

price transaction and perform the following message sends to produce one of the
currencies used in the deal:
priceTransaction.underlyingTransaction.instrument.unitInstrument.currency. Take
the price transaction again and perform the following message sends to produce
the other currency used in the deal:
priceTransaction.instrument.commodity.

2.6 EquityTypeModel

This class represents the equity type.

2.6.1 Relationships

Class Description Notes
* DealTypeModel §2.4
*:Inherits

2.6.2 Operations

String identifier() identifier

Returns the string “Equity”.

Classifier deriveClassifierFrom(Deal deal) deriveClassifier-
Fromdeal: DealThis is the deal that a classifier will be derived from.

This method takes an Equity deal as its parameter, and returns a classifier de-
scribing this deal. This is done in three stages:

1. This method calls its superclass’s method of the same name (with the same
argument), which returns a classifier for the given deal containing non type-specific
information. The current method now only needs to add the information specific
to the deal’s type (an equity deal).

2. This method adds to the classifier a key named “currencies excluding cur-
rency pairs”, with a corresponding value that is a set of currencies (excluding cur-
rency pairs) in this deal. Perform the following message sends to give a collection
containing one price transaction:
deal.instrument.transactionSequence.
Perform the following message sends on the price transaction to produce one of
the currencies of the deal:
priceTransaction.instrument.commodity. Perform the following message send on

11

the same price transaction to produce the other currency of the deal:
priceTranscation.underlyingTranscation.instrument.instrument.currency.

3. This method adds to the classifier a key named “equities”, with a corre-
sponding value that is a set containing the equity in this deal. Perform the follow-
ing message sends to give a collection containing one price transaction:
deal.instrument.transactionSequence.
Perform the following message sends on the price transaction to produce the eq-
uity:
priceTranscation.underlyingTranscation.instrument.instrument.

2.7 FRATypeModel

This class represents the Forward Rate Agreement (FRA) type.

2.7.1 Relationships

Class Description Notes
* DealTypeModel §2.4
*:Inherits

2.7.2 Operations

String identifier() identifier

Returns the string “FRA”.

Classifier deriveClassifierFrom(Deal deal) deriveClassifier-
Fromdeal: DealThis is the deal that a classifier will be derived from.

This method takes an Forward Rate Agreement (FRA) deal as its parameter,
and returns a classifier describing this deal. This is done in two stages:

1. This method calls its superclass’s method of the same name (with the same
argument), which returns a classifier for the given deal containing non type-specific
information. The current method now only needs to add the information specific
to the deal’s type (a FRA deal).

2. This method adds to the classifier a key named “currencies excluding cur-
rency pairs”, with a corresponding value that is a set of currencies (excluding cur-
rency pairs) in this deal. The following message sends:
deal.instrument.transactionSequence will give a collection containing two transac-
tions. Both transactions will be a cashflow. The currencies contained within these

12

two cashflows will always be the same. Perform the following message sends to
one of the cashflows to produce the currency of the deal:
cashflow.commodity.

2.8 FXTypeModel

This class represents the FX type.

2.8.1 Relationships

Class Description Notes
* DealTypeModel §2.4
*:Inherits

2.8.2 Operations

String identifier() identifier

Returns the string “FX”.

Classifier deriveClassifierFrom(Deal deal) deriveClassifier-
Fromdeal: DealThis is the deal that a classifier will be derived from.

This method takes an FX deal as its parameter, and returns a classifier describ-
ing this deal. This is done in two stages:

1. This method calls its superclass’s method of the same name (with the same
argument), which returns a classifier for the given deal containing non type-specific
information. The current method now only needs to add the information specific
to the deal’s type (an FX deal).

2. This method adds to the classifier a key named “currency pairs”, with a
corresponding value that is a set containing the underlying security of the deal.
Perform the following message sends to give a collection containing one transac-
tion:
deal.instrument.transactionSequence.
This transaction will be a price transaction. Take the price transaction and perform
the following message sends to produce the currency pair of the deal:
priceTransaction.price.specifier.currencypair.

13

2.9 IRSwapTypeModel

This class represents the Intrest Rate Swap (IRSwap) type.

2.9.1 Relationships

Class Description Notes
* DealTypeModel §2.4
*:Inherits

2.9.2 Operations

String identifier() identifier

Returns the string “IRSwap”.

Classifier deriveClassifierFrom(Deal deal) deriveClassifier-
Fromdeal: DealThis is the deal that a classifier will be derived from.

This method takes an Interest Rate Swap (IRSwap) deal as its parameter, and
returns a classifier describing this deal. This is done in two stages:

1. This method calls its superclass’s method of the same name (with the same
argument), which returns a classifier for the given deal containing non type-specific
information. The current method now only needs to add the information specific
to the deal’s type (an IR Swap deal).

2. This method adds to the classifier a key named “currencies excluding cur-
rency pairs”, with a corresponding value that is a set of currencies (excluding cur-
rency pairs) in this deal. An IRSwap may have up to two different currencies.
Perform the following message sends to give a collection containing two transac-
tions:
deal.instrument.transactionSequence.
For each transaction the following message sends will provide the currency of that
transaction:
transaction.instrument.specifier.paymentSpecification.commodity.

2.10 LoanTypeModel

This class represents the loan type.

14

2.10.1 Relationships

Class Description Notes
* DealTypeModel §2.4
*:Inherits

2.10.2 Operations

String identifier() identifier

Returns the string “Loan”.

Classifier deriveClassifierFrom(Deal deal) deriveClassifier-
Fromdeal: DealThis is the deal that a classifier will be derived from.

This method takes a load deal as its parameter, and returns a classifier describ-
ing this deal. This is done in two stages:

1. This method calls its superclass’s method of the same name (with the same
argument), which returns a classifier for the given deal containing non type-specific
information. The current method now only needs to add the information specific
to the deal’s type (a loan deal).

2. This method adds to the classifier a key named “currencies excluding cur-
rency pairs”, with a corresponding value that is a set containing the currency of this
deal. The following message sends:
deal.instrument.transactionSequence will give a collection containing two transac-
tions. One of these transactions will be a simple cashflow transaction. Take the
simple cashflow transaction and perform the following message sends to produce
the currency of the deal:
simpleCashflowTransaction.commodity.

2.11 REPOTypeModel

This class represents the Repurchase Agreement (REPO) type.

2.11.1 Relationships

Class Description Notes
* DealTypeModel §2.4
*:Inherits

15

2.11.2 Operations

String identifier() identifier

Returns the string “REPO”.

Classifier deriveClassifierFrom(Deal deal) deriveClassifier-
Fromdeal: DealThis is the deal that a classifier will be derived from.

This documentation is unavailable until more information on the structure of
REPOs deals becomes available.

3 Enumerations

3.1 DealActionEnumeration

An enumeration used to specify the action applied to a deal.

3.1.1 Operations

«Static Method» DealActionEnumeration entry() entry

Returns a DealActionEnumeration with the name “Entry”.

«Static Method» DealActionEnumeration modify() modify

Returns a DealActionEnumeration with the name “Modify”.

«Static Method» DealActionEnumeration view() view

Returns a DealActionEnumeration with the name “View”.

«Static Method» DealActionEnumeration confirm() confirm

Returns a DealActionEnumeration with the name “Confirm”.

4 Associations

Table 1: Deals— Associations

Association
Role Class Card. Notes

instrument

16

Table 1: . . . continued

Association
Role Class Card. Notes

Instrument !

DealModel §2.1
book

Book !

DealModel §2.1
clearingBroker

Organization !

DealModel §2.1
user

User !

DealModel §2.1
broker

Organization !

DealModel §2.1
exchange

Organization !

DealModel §2.1
settlementForum

Organization !

DealModel §2.1
dealType

DealType §1.3 !

DealModel §2.1
dealPurpose

DealPurpose §1.2 !

DealModel §2.1
!:Navigable�:Aggregate�:Composite

4.1 instrument

Role: NavigableInstrument.
Role: DealModel.

4.2 book

Role: NavigableBook.
Role: DealModel.

17

4.3 clearingBroker

Role: NavigableOrganization.
Role: DealModel.

4.4 user

Role: NavigableUser.
Role: DealModel.

4.5 broker

Role: NavigableOrganization.
Role: DealModel.

4.6 exchange

Role: NavigableOrganization.
Role: DealModel.

4.7 settlementForum

Role: NavigableOrganization.
Role: DealModel.

4.8 dealType

Role: NavigableDealType.
Role: DealModel.

4.9 dealPurpose

Role: NavigableDealPurpose.
Role: DealModel.

18

DynamicDataModel
(from D ynam ic D ata)

Validatable

(from U til it ies)

DynamicData
(from D ynam ic D ata)

<<Interface>>

Instrument
(from Ins trum ents)

<<Interface >>

Book
(from B ook)

<<Interface>>

User
(from U ser)

<<Interface>>

DealType
<<Interface>>

Organization
(from O rgan iz at ion)

<<Interface>>

DealP urpose
<<Interface>>

DealModel

dealDate : Date
buyOrS ell : Integer = 1 (buy)
se ttle me ntDate : Date

validate()
co unterpa rty()
maturityDate()
b oo kVa lue ()

instrum ent

book

u ser

d ea lType

bro ker

se ttlem entForum

exchange

clearingB roker

dealP urpose

Deal

de alDate ()
buyOrS ell()
dealNumber()
user()
instrument()
book()
broker()
cle ar ingB ro ker()
de alType ()
dealPurpose()
life CycleS tate ()
settlementDate()
settlem entForum ()
bookV alue()
exchange()
ma turityDate()
counterparty()
cla ssifier()

<<Interface>>

Figure 1: Class Diagram— Deals

19

D
e

al
Ty

pe

d
e

ri
ve

C
la

ss
ifi

e
rF

ro
m

()

<
<I

nt
er

fa
ce

>>

D
e

a
lT

yp
e

M
o

d
e

l

d
e

ri
ve

C
la

ss
ifi

e
rF

ro
m

()

L
o

a
nT

yp
e

M
o

d
e

l

id
e

nt
ifi

e
r(

)
d

e
ri

ve
C

la
ss

ifi
e

rF
ro

m
()

F
X

T
yp

e
M

o
d

e
l

id
e

nt
ifi

e
r(

)
d

e
ri

ve
C

la
ss

ifi
e

rF
ro

m
()

B
o

nd
T

yp
e

M
o

d
e

l

id
e

nt
ifi

e
r(

)
d

e
ri

ve
C

la
ss

ifi
e

rF
ro

m
()

Id
e

nt
ifi

a
b

le

(fr
o

m
 U

til
iti

es
)

E
q

ui
ty

T
yp

e
M

o
d

e
l

id
e

nt
ifi

e
r(

)
d

e
ri

ve
C

la
ss

ifi
e

rF
ro

m
()

F
R

A
T

yp
e

M
o

d
e

l

id
e

nt
ifi

e
r(

)
d

e
ri

ve
C

la
ss

ifi
e

rF
ro

m
()

IR
S

w
a

pT
yp

eM
od

el

id
e

nt
ifi

e
r(

)
d

e
ri

ve
C

la
ss

ifi
e

rF
ro

m
()

R
E

P
O

T
yp

e
M

o
d

e
l

id
e

nt
ifi

e
r(

)
d

e
ri

ve
C

la
ss

ifi
e

rF
ro

m
()

Figure 2: Class Diagram— Deal Types

20

DealPurpose
<<Interface>>

Trad ePurpo seM od el

identifier()

Dea lP urpo seM od el

Identifiable

(from Utilit ies)

Figure 3: Class Diagram— Deal Purpose

21

References

22

	Interfaces
	Deal
	Relationships
	Operations

	DealPurpose
	Relationships

	DealType
	Relationships
	Operations

	Classes
	DealModel
	Relationships
	Attributes
	Operations

	DealPurposeModel
	Relationships

	TradePurposeModel
	Relationships
	Operations

	DealTypeModel
	Relationships
	Operations

	BondTypeModel
	Relationships
	Operations

	EquityTypeModel
	Relationships
	Operations

	FRATypeModel
	Relationships
	Operations

	FXTypeModel
	Relationships
	Operations

	IRSwapTypeModel
	Relationships
	Operations

	LoanTypeModel
	Relationships
	Operations

	REPOTypeModel
	Relationships
	Operations

	Enumerations
	DealActionEnumeration
	Operations

	Associations
	instrument
	book
	clearingBroker
	user
	broker
	exchange
	settlementForum
	dealType
	dealPurpose

