
Dynamic Data Package

TARMS Inc.

September 07, 2000

TARMS Inc. http://www.tarms.com

http://www.tarms.com

Copyright c
2000 TARMS Inc.

Permission is hereby granted, free of charge, to any person obtaining a
copy of this model and associated documentation files (the “Model”),
to deal in the Model without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Model, and to permit persons to whom the
Model is furnished to do so, subject to the following conditions:

1. The origin of this model must not be misrepresented; you must
not claim that you wrote the original model. If you use this
Model in a product, an acknowledgment in the product
documentation would be appreciated but is not required.
Similarly notification of this Model’s use in a product would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and
must not be misrepresented as being the original software.

3. This notice, including the above copyright notice shall be
included in all copies or substantial portions of the Model.

THE MODEL IS PROVIDED “AS IS”, WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS
OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE MODEL OR THE USE OR
OTHER DEALINGS IN THE MODEL.

Typeset in LATEX.

Contents

1 Use Cases 3
1.1 Edit Object . 3
1.2 Holdovers. 3
1.3 Domain Transfers. 3

2 Interfaces 4
2.1 DynamicData. 4

2.1.1 Relationships. 4
2.1.2 Operations . 4

2.2 LifeCycleState . 5
2.2.1 Relationships. 5

2.3 Lock . 5
2.3.1 Relationships. 6
2.3.2 Operations . 6

3 Architectural Service Interfaces 6
3.1 DynamicDataDepot. 6

3.1.1 Relationships. 6
3.1.2 Operations . 7

3.2 Locksmith. 7
3.2.1 Relationships. 7
3.2.2 Operations . 7

4 Classes 8
4.1 BasicLifeCycleStateModel. 8

4.1.1 Relationships. 8
4.1.2 Attributes. 8
4.1.3 Operations . 8

4.2 DynamicDataModel. 8
4.2.1 Relationships. 9
4.2.2 Attributes. 9

4.3 LockModel . 9
4.3.1 Relationships. 9
4.3.2 Attributes. 9

5 Architectural Services 9
5.1 LockingCacheModel. 9

5.1.1 Relationships. 10

1

6 Exceptions 10
6.1 LockException . 10

6.1.1 Operations . 10

7 Associations 10
7.1 locks. 11
7.2 lockedObject . 11
7.3 owner . 11
7.4 lockGranter . 11
7.5 lock . 12

List of Figures

1 Class Diagram— Dynamic Data. 13
2 Class Diagram— Locking . 14
3 Class Diagram— Examples. 15
4 Class Diagram— Life Cycles. 16

List of Tables

1 Dynamic Data— Associations. 10
1 . . . continued. 11

Package Description

Dynamic data extends the concept of versioned data, where changes in versions are
expected while a system is running. Static versioned data, in contrast, is data that
can only be updated while the system is not in use.

To prevent simultaneous attempts to update dynamic data, a system of locks
is used. Only the owner of a lock can update the data. As well as a domain of
identification — the domain that allocated the object’s identifier — a dynamic data
object has a domain of ownership — the domain that has the right to allocate locks.
Versions of object families may pass from domain to domain during ownership
changes.

Dynamic data needs to account for the possibility of holdovers, updates that
occur within one day, but whose effects need to be held over until the next day as
far as processing and consolidation are concerned.

2

Dynamic data objects usually pass through a “life-cycle” where the object,
once created, goes through a series of modifications and enrichments before expir-
ing. As an example, a deal might be entered, go to back office for confirmation, go
through a series of settlement steps and then mature.

Life-cycles are usually specified by the business rules of an institution and
can, in theory, be exactly specified. A basic form of life-cycle is supplied in this
package, which allows the life-cycle stages to be named.

1 Use Cases

1.1 Edit Object

Multiple simultaneous updates to a dynamic data object, shared between several
systems, need to be prevented.

If there is no architectural locking mechanism, then a locking mechanism is
needed. Before editing a dynamic data object, a lock needs to be obtained on
the object. When the object has been edited and committed, the lock can be re-
moved.

1.2 Holdovers

Back office processing is cut-off at a given time each day. This is to allow end of
day processing to be done. If trading occurs after the cut-off time, these trades are
‘held over’ for processing the next day.The period between the termination of back
office processing and end of day is theholdover period.

During the holdover period, any new deals are held over until the next end of
day (although the deals still have a trade date of the current date), rather than being
incorporated into end of day processing.

If a deal made before the holdover period is modified during the holdover pe-
riod, then the last version of the deal made before the period started is included
at end of day. The new version(s) of the deal are included as modifications to the
deal during the next day. A deal can be modified several times during the holdover
period; the current version is used for modification.

1.3 Domain Transfers

Domains tend to represent geographically distant entities. It should be possible for
a system in one domain to modify an object held in another domain. In the ab-
sence of a suitable architectural locking scheme, the object needs to be transferred

3

from the current owning domain to the modifying domain, so that lock grants and
updates can be handled locally.

2 Interfaces

2.1 DynamicData

The DynamicData interface is an extension of the basic Version interface. Dynam-
icData objects have an owning domain, the domain that holds the rights to either
modify the object or pass modification rights to another domain.

DynamicData objects also draw a distinction between thecurrentversion of an
object and theactiveversion of the object. The current version is the latest version
of that object, irrespective of whether or not it is being used. The active version
is the version that would be used at the current end of day. If the current object
is not the active object, the current object is held over until the next business day.
The distinction between active and current version of an object allows transactions
to occur during the current business day which will not be processed until the next
business day, even though they are treated as if they had been done on the previous
business day.

2.1.1 Relationships

Class Description Notes
* Version
DynamicDataModel §4.2
$ LockModel §4.3 lockedObject

0..1
*:Inherits #:Realized by $:Association !:Navigable�:Aggregate�:Composite

2.1.2 Operations

Domain owner() owner

Owning domain. Returns the owning domain for this object.

Lock lock() lock

Associated lock. Returns the lock associated with this object, or nil if there is
no lock.

Boolean isActive() isActive

4

Currently active version? Returns true if this is the active version of the object.

Version activeVersion() activeVersion

Currently active version. Returns the active version of this object. If there is
no explicitly marked active version, then the current version is returned.

LifeCycleState lifeCycleState() lifeCycleState

The life cycle state. Returns the current life cycle state of this piece of dynamic
date.

2.2 LifeCycleState

Various objects can be in various states throughout their lifetime. The state an
object is in at a given point in time (the lifeCycleState) can be used to determine
actions which can be performed on that object.

For example, deals can be in various states from the time they are dealt to their
maturity. If a deal does not have the minimum information required to allow a
deal to be settled, then a deal could be said to be in an ‘incomplete’ lifeCycleState.
By knowing a deal’s lifeCycleState, actions that can be performed on this deal can
then be determined.

This interface provides an abstract interface for the provision of life cycle
states. Since life cycle states need to be named, the interface inherits from Iden-
tifiable. Life cycle states are normally simple state markers and can be generally
implemented as attributes; this interface, therefore, has value semantics.

2.2.1 Relationships

Class Description Notes
* Identifiable
* ValueSemantics
BasicLifeCycleStateModel §4.1
*:Inherits #:Realized by

2.3 Lock

The Lock interface provides basic information on a lock. Locks are used to indicate
that a DynamicData §2.1 object is locked for modification. Locks have an expiry

5

time, after which the lock is no longer valid and is eliminated from the granting
Locksmith §3.2and requesting DynamicData object.

2.3.1 Relationships

Class Description Notes
LockModel §4.3
$ LockingCacheModel §5.1 locks 1..1
$ DynamicDataModel §4.2 lock 0..1
#:Realized by $:Association !:Navigable�:Aggregate�:Composite

2.3.2 Operations

DynamicData lockedObject() lockedObject

Returns the DynamicData §2.1object that has been locked.

Locksmith lockGranter() lockGranter

Returns the Locksmith §3.2 that granted the lock.

Timestamp lockedAt() lockedAt

Time locked. Returns a time stamp for when the object was locked.

Timestamp expiresAt() expiresAt

Expiry time. Returns the time at which the lock expires.

3 Architectural Service Interfaces

3.1 DynamicDataDepot

A DynamicDataDepot is an extension of the Depot interface that can also provide
information as to the active version of an object family, as well as the current
version.

3.1.1 Relationships

Class Description Notes
* Depot
LockingCacheModel §5.1
*:Inherits #:Realized by

6

3.1.2 Operations

Version activeVersion(Keyable key) activeVersion

key: Keyable The key for the family.
Raises:NotFoundException

Active version of a versioned family. Returns the active version of the family
of objects that have the supplied key. If no object is marked as active (or the object
is not DynamicData) then the current version is returned. If no object with this
identifier can be found, then the NotFoundException is raised.

3.2 Locksmith

The Locksmith interface provides basic functionality for centralizing and manag-
ing locking functions. Before being modified, DynamicData §2.1objects request a
lock from a Locksmith §3.2, so that multiple updates are prevented.

3.2.1 Relationships

Class Description Notes
LockingCacheModel §5.1
$ LockModel §4.3 lockGranter 1..1
#:Realized by $:Association !:Navigable�:Aggregate�:Composite

3.2.2 Operations

DynamicData lockRequest(DynamicData requestor) lockRequest

requestor: DynamicDataThe object that is to be locked.
Raises:LockException, NotFoundException

Get a lock on an object. Returns the version of the requestor that has a lock
on it. In some cases, when ownership is transferred from a different domain, a
new version of the dynamically modifiable object will be created. This object
is the object that will be locked. If the object is not maintained by the depot,
then a NotFoundException is raised. If the object has already been locked, then a
LockException is raised.

unlockRequest(DynamicData requestor) unlockRequest

requestor: DynamicDataThe object that has finished with its lock.

7

Raises:LockException, NotFoundException
Unlock a dynamic data object. Remove the lock from the requestor. If this

object is not managed by this depot, then raise a NotFoundException. If there is
no lock on the requestor, then raise a LockException.

4 Classes

4.1 BasicLifeCycleStateModel

A simple implementation of the LifeCycleState §2.2 interface. This implementa-
tion allows the life cycle states to be named.

4.1.1 Relationships

Class Description Notes
" LifeCycleState §2.2
":Realizes

4.1.2 Attributes

identifier: String The identifier naming the life cycle state.

4.1.3 Operations

Reportable validate() validate

Validate the Life Cycle State Model
The Life Cycle State Model is invalid if:

� The identifier is null

4.2 DynamicDataModel

The DynamicDataModel class is a concrete implementation of the DynamicData
interface.

This class is a subclass of VersionModel and, like VersionModel, is intended
to be used as part of some larger object that also implements the DynamicData
interface by passing messages through to a held DynamicDataModel.

8

4.2.1 Relationships

Class Description Notes
* VersionModel
" DynamicData §2.1
$ DomainModel owner 1..1 !

$ Lock §2.3 lock 0..1 !

*:Inherits ":Realizes $:Association !:Navigable�:Aggregate�:Composite

4.2.2 Attributes

isActive: Boolean = falseThis attribute is set to true if this object is the currently
active version of the object. Otherwise, this object is set to false.

lifeCycleState: LifeCycleState The current life-cycle state of this object.

4.3 LockModel

A LockModel is a concrete implementation of the Lock interface.

4.3.1 Relationships

Class Description Notes
" Lock §2.3
$ DynamicData §2.1 lockedObject

0..1
!

$ Locksmith §3.2 lockGranter 1..1 !

":Realizes $:Association !:Navigable�:Aggregate�:Composite

4.3.2 Attributes

lockedAt: Timestamp The date and time at which the lock was granted.

expiresAt: Timestamp The date and time at which the lock expires.

5 Architectural Services

5.1 LockingCacheModel

The LockingDepotModel class is essentially a depot that can grant locks and keep
track of which version of an object is the active object. Both the DynamicDataDe-

9

pot and Locksmith interfaces are implemented. Centralizing storage and locking
information creates a single point for handling the manipulation of dynamic data.

As with all implementations of the Depot interface, the exact implementation
of the associated operations are architecture-specific.

5.1.1 Relationships

Class Description Notes
* DepotModel
" Locksmith §3.2
" DynamicDataDepot §3.1
$ Lock §2.3 locks 0..n !

*:Inherits ":Realizes $:Association !:Navigable�:Aggregate�:Composite

6 Exceptions

6.1 LockException

A LockException is raised when an attempt to lock or unlock a piece of Dynamic-
Data fails.

6.1.1 Operations

DynamicData requestor() requestor

Lock (or unlock) requestor. Return the DynamicData §2.1object that requested
a lock or unlock.

Lock lock() lock

Existing lock. Return the lock, if there is one, that prevents this lock request.
Return nil if there is no existing lock.

7 Associations

Table 1: Dynamic Data— Associations

Association
Role Class Card. Notes

locks

10

Table 1: . . . continued

Association
Role Class Card. Notes

Lock §2.3 0..n !

LockingCacheModel §5.1 1..1
lockedObject

DynamicData §2.1 0..1 !

LockModel §4.3 0..1
owner

owner DomainModel 1..1 !

local version DynamicDataModel §4.2 0..n
lockGranter

Locksmith §3.2 1..1 !

LockModel §4.3 1..1
lock

Lock §2.3 0..1 !

DynamicDataModel §4.2 0..1
!:Navigable�:Aggregate�:Composite

7.1 locks

Role: NavigableLock, 0..n.
Role: LockingCacheModel, 1..1.

7.2 lockedObject

Role: NavigableDynamicData, 0..1.
Role: LockModel, 0..1.

Ownership of a locked object.

7.3 owner

Role: owner NavigableDomainModel, 1..1.
Role: local version DynamicDataModel, 0..n.

The owner of this version.

7.4 lockGranter

Role: NavigableLocksmith, 1..1.
Role: LockModel, 1..1.

11

The locksmith that granted a lock

7.5 lock

Role: NavigableLock, 0..1.
Role: DynamicDataModel, 0..1.

The current lock on this object.

12

V
e

rs
io

n
(f

ro
m

 O
b

je
c

t
Id

e
n

ti
ty

)

<
<

In
te

rf
a

ce
>

>

D
yn

a
m

ic
D

a
ta

D
e

p
o

t

a
ct

iv
e

V
e

rs
io

n(
)

<
<

A
rc

hi
te

ct
ur

a
l S

e
rv

ic
e

 In
te

rf
a

ce
>

>

D
yn

a
m

ic
D

a
ta

ow
ne

r(
)

lo
ck

()
is

A
ct

iv
e

()
a

ct
iv

e
V

e
rs

io
n(

)
lif

e
C

yc
le

S
ta

te
()

<
<

In
te

rf
a

ce
>

>

D
o

m
a

in
M

o
d

e
l

(f
ro

m
 O

b
je

c
t

Id
e

n
ti

ty
)

D
yn

a
m

ic
D

a
ta

M
o

d
e

l

is
A

ct
iv

e
 :

B
o

o
le

a
n

=
 fa

ls
e

lif
e

C
yc

le
S

ta
te

 :
L

ife
C

yc
le

S
ta

te
1

..1
0

..*
1

..1
0

..*
o

wn
er

V
e

rs
io

nM
o

d
e

l
(f

ro
m

 O
b

je
c

t
Id

e
n

ti
ty

)

Figure 1: Class Diagram— Dynamic Data

13

D
yn

a
m

ic
D

a
ta

D
e

p
o

t

a
ct

iv
e

V
e

rs
io

n(
)

<
<

A
rc

hi
te

ct
ur

a
l S

e
rv

ic
e

 In
te

rf
a

ce
>

>D
e

p
o

tM
o

d
e

l
(f

ro
m

 O
b

je
c

t
Id

e
n

ti
ty

)

L
oc

ks
m

ith

lo
ck

R
e

q
ue

st
()

un
lo

ck
R

e
q

ue
st

()

<
<

A
rc

hi
te

ct
ur

a
l S

e
rv

ic
e

 In
te

rf
a

ce
>

>

D
yn

a
m

ic
D

at
a

o
w

ne
r(

)
lo

ck
()

is
A

ct
iv

e
()

a
ct

iv
e

V
e

rs
io

n(
)

lif
e

C
yc

le
S

ta
te

()

<
<I

nt
er

fa
ce

>
>

L
o

ck
M

o
d

e
l

lo
ck

e
d

A
t :

 T
im

e
st

a
m

p
e

xp
ir

es
A

t :
 T

im
es

ta
m

p

1
..1

1
..1

1
..1

1
..1

lo
ck

G
ra

n
te

r

0
..1

0
..1

0
..1

0
..1

lo
ck

e
d

O
b

je
ct

L
o

ck
in

g
C

a
ch

e
M

o
d

e
l

<
<

A
rc

hi
te

ct
ur

a
l S

e
rv

ic
e

>
>

L
o

ck

lo
ck

e
d

O
b

je
ct

()
lo

ck
G

ra
nt

e
r(

)
lo

ck
e

d
A

t(
)

e
xp

ir
e

sA
t(

)

<
<I

nt
er

fa
ce

>>

0
..*

1
..1

0
..*

1
..1

lo
ck

s

D
yn

a
m

ic
D

a
ta

M
od

el

is
A

ct
iv

e
 :

B
o

o
le

a
n

=
fa

ls
e

lif
e

C
yc

le
S

ta
te

 :
Li

fe
C

yc
le

S
ta

te

0
..1

0
..1

0
..1

0
..1

lo
ck

Figure 2: Class Diagram— Locking

14

Edit Object Holdovers

Domain Transfers

F
igure

3:
C

lass
D

iagram
—

E
xam

ples

15

LifeCycleState
<<Interface>>

Identifiable
(from Utilities)

<<Interface>>
ValueSem antics

(from Utilities)

<<Interface>>

B asicL ifeCycle Sta teM odel

identifier : S tring

validate()

Validatable

(from Utilit ies)

Figure 4: Class Diagram— Life Cycles

16

References

17

	Use Cases
	Edit Object
	Holdovers
	Domain Transfers

	Interfaces
	DynamicData
	Relationships
	Operations

	LifeCycleState
	Relationships

	Lock
	Relationships
	Operations

	Architectural Service Interfaces
	DynamicDataDepot
	Relationships
	Operations

	Locksmith
	Relationships
	Operations

	Classes
	BasicLifeCycleStateModel
	Relationships
	Attributes
	Operations

	DynamicDataModel
	Relationships
	Attributes

	LockModel
	Relationships
	Attributes

	Architectural Services
	LockingCacheModel
	Relationships

	Exceptions
	LockException
	Operations

	Associations
	locks
	lockedObject
	owner
	lockGranter
	lock

