
The elements Object Model
Overview

Doug Palmer1

TARMS
Patric de Gentile-Williams2

TARMS

September 8, 2000

TARMS Inc. http://www.tarms.com

http://www.tarms.com

Copyright c2000 TARMS Inc.

Permission is hereby granted, free of charge, to any person obtaining a
copy of this model and associated documentation files (the “Model”),
to deal in the Model without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Model, and to permit persons to whom the
Model is furnished to do so, subject to the following conditions:

1. The origin of this model must not be misrepresented; you must
not claim that you wrote the original model. If you use this
Model in a product, an acknowledgment in the product
documentation would be appreciated but is not required.
Similarly notification of this Model’s use in a product would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and
must not be misrepresented as being the original software.

3. This notice, including the above copyright notice shall be
included in all copies or substantial portions of the Model.

THE MODEL IS PROVIDED “AS IS”, WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS
OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE MODEL OR THE USE OR
OTHER DEALINGS IN THE MODEL.

Typeset in LATEX.

1doug@tarms.com
2pdgw@tarms.com

This document is an overview of theelements Object Model project. It cov-
ers a miscellany of areas: the justification and ideas behind the project, the scope
of the project, modelling conventions, documentation conventions and general phi-
losophy.

Those wishing to examineelements from a business perspective are urged
to read sections1, 2 and3. AppendixA may prove useful if you are not familiar
with the software engineering philosophy behind object modelling. Readers with
a more technical bent will also find sections4 and5 of interest.

1 Introduction

The financial industry is faced with a period of dramatic change, in which com-
petitive pressures are forcing violent industry consolidation. At the same time a
significant increase in the operational complexity of these organisations, coupled
with major increases in risk profiles of these businesses, are increasing the demands
made of information technology (IT).

Regulators are confronting these issues by requiring greater and greater levels
of disclosure and analysis of risks and processes.

One of the most immediate consequences of these market and regulatory trends
is the need for financial institutions to invest substantially in IT. Unfortunately, the
complex nature of the required systems and the lack of standards in the industry
has lead to a great many failed development projects, to projects whose scope was
dramatically curtailed, or simply to projects whose budgets and deadlines were
massively extended in order to meet the original specification.

As a result many organisations operate with woefully inadequate systems, on
the grounds that they either cannot afford the ideal system or they cannot afford the
risk of trying to install the ideal system. In many cases these organisations do not
have the expertise to know what is achievable. Even the most sophisticated institu-
tions, those driving the theory of finance forward, tend to have little standardisation
in their systems.

Today, most organisations have a plethora of disparate, unconnected systems.
The operating costs of financial institutions are huge, as all of these disparate sys-
tems have to be individually supported and administered, as do their data sources.
The consequences are inevitable: the cost of continued ownership is far higher than
the purchase cost.

There are many financial software products available on the market, few of
which adhere to any standards. Further, the risks of purchase of off-the-shelf soft-
ware are massively increased by the risk of incompatibility with existing systems.

The obvious question arises as to whether anything can be done either by the
financial industry itself, the regulators, the IT industry or academia to reduce the
cost and risk of purchase, installation and ownership of these systems. To do so
would both increase the efficiency of the industry and reduce the frequency of
Barings, Daiwa and Nat West type incidents.

1

1.1 What are the Pieces of the Solution?

In IT as in many other industries, problems of productivity have often been solved
by the creation and adoption of standards. More often than not these standards have
emerged from a ruthless process of natural selection: eg., Windows or TCP/IP (the
Internet’s data transfer protocol).

In the construction of any large software system, there are two key areas to
consider: the architecture of the system (particularly for distributed systems) and
the modelling of the data, relationships and processes.

A number of basic solutions have emerged to address the architectural issues
of software development.

� Open systems

� Object request architectures

� Copy based architectures

� Standard middleware products

� Web delivery strategies

� Software and architecture standards

The middleware industry has been making significant progress towards the
creation of standard messaging and communications architectures. This has been
achieved either through the promotion of message based architectures (eg. Rendez-
vous[26] or MQSeries[17]) or through the use of object request architectures (eg.,
CORBA[20], DCOM[4], etc.).

On the modelling of data and processes the finance industry is making con-
certed efforts to implement standards for Straight Through Processing, (via organ-
isations such as GSTPC, ISITC[12], SWIFT, FIX[8] and the DTC[6]). In these
efforts the modelling of inter-organisation data exchange is making significant
progress. In addition, initiatives like RiskMetrics and CreditMetrics[25] are pro-
viding some standards in risk management methodologies — however the imple-
mentation of these methodologies is still prohibitively expensive due to the tailor
made nature of their implementations.

On the middleware front, network data models, such as FpML[9] and Fin-
XML[7] are endeavouring to provide standardised message formats for the de-
scription of complex trade data and instruments. Other standards, such as FIX[8],
OFX[19] and BizTalk[1] offer common languages for transactions.

Unfortunately, the most basic of modelling issues are not addressed. Any finan-
cial software application development project will need to begin with basic issues
such as the construction of date calculation routines, the definitions for financial
instruments, the methodology for calculation of profit and loss — issues which

2

should be covered by a common object model3. Some of the advantages flowing
from a common object model would be:

� Multiple systems would be able to use common reference data, position and
limit servers, a VAR server, etc.

� Proprietary option valuation models could be plugged seamlessly into off-
the-shelf systems.

� Proprietary rate curve builders would produce results that are entirely intel-
ligible to all other system components built with the object model.

� Data could be aggregated from various systems for positions, sensitivities
and risk.

From the point of view of the financial industry, the particular area which seems
to be crying out for standardisation is the production of of a good (or indeed any)
standard object model. The standardised network data models, discussed above,
provide some pieces of the solution and, indeed, demonstrate the need for stan-
dardisation and the general acceptance of such an approach in the financial mar-
kets. However, these formats essentially provide a standardised layout for data;
there is still a need for a standard for interpreting the data and providing common
behaviour and meaning.

1.2 How does TARMS Propose to Solve the Problem?

TARMS proposes to publish anObject Model for Finance, as well as an associ-
ated network data model4 and various business process models, placing these in
Open Source(see section3). This will make the models accessible not only to
financial institutions, but also to software development companies, data providers,
consultants etc. The models will cover such areas as:

� Deal Management

� Instrument Modelling

� Risk Management

� Accounting

� Rates

� Dates

� Reference Data
3See appendixA for a discussion of modelling
4However, see section2.2.

3

� Data Management

To address the problems described above, a common model needs general
adoption. Unless a model is imposed by decree, the model needs to withstand peer
review so that it can be voluntarily adopted. Peer review implies open publication
of the model specification.

The Open Source model ensures that the product of this endeavour will be
of the highest standards, both from a technical perspective and from a business
analysis perspective.

1.3 What are the Benefits?

The presence of a standard object model provides benefits to a number of groups.

1.3.1 For Financial institutions

The concept of a ubiquitous object model for the development and integration of
financial software applications and a product embodying this model will, if suc-
cessful, deliver a number of crucial benefits to financial institutions. These are:

� Reduced cost of purchase of software packages. If much of the infrastructure
of financial software is standardised, then development times are reduced,
and consequentially costs are reduced. Indeed, this would also be true for
any software that financial institutions develop internally.

� Reduced cost of ownership of software packages. The cost of installation of
new packages would be reduced by standard interfaces. The cost of mainte-
nance would also be reduced due to reduced data maintenance (data would
be maintained centrally and distributed to subscribing applications).

� Lower risk of purchase. If the risks of incompatibility with legacy systems
are reduced by the existence of standards, then the risk of adding a new
system is reduced. Hence, the consequences of any individual decision will
be smaller, thus leading to quicker decisions.

� Diversification of suppliers. If the above are true, then the risk of buying
systems from lesser known suppliers, or introducing unfamiliar operating
systems and programming languages is reduced by the lower purchase costs,
lower installation time and cost.

� Integration of existing systems. This is made easier by the emergence of
standard adapters, as well as by the existence of common network data mod-
els.

� Reduced costs of operations for the business as a whole. As all systems
within the enterprise become integrated and new functions are added, control

4

and settlement functions are reduced to exception processing, thus consider-
ably improving efficiency.

� Greater control over the trading operations. The current mirage of a tightly
controlled organisation becomes a reality, with all business processes report-
ing on their current status and all decisions made with relevant and timely
information.

� Reduced time to market for new products. Once the benefits of standards
make themselves felt in earnest, it should be possible either to acquire and
install or to develop the infrastructure required to support a new business in
a very short time

� Emergence of modular units. Software components will emerge which pro-
vide the building blocks of systems development.

� Emergence of a reservoir of skilled staff. The pool of relevantly skilled staff
will be greater, so recruitment will be easier, and overall training costs will
be reduced. (Or if they are maintained, then the level of competence will
rise.)

� Reduced time and costs for mergers. Mergers of financial institutions will be
easier, as their systems integration should be far less painful.

� Development of common reference data. Financial institutions will be able
to have all their systems use common reference data.

� Coverage of present and future issues. A standard object model, because of
its purpose and by incremental refinement, can be rich enough to cover the
whole business problem. When new models are designed from the ground
up they inevitably leave things out.

� Elimination of “reinvention of the wheel.” A common object model will
provide standard conventions for things like instrument descriptions and pay-
ment schedules.

1.3.2 For Financial Regulators

From a regulatory point of view a standard object model should create a similar list
of benefits to those enumerated in section1.3.1.

� Stronger players in the financial markets. The benefits described above will
result in stronger players in the financial markets, either due to reduced costs
and therefore higher profitability, or due to increased control within these
organisations and therefore lower levels of exceptional losses, and probably
both.

5

� Reduced regulatory burden for the regulator. The regulatory burden of in-
specting systems and processes will be greatly reduced due to the existence
of standards and benchmarks.

� Improved risk management. Lower costs will lead to a wider adoption of
leading edge risk management.

� Improved risk management systems. Lower development costs will lead
to more competition in the development of risk management systems, thus
improving the accuracy, functionality and scope of available products.

� Reduced regulatory burden for the institution. Once a standard object model
is established, regulatory reporting burdens would be considerably eased for
reporting institutions. Conversely, regulators could introduce greater report-
ing requirements at relatively little additional cost.

1.3.3 For Software Development Houses

The benefits for Software development houses would be:

� Shorter development cycles and an easier implementation cycle. A large
body of common analysis has already been provided and interoperable li-
braries of common function will be available.

� Support for specialisation. The ability to focus on the value added parts of
their products, thus creating a trend towards specialisation.

� Reduced entry hurdles. The lower risk profile of software purchase will
make it easier for small players to break into the business.

� The lower risk of purchase will shorten the sales cycle.

� An easier demonstration process. New products can be painlessly hooked
into an existing infrastructure.

2 What elements Is

elements is the specificationof an object model intended to allow the ready
exchange of complex financial information.

The underlying theme running throughelements is that the specification al-
lows the modelling of complex financial instruments and conventions in terms of
more primitive building blocks.elements is intended to allow the interpretation
of the meaning of financial information, rather than treating financial data as a set
of magical tag values which feed into equally mysterious valuation routines.

Modelling finance in such a way has several benefits. The most essential bene-
fit is that disparate elements become comparable; eg., a variety of instruments can

6

be reduced to future cashflows and compared directly. Additionally, by reducing
financial instruments and conventions to simple building blocks, the elements can
be made extensible; a bond with a non-standard cashflow structure can be easily
added, for example, rather than being dependent on the introduction of an addi-
tional class which handles that particular cashflow structure.

It is, of course, important that additional classes can be added when genuinely
necessary. Designing things in such a way as to allow other programmers to extend
what we have with minimal pain is very important. We do, however, want to give
the sense that most things can be built by configuration, rather than by code, placing
control of the system in the hands of the users, rather than the programmers.

2.1 Scope

Table 1 gives an outline of the intended scope ofelements. Not all of these
features will be available in the first release. Rather, this list gives what we intend
to cover in release 2.0.

Table 1:elements Packages

Utilities A group of util-
ity interfaces useful
across many pack-
ages.

Object Management Object Identity How to recog-
nise and version
objects.

Dynamic Data Handling dynam-
ically modifiable
data.

Reference Data Handling reference
data.

Dates Dates Basic and business
date functions.

Date Rolling Date rolling con-
ventions.

Holidays and Weekends When to roll a date.
Periods Business periods.

Reference Data Locations Languages and lo-
cations.

Currencies
Organisations Parties outside this

institutions.
Accounts For back office and

accounting use.

7

Table 1:elements Packages

Books Parties within the
institution.

Users User identity and
security.

Rate Infrastructure Rates Primitive point
rates.

Rate Curves 1-dimensional rate
collections.

Rate Surfaces 2-dimensional rate
collections.

Instrument Infrastructure Instruments Basic instrument
primitives.

Deals Basic deal mod-
elling.

Contingent Claims Basic option-like
modelling.

Position Infrastructure Positions Basic position
modelling.

Maturity Grids Ways of laying out
positions over time.

Position Adjustments Ways of directly al-
tering positions.

Deal Modelling Loans
Securities
ET Futures
FX
Contingent Claims Options and such-

like.
Equities
Repos
Indexes and Baskets
Complex Contingent Claims
Energy
Commodities

Deal Management Orders
Back Office
Accounting Events

Risks Market Risk
Credit Risk
Liquidity
Risk Factors

8

Table 1:elements Packages

Relative Performance
Partial Derivatives
Limits Limits on positions

or partial deriva-
tives of positions.

elements concentrates on the areas common to all financial systems. There
will be considerable variation between institutions on how certain things are com-
puted and we do not wish to impose a common methodology. However, the pres-
ence of certain items can be modelled, even if we do not specify how these things
are derived. Only the interfaces to the software elements that will provide the cal-
culations for these models strictly need to be specified.

As an example, the procedures used to calculate and allocate profit and loss
will vary from institution to institution. To a certain extent P&L calculations are
part of the business model of the institution and part of the institution’s intellectual
property. It would not be sensible or useful forelements to impose a common set
of procedures. Thepresenceof P&L, however, can be assumed. A common, suffi-
ciently flexible representation of P&L should, therefore, be part of the model. As a
consequence of this, interfaces to P&L construction routines need to be provided.

As another example, the techniques for calculating analytics are likely to vary
from institution to institution. Even something as apparently standard as a yield
to maturity calculation carries hidden assumptions about accuracy and derivation.
Again, elements should not impose a calculation methodology, but rather pro-
vide a means of identifying the analytic and necessary interface to the appropriate
software.

Naturally, there are some calculations that are both truly common and nec-
essary to allow systems to construct other elements using a common methodol-
ogy. Interest rate calculations are an example of genuinely common calculations.
elements should specify these kind of parts of the model.

In addition to truly common calculations, there are calculations that form an
effective standard, even though these calculations could be varied by an institution.
Mark to market P&L is an example of a near-universal standard. These calculations
can supplied as part of the specification or as examples.

2.2 Auxiliaries

As well as the actual object model there are a number of additional items that need
to be provided to makeelements usable. Not all of these auxiliary elements can
or will be provided with the initial release.

elements objects need to be exchanged between programs written in dif-
ferent languages on different platforms. For architectures which use a copying

9

approach — in contrast to reference-based, CORBA-like architectures — anet-
work data model(NDM) or “wire format” is needed to provide an implementation-
neutral means of exchange.

There are existing efforts to produce standard NDMs: FinXML[7] and Fp-
ML[9]. elements does not, and need not, complete with these NDMs. Instead,
if the use of one or other of these NDMs is needed,elements will need to be
able to adapt to the models. Theelements NDM should not attempt to supersede
these existing NDMs, there are several reasons for avoiding such an approach:

� Use of theelements NDM assumes theelements model in all systems.
The use of a standardised NDM allows exchange with components which
are notelements-compliant.

� elements is intended to be complete and is, therefore, complex. Certain
systems may wish to comply with the NDMs, while avoiding the full power
of theelements approach.

� The additional complexity of an object model specification over a network
data model specification tends to ensure thatelements will lag behind the
NDMs in terms of instrument coverage. Users may wish to useelements
for infrastructure, but also use the standard NDMs for more complete ex-
change.

� Use of an existing standard NDM eases the path to employingelements
for new applications and, therefore, widening the potential user-base for
elements.

elements objects need to be storeable in some persistent storage. Although
object-oriented databases, such as Gemstone, are available and would be ideal,
most IT departments are built around relational database management systems
(RDBMS). Persistent storage, therefore, essentially means a normal relational dat-
abase system such as Oracle or Sybase. Adata modelis needed to allow the saving
and loading of objects to and from an RDBMS. This data model may bepartial in
the sense that it is oriented towards what can be cleanly supported by an RDBMS,
rather than covering all possible instances of the object model; for example, exces-
sive use of polymorphism may be prohibited.

The data models — both network and relational — form a large auxiliary body
of work, dependent on the structure of the object model. We intend to publish these
models subsequent to the initial release ofelements.

Theelements object model needs to have a common representation, so that
people can machine-read it. See section4.2for the adopted format.

elements also needs human-friendly documentation. See section5 for a dis-
cussion of documentation. There is also a need for supplementary information,
such as this document, discussing the philosophy and concepts behindelements.

Althoughelements is intended to be architecture-neutral, the need to provide
interfaces for calculation objects and management objects means that an abstract

10

architecture needs to be specified. This abstract architecture needs to be sufficiently
general to allow different physical implementations5. A sample architecture, rep-
resenting one possible physical architecture, also needs to be provided so that a
concrete example illuminates the thinking behind the model.

2.3 What elements Is Not

It is important to emphasise whatelements is not.
elements by itself does not use the information to do anything useful. For

example,elements does not calculate analytics, produce position screens or even
deal entry screens. An application usingelements provides these components.
The are, of course, points whereelements must provide a common methodology
— for example, position construction presupposes a methodology for rolling deals
into positions at end of day. In addition, there are points whereelements touches
upon analmost-common methodology; these methodologies need to be specified
without forcing the model to use them.

elements is not an architecture; the precise process of information routing
and delivery is implementation dependent. We intend to publish a possible archi-
tectural implementation, as a guide to implementors. However, software that uses
elements should not be restricted to this architectural model.

elements is not a mere transaction model. Most open financial models today
are intended for the handling of transactional data. For example, “buy 10 units of
commodity A,” “transfer USD 200 between this account and that account.” There
is no sense of what A or USD actually means in financial terms; they are sim-
ply identifiers for the commodity being moved. In contrast,elements aims to
provide a framework where the various items being traded can be meaningfully
compared.

3 Open Source

Open Source[21] is a recently developed framework for giving software away on
the Internet.

Commercial software companies face many challenges in developing their bus-
iness in today’s fast-moving and competitive industry environment. Recently many
people have proposed the use of an Open Source development model as one possi-
ble way to address those challenges.

Moving to Open Source for a product can potentially provide better value to
customers, including in particular the ability for customers or third parties to im-
prove that product through bug fixes and product enhancements. In this way a
company can create better and more reliable products that are likely to more truly
reflect customers’ requirements.

5In particular, it should not force a choice between message-oriented middleware, such as Rend-
ezvous[26] and distributed object architectures, such as CORBA[20].

11

This is the model adopted by Netscape when they chose to give away their web
server software[16], and is the model used for Linux[14].

Open Source requires all the source code and an executable version of the code
to be available for inspection to all users. The Open Source model encourages
the user community to make comments, fix bugs, suggest improvements etc. The
result is a far more robust product which has not only survived, but actually been
enhanced by peer scrutiny. This process is best described by Eric Raymond in his
paper “The Cathedral and the Bazaar”[24].

From a standards point of view, Open Source provides obvious benefits. As
discussed above, in section1.2, a set of models will only be of use if they become
a de-facto standard. This creates certain necessary conditions:

� The models need to be of sufficient technical quality to inspire confidence;

� The models need to be accessible to all interested parties;

� The investment required in evaluation and adoption of the models needs to
be as small as possible;

� The general adoption of the models must not confer a competitive edge to
any particular group of users;

� The benefits of adoption must be clear.

We believe that the Open Source model of software distribution and equally
importantly the Open Source model of software development go a long way to
achieving these objectives.

The peer scrutiny feature of Open Source ensures that there are no nasty hidden
surprises, as all users become testers and sometimes fixers as well. This ensures
that lessons need only be learnt once. These features have created, both in reputa-
tion and also in reality, some of the most stable and high quality pieces of software
available. Open Source is now synonymous with high quality.

Open Source is by definition free to all. The standard licence types are very
open. The Internet allows for the widest possible distribution in the shortest possi-
ble time.

By providing the model free of charge, there will be little in the way of obsta-
cles to evaluation and adoption of the models.

As TARMS is neither a financial institution nor a large software vendor, consul-
tant or data vendor, we cannot be seen as a threat to the financial community. This
should result in fewer issues of internal politics preventing an honest evaluation of
the models.

3.1 Open Source andelements

Theelements model and model documentation are to be provided to the world
using the Open Source model. From our point of view, Open Source provides some
major benefits:

12

� Open Source reduces cost of ownership. Anyone using the object model is
given the model in source form6 so that they can examine it, follow the re-
lationships between the pieces and even fix it if it is wrong. Contrast this
with a traditional closed API, where you have to take it on faith that every-
thing is OK under the hood. As a result, anyone using the object model is
less vulnerable to the costs ofusmaking a mistake — they can always fix it
themselves.

� Open Source encourages collaboration and contribution. Since other people
can examine the model, they can make enhancements and suggestions. From
our point of view, this represents research that we don’t have to do. We can
incorporate any good enhancements into the next release of the model.

� Open Source allows a “Release early and release often” approach. Early
releases can be presented to the public for examination, feedback and, for
some brave souls, early use. This approach frees us from the need to present
a complete package from the outset.

The Open Source appellation is normally used to describe actual programs,
rather than the models that programs are built upon. Commonly, models are usually
described as “open standards.” However, there are a number of reasons for wanting
to approachelements from an Open Source perspective:

� The choice of UML (section4.1) means that the models are available in
machine-readable form and can be used to generate structural code. This
property tends to encourage a view ofelements as a form of source code.

� elements specifications can be viewed as a form of declarative program-
ming. Again, the nature ofelements suggests source code, rather than a
standards specification.

� Standards tend to be fixed. An underlying aim ofelements is to encourage
experimentation, modification, improvement and feedback — all aims of
the Open Source philosophy. In particular, we wish to encourage the open
publication of model extensions.

For these reasons, it seems more appropriate to place theelements models
under an Open Source licensing structure. Since we wish to allow the use of the
elements model for profit in the form of implementations, we do not wish to
prevent proprietary use ofelements; some care in the license language is needed,
as the standard Open Source licences tend to be couched in terms of source code.

6 Source form for a UML model being, at present, a Rose petal file or, in the future, an XMI
document.

13

3.2 So How do We Make any Money?

Fair question. It looks like we have just given all our intellectual property rights
away. However, note that we are only giving the specification away, along with
documentation and some example code and class libraries. We can still make
money in the following areas:

� Class libraries based onelements. For example, a Java implementation of
elements. These can be sold to anyone who does not want to work through
the specs themselves. The specifications and models we are producing de-
scribe correct, rather than efficient, behaviour; there is likely to be a range of
implementations, with some implementations concentrating on breadth and
some on depth.

� Testing and branding other vendor’s libraries as “elements-Compliant.”

� Components based onelements.

� Education and books.

� Consultancy.

� “Soft” benefits in terms of visibility, etc.

4 Modelling

The general aim ofelements is to provide a consistent model for describing
financial objects. The aim of the model is to provide a single, consistent structure
for financial information, so that this information can be freely exchanged between
diverse applications.

4.1 Modelling Language

The Unified Modelling Language[11, 2] (UML) has been chosen as the notation
method. UML is a common object modelling language distilled from the various
methodologies that were developed in the 90s: Booch, Rumbaugh, OMT, etc. The
developers of these methodologies agreed to pool the features of the methodologies
to provide a single consistent notation, hence the “Unified” in UML. No common
development methodology was agreed upon by the various contributors to UML,
so UML remains a notation, rather than a complete methodology. UML is now
supported by the Object Management Group[20] (the OMG) as the standard object
modelling notation, making UML a likely general standard.

14

4.2 Tools

Rational Rose[3] has been chosen as the basic modelling tool. The choice of Rose
is largely a consequence of a trade-off between price, features and flexibility. There
are richer offerings on the market in terms of features and general software engi-
neering support. Rose, however, is cheap, fairly ubiquitous and a first choice for
those developing object modelling tools. Rose can also be used economically by
a single developer; an important consideration when adoption ofelements by
other developers — as opposed to our development ofelements — is consid-
ered.

The models created by Rose are stored inpetalfiles. Any Rose user can read
in a petal file and examine the model. Many other modelling packages can also
import petal files[10, 15, 18] making the format an obvious exchange medium.7

4.3 Modelling Conventions

UML allows considerable latitude in terms of modelling approach. In order to
ensure consistency, some standard approaches need to be imposed. The modelling
conventions used are discussed more completely in a separate document.[23]

4.3.1 Packages

The basic approach within theelements project is to break the model into pack-
ages containing well-defined areas of functionality. The aim here is to allow users
of elements to partially implement the model — enough for their own purposes.
There is no reason why a bond-trading system, for example, should need to know
about equities or FX options, unless there is some purpose behind the knowledge.
To support this approach, the packages of theelements model need to be broken
into package-based functional units, each stored as a separate petal file. To use the
model for development, the appropriate packages need to be chosen and integrated
into a single model.

Functional packages need to introduce two new elements: new classes and ad-
ditional attributes, operations and associations for existing classes. The additional
elements are called “class extensions” as they extend pre-existing classes. The
UML package model is essentially a system for partitioning name-spaces and does
not support class extensions. To allow a full package model forelements, pack-
ages are implemented as full models with stub classes to take the extensions. A
Rose script allows the merging of models to form a complete model.

7In general, the adoption of the closed petal format runs counter to the general spirit of Open
Source. However, the increasing use of XMI[29] and Rational’s support of XMI promises a truly
open model format in the future.

15

4.3.2 Interfaces and Classes

The modelling structure ofelements has been designed with two major require-
ments in mind:

� elements should be easily translatable into single-inheritance languages,
such as Java.

� elements should be readily extensible. In particular, modellers should not
be locked into a class hierarchy chosen by the model’s originators.

Extensive use of interfaces allows both support for single inheritance and ex-
tensibility. Interfaces are the basis for most of theelements model and are the
primary focus for describing behaviour; operations are described entirely in terms
of interfaces, as are navigable association ends. Classes providean implementation
of an interface. Those wishing to extendelements can add additional classes to
implement interfaces and use them interchangeably with the supplied classes.

5 Documentation

The petal files discussed in section4.2 provide the primary representation of the
elements model. As much as possible, all information on the model is placed in
the petal file. The general aim is to generate documentation from the model itself,
eliminating maintenance problems.

The documentation spaces provided by Rose, unfortunately, only provides fa-
cilities for plain-text documentation. This limitation is likely to prove difficult
when layout and emphasis needs to be specified. Since a large portion ofelements
will have mathematical leanings, the lack of math support is likely to prove very
difficult. Rose’s ability to associate files and URLs with parts of the model is use-
ful, but likely to lead to fragmentation and administration problems.

The process by which documentation is produced is discussed in the docu-
mentation conventions document.[22] LATEX[13, 27] is a typesetting package in
common use in the academic community, noted for its flexibility and mathematics
support. The input to LATEX is plain text surrounded by layout and other typesetting
commands; a format suitable for inclusion in Rose models.

LATEX features very sophisticated mathematical typesetting, making it popu-
lar with those who have to handle elaborate equations: mathematicians, physi-
cists and, potentially, responsible financial modellers. Mathematical expressions
can be added directly into Rose documentation. As an example, the sequence:
$\int^\pi_0 e^{- \xi x^2} dx$ will generate

R �
0
e
��x2

dx in any out-
put documentation.

Automatic documentation generation using Rose models starts with a Rose
script that traverses the model, generating a LATEX source file. This source file,
along with a package designed to interpret the model, can then be processed by
LATEX (and support tools) to generate Postscript or PDF files.

16

References

[1] BizTalk.
http://www.biztalk.org.

[2] Grady Booch, James Rumbaugh, and Ivar Jacobson.The Unified Modeling
Language User Guide. Object Technology Series. Addison-Wesley, 1999.

[3] Rational Corporation.Rational Rose.
http://www.rational.com/products/rose/index.jtmpl.

[4] Distributed Object Component Model (DCOM).
http://www.microsoft.com/com/tech/DCOM.asp.

[5] Edsger Wijbe Dijkstra.A Discipline of Programming. Prentice-Hall, 1976.

[6] The Depository Trust Company.
http://www.dtc.org.

[7] FinXML, The Digital Language for Capital Markets.
http://www.finxml.org.

[8] The Financial Information Exchange Protocol.
http://www.fixprotocol.org.

[9] Financial Products Markup Language.
http://www.fpml.org.

[10] GDPro Object Modelling Tool.
http://www.advancedsw.com/welcome.html.

[11] Object Management Group.What is OMG-UML and Why is it Important?
http://www.omg.org/news/pr97/umlprimer.html.

[12] Industry Standardization for Institutional Trade Commission.
http://www.isitc.org.

[13] Leslie Lamport. LATEX, a Document Preparation System. Addison-Wesley,
second edition, 1994.

[14] The Linux Home Page.
http://www.linux.org.

[15] MagicDraw UML Object Modelling Tool.
http://www.nomagic.com/magicdrawuml.

[16] The Mozilla Organization.
http://www.mozilla.org.

17

http://www.biztalk.org
http://www.rational.com/products/rose/index.jtmpl
http://www.microsoft.com/com/tech/DCOM.asp
http://www.dtc.org
http://www.finxml.org
http://www.fixprotocol.org
http://www.fpml.org
http://www.advancedsw.com/welcome.html
http://www.omg.org/news/pr97/umlprimer.html
http://www.isitc.org
http://www.linux.org
http://www.nomagic.com/magicdrawuml
http://www.mozilla.org

[17] MQSeries Family.
http://www.software.ibm.com/ts/mqseries.

[18] ObjectDomain Object Modelling Tool.
http://www.objectdomain.com/domain/index.htm.

[19] Open Financial Exchange.
http://www.ofx.net.

[20] The Object Management Group. The standards body for CORBA and UML.
http://www.omg.org.

[21] The Open Source Page.
http://www.opensource.org.

[22] Doug Palmer.The Elements Object Model: Documentation Standards and
Techniques, July 1999.
http://www.afs.net.au/intinfo/ObjectModel/documentation.pdf.

[23] Doug Palmer and Danny Cron.The Elements Object Model: Modelling Stan-
dards, July 1999.
http://www.afs.net.au/intinfo/ObjectModel/modelling.pdf.

[24] Eric S. Raymond.The Cathedral and the Bazaar, 1998.
http://www.tuxedo.org/ esr/writings/cathedral-bazaar/cathedral-bazaar.html.

[25] The RiskMetrics Group.
http://www.riskmetrics.com.

[26] TIB/Rendezvous.
http://www.rv.tibco.com/index.html.

[27] The TEX Users Group.
http://www.tug.org.

[28] Nicklaus Wirth. Algorithms + Data Structures = Programs. Prentice-Hall,
1976.

[29] XML Metadata Interchange (XMI).
http://www.software.ibm.com/ad/features/xmi.html.

A What is an Object Model?

Almost any attempt to understand something involves the building of models.
Models are a description of some portion of reality, intended to provide insight into
the workings of that part of the world. Examples of models are the climate models
used to investigate predictions of global warming, the models of black holes from
theoretical physics or the Black-Scholes model for options.

18

http://www.software.ibm.com/ts/mqseries
http://www.objectdomain.com/domain/index.htm
http://www.ofx.net
http://www.omg.org
http://www.opensource.org
http://www.afs.net.au/intinfo/ObjectModel/documentation.% pdf
http://www.afs.net.au/intinfo/ObjectModel/modelling.pdf
http://www.tuxedo.org/~esr/writings/cathedral-bazaar/cat% hedral-bazaar.html
http://www.riskmetrics.com
http://www.rv.tibco.com/index.html
http://www.tug.org
http://www.software.ibm.com/ad/features/xmi.html

There are limits to the human ability to understand complexity. Models are
always simplifications of the phenomena that they seek to describe. A model ship
does not reproduce the ship in miniature, down to every nail and shipworm. A
model describing a trading room is unlikely to describe the effects of a trader’s
lunch, or the romantic gossip of the office. Modelling narrows the problems being
studied by focusing on only one aspect at a time. This is essentially the approach of
divide and conquer[5]: attack a hard problem by dividing it into a series of smaller
problems that you can solve.

Through modelling we achieve four aims:

� Models help us to visualise a system as it is or as we want it to be;

� Models permit us to specify the structure or behaviour of a system;

� Models give us a template that guides us in constructing a system;

� Models document the decisions we have made.

Modelling is a proven and well-accepted engineering technique, being particu-
larly useful in the following areas:

� Models are built to communicate the desired structure and behaviour of a
system;

� Models are built to visualise and control the system’s architecture;

� Models are built to better understand the system being created, often high-
lighting opportunities for simplification and re-use;

� Models are built to manage risk.

Modelling is a central part of all activities that lead up to the deployment of
good software. All software development involves modelling. A word processor
models sentences, paragraphs and fonts. A flight simulator models the behaviour
of an aircraft. A trading system models the flow of deals through a trading room.

Experience with modelling suggests four basic principles:

� The initial choice of model has a profound influence on how a problem is
attacked and how a solution is shaped;

� Every model may be expressed at different levels of precision;

� The best models are connected to reality;

� No single model is sufficient. Every non-trivial system is best approached
through a small set of nearly independent models.

19

Traditional structured analysis and programming separates the description of
the world, the data,from the actions that manipulate the data,the algorithm,an
approach that can be summed up by the title “Algorithms + Data Structures =
Programs.”[28] The thing that is being modelled (known asthe domain) is cap-
tured in adata model,a description of the important entities in the domain, their
attributes and the relationships between them.

This traditional approach is gradually being replaced by a more modern ap-
proach,object modelling.Object modelling ties the description of the domain and
the actions that act upon the domain into a single unit. Rather than try and statically
describe the domain, an emphasis is placed on the behaviour of the elements of the
domain. Object modelling allows natural expressions of generalisation — “both
individuals and companies have similar legal obligations, up to a point, and can
be treated in similar ways” — and substitution — “as far as individual transport
goes, I can substitute a bicycle for a car without it changing the nature of what I
am doing.”

Generalisation and substitution (known, technically, aspolymorphism) can be
used to make object models robust and extensible. Using polymorphism, substitu-
tions and changes can be made without affecting other parts of the model.

An example financial model might model a deal by associating it with basic in-
formation such as the dealer, the counterparty, identification numbers and an asso-
ciated financial instrument. The instrument can be any modelled instrument: loans,
FX, options, repos. The objects representing the instruments form a hierarchy of
financial instruments, with the elements common to all instruments at the top of
the hierarchy and specialisations for securities, equities, derivatives, etc. forming
subclasses below the common instrument model. A deal can query its associated
instrument for information such as (for example) its mark to market value, with
each instrument type responding in a different way.

Using the above model, a new instrument can be added without disturbing
the overall structure of the model. Provided the model of the new instrument can
answer the same sorts of questions as other models, no other part of the model
needs to be changed.

Object modelling provides a powerful way of describing and designing soft-
ware. Inheritance provides a method for analysing and grouping functionality.
Polymorphism allows flexibility and robustness.

20

	Introduction
	What are the Pieces of the Solution?
	How does TARMS Propose to Solve the Problem?
	What are the Benefits?
	For Financial institutions
	For Financial Regulators
	For Software Development Houses

	What Elements Is
	Scope
	Auxiliaries
	What Elements Is Not

	Open Source
	Open Source and Elements
	So How do We Make any Money?

	Modelling
	Modelling Language
	Tools
	Modelling Conventions
	Packages
	Interfaces and Classes

	Documentation
	What is an Object Model?

