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Abstract

The Andorra Kernel Language (AKL), also known as the Agents Kernel Language, is a
logic programming language that combines both don’t know nondeterminism and stream
programming.
This thesis reports on the design and construction of an abstract machine, the DAM, for
the parallel execution of AKL programs. Elements of a compiler for the DAM are also
described.
As part of the development of the DAM, a bottom-up abstract interpretation for AKL and a
logic semantics for the AKL, based on interlaced bilattices have also been developed. This
thesis reports on the abstract interpretation and the logical semantics.

This thesis is less than 100,000 words in length, exclusive of tables, bibliography and ap-
pendices.
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Chapter 1

Introduction

Logic Programming [Kow74] and its practical realisation in Prolog [Rou75] introduced a new paradigm
to computer science. Logic programming has a declarative model, where programs are represented by
relationships between entities, rather than by instructions on how to solve problems (the imperative model).
Prolog and logic programming have found ready use in areas where problems can be understood in terms
of relationships between interacting parts: expert systems, natural language recognition, theorem proving.

An example logic program (in Prolog), which can be used to find paths through a graph, is:

arc(a, b).
arc(b, c). arc(b, d).
arc(c, e). arc(c, g).
arc(d, f). arc(d, g).
arc(e, g).

path(X, Y) :- arc(X, Y).
path(X, Y) :- arc(X, Z), path(Z, Y).

Each statement in the program is termed aclause. Groups of clauses, with the same name and number
of arguments form apredicate. Predicates are normally referred to asname/args, eg.path/2 .

The program consists of a database of facts, thearc/2 predicate, and a means of constructing paths,
thepath/2 predicate. In English,path/2 can be read as “there is a path from X to Y if there is an arc
from X to Y, also there is a path from X to Y if there is an arc to some intermediate location, Z, and a path
from Z to Y.”

This program can be queried by giving it a goal, such as?-path(a, f) , which can be interpreted as
“is there a path froma to f ?” A Prolog interpreter essentially acts as a theorem-prover, attempting to find a
proof for the goal. Clearly, there is some trial-and-error involved and one of the most interesting aspects of
Prolog, and logic programming in general, is its inherent nondeterminism. In searching for a path froma
to f , the Prolog interpreter will attempt to construct a series of arcsa → b, b → c , c → e, e → g. At this
point, there are no arcs which lead out fromg, and the Prolog interpreter is unable to satisfy either part of
the path definition. The interpreter must backtrack to a suitable point, and attempt to construct an alternate
route tof ; in this casea → b, b → d, d → f .

As an alternative, the program can be interrogated with a query such as?-path(c, X) , which can
be interpreted as “what nodes can be reached fromc?” A Prolog interpreter will construct the first available
solution from the definition ofpath/2 and return with the answerX = d. If another answer is requested,
then the interpreter backtracks to produceX = g andX = g again (derived from the pathc → e, e →
g). Similarly, a goal such as?-path(X, f) will give all the nodes that can reachf . The declarative
programming ofpath/2 allows it to be used for several different purposes, purposes which would have to
be explicitly programmed into imperative languages.

Declarative programming also allows a certain amount of order independence in its definitions. For
example, in thepath(X, Y) :- arc(X, Z), path(Z, Y) clause, there is no reason why the
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4 CHAPTER 1. INTRODUCTION

arc(X, Z) part must be evaluated before thepath(Z, Y) part. Although standard Prolog always
evaluates parts of a body in strict left to right order, more advanced versions of Prolog, such as NU-Prolog
[ZT86] or SICStus Prolog [SIC88] allow a user-defined order of evaluation.

Rather than order independence, parts of goals can be evaluated in parallel, giving Prolog an inherently
parallel character. There are essentially two forms or parallelism extractable from Prolog programs: And-
parallelism attempts to evaluate individual clauses in parallel; Or-parallelism attempts to parallelise the
nondeterminate matching of clauses, evaluating several possible branches simultaneously.

The introduction of parallelism into Prolog introduces several difficulties, especially in the case of and-
parallelism. Variables in Prolog are single assignment variables; once given a value, the variable does not
change. Single assignment variables are similar to variables as used in mathematics, representing a common
value at all points where they are used. In the case ofarc(X, Z), path(Z, Y) theZ variable is shared
by both parts of the clause. If both parts are run in parallel, then some means of synchronising the two parts
must be found.

A huge variety of attempts to solve the various problems of parallelism in logic programming have been
made over the years. The Andorra/Agents Kernel Language (AKL) [Jan94] is an attempt to unify many of
these attempts, as well as provide a general formal structure for handling logic programming. This thesis
presents an implementation of the AKL, designed for parallel execution.

1.1 Thesis Outline

This thesis is a report on the implementation of a parallel abstract machine for the AKL.
Chapter2 provides an introduction to the various forms of parallelism that logic programming languages

are capable of. Chapter3 is a description of the Andorra model and the AKL.
The basic motivation behind the thesis is the design of an abstract machine, the DAM, for the parallel

execution of AKL programs. A description of the DAM can be found in chapter5.
A compiler for the abstract machine is discussed in chapter6. Parts of the DAM can be expensive to

execute, especially the machinery that is used to handle nondeterminism. The compiler uses an abstract
interpretation to gather data about the entire program before performing the compilation, enabling more
efficient ordering of the goals within clauses, and the early selection of determinate clauses.

The abstract interpretation uses a logical semantics for the AKL based on bilattices. Bilattices allow an
extension to the normal two-valued Boolean logic that can capture the more complex behaviour of the AKL.
This logical semantics is described in chapter4, and soundness and completeness theorems are provided
for the AKL. Despite being a by-product of the attempt to produce the DAM, this semantics is probably the
most interesting aspect of this thesis.

Original contributions in this thesis are the concept of variable localisation in the DAM, the use of bit-
mapped clause sets for clause indexing, the broad type abstract domain and the bilattice formulation of the
AKL’s logical semantics.

1.2 Some Preliminaries

This section is intended to provide a convenient reference to the standard terminology used to describe logic
programs. Most of this terminology is derived from Lloyd [Llo84].

1.2.1 First Order Logic

Most logic programming has first order logic as a foundation. This section provides an informal guide to
the terminology of first order logic.

First order theories are built fromvariables, constantsandfunctionandpredicatesymbols. Functions
and predicates have anarity, which is the number of arguments that they take. Atermis defined recursively
as: a constant is a term and a variable is a term; iff is a function with arityn andt1, . . . , tn are terms then
f(t1, . . . , tn) is a term. Agroundterm contains no variables.

An atomp(t1, . . . , tn) is constructed from a predicatep with arityn and the termst1, . . . , tn. A formula
is defined recursively byA, ¬F , F ∧G, F ∨G, F ← G, F ↔ G, ∃xF and∀xG whereA is an atom,x is
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a variable andF andG are formulae. The meaning of the conjunctions is:¬ is negation,∧ is conjunction
(and),∨ is disjunction (or),← is implication and↔ is equivalence. The expression

∨
s∈S F (s) means

F (s1)∨· · ·∨F (sn) for all s ∈ S, similarly for
∧

s∈S F (s). ∃xF means there exists anx for whichF is true.
∀xF means thatF is true for allx. A formula isclosedif all variables are quantified by∃ or∀. By an abuse
of notation∃F or ∀F can be taken to mean thatF is quantified over all variables that occurF . An atom, or
the negation of an atom is called aliteral. A clauseis a formula of the form∀x1 · · · ∀xp(A1 ∨ · · · ∨An ←
B1 ∧ · · · ∧Bm). A definite clauseor program clausehas the form∀x1 · · · ∀xp(A← B1 ∧ · · · ∧Bm).

An interpretationconsists of the domain of the interpretation (D), an assignment of an element ofD to
each constant in the theory, an assignment of an element ofD to eachDn for each function of arityn in
the theory and an assignment of either true or false to eachDn for each predicate of arityn. A Herbrand
interpretationsimply has a domain of all the constants and functions in the theory and interprets a constant
c asc and a functionf(t1, . . . , tn) asf(t1, . . . , tn).

An interpretationI is amodelfor a set of closed formulasS if applying the values of the interpretation
to eachF ∈ S results inF evaluating to true.I modelsS is denoted byI |= S. A Herbrand modelfor S is
a Herbrand interpretation that modelsS. Herbrand models have the convenient property that sets of clauses
are only unsatisfiable if they have no Herbrand models.

1.2.2 Prolog

Prolog is the original logic programming language. Most other logic programming languages introduce
further elements of syntax and execution model to the common Prolog base.

Constants in Prolog are represented by initial lower case letters or numbers, eg.foo or 2.2 . Functions
are represented by a lower case functor, and a sequence of arguments in parentheses, eg.f(a, b) ; some
function symbols can be written as infix operators, eg.A + B is equivalent to+(A, B) . Variables start
with upper case letters or underscores, eg.X or . Variables starting with underscores are anonymous
variables, each different from the other. Lists are denoted by[ e1, . . . , en] , with thee1, . . . , en being the
elements of the list, eg.[1, 2, 4, 8] . The construction[ e1, . . . , em | T ] , is a partial list, where
e1, . . . , em comprise the head elements of the list andT is the tail, eg.[push(X) | R] .

Clauses are written asH :- A1, . . . , An whereH is the head of the clause andA1, . . . , An is the
clause body, with eachAi a literal. A clause with no literals is called afact. The normal logical meaning
for a clause is∀XH ← ∃Y (A1 ∧ · · · ∧ An) whereX is the set of all the variables that occur in the head,
andY is the set of all the variables that appear in the body only.

A substitutionis a mapping from variables to terms, written as{V1/T1, . . . , Vn/Tn}, whereVi is a vari-
able andTi is a term. If a substitutionθ is applied to a termT , written asTθ then all instances of variables in
θ which are found inT are replaced by the corresponding term. Eg.f(A, g(X,Y )){A/f(a, Y ), X/Y } =
f(f(a, Y ), g(X,Y )). Substitutions can be composed to form other substitutions, with the composition ofθ
andσ written asθσ. A variable in a substitution isbound.

A substitutionθ is aunifier for a set of termsT if {Tiθ : Ti ∈ T } is a singleton. Eg.{A/a,B/c} is a
unifier for {f(A, c), f(a,B), f(A,B)}. Themost general unifierfor a set of termsT , written as mgu(T )
is the substitutionθ such that all other unifiers ofT can be composed fromθ and some other substitutionφ;
θφ = σ. Theunificationof two termsT andS is the computation of mgu(T, S).

A Prolog program is evaluated by means ofSLD-Resolution. A goal consists of a sequence of literals
G1, . . . , Gn. Each step in SLD-Resolution consists of selecting a literal from the goal,Gi and finding a
clauseH :- Ai, . . . , Am whereGi andH are unifiable, with most general unifierθ. The new goal is
then(G1, . . . , Gi−1, A1, . . . , Am, Gi+1, . . . , Gn)θ. If the goal eventually dwindles to an empty list, thenθ
is ananswer substitutionforG1, . . . , Gn.

The function which decides whichGi to select for expansion is called thecomputation rule. Prolog
uses a computation rule that always selects the left-most literal. A computation rule isfair if a literal will
always eventually be selected; the Prolog computation rule is not fair.

An SLD-Resolution fails when there are no clauses that match the selected atom. In such a case, the
computationbacktracks: it backs up a step, and selects an alternate clause to try. If no alternate clause exists,
then the computation backs up another step, until a new clause is found, or until all steps are eliminated
and the entire computation fails. The order in which clauses are selected is called theselection rule. Prolog
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uses a strict top-to-bottom selection rule. As forward execution and backtracking alternate, the computation
builds a tree called anSLD-tree.

An attraction of SLD-Resolution is that it can be shown to correctly compute all the answer substitutions
for a goal. SLD-Resolution issoundin the sense that any computed answer substitution is logically implied
by the program. SLD-Resolution with a fair computation rule iscompletein the sense that any possible
correct answer substitution is always eventually computed.

Thecutallows pruning within a Prolog program and is added to a clause by

H :- A1, . . . Ai, ! , Ai+1, . . . , An

If all the literals to the left of the cut have been eliminated, then the cut prunes the SLD-tree, removing any
alternate clauses which could be found forA1, . . . , Ai+1 and any alternate clauses forH .

1.2.3 Constraints

Prolog essentially uses a Herbrand interpretation, with a few concessions to arithmetic, to decide whether a
goal is satisfiable. Substitutions and unification allow an answer to be computed. However, logic program-
ming can be extended to cover a wider range of interpretations.Constraint Logic Programming[JL87]
extends logic programming to handle a variety of constraint systems, where constraints can be arbitrary
closed formulae built from primitive predicates. Aconstraint theoryis an interpretation of the constraint
domain. A constraintθ is satisfiable in a constraint theoryC if C |= θ. A constraintθ entailsanother
constraintσ if C |= θ → σ.

Substitutions can be seen to be a special kind of constraint, with{V1/t1, . . . , Vn/tn} being replaced
by the constraint{V1 = t1 ∧ · · · ∧ Vn = tn}. The constraint theory ofHerbrand equalityinterprets the
equality predicate as equality on Herbrand terms.

1.2.4 Lattices

Lattices are a generalisation of ordered sets and are useful in describing the logical semantics of logic
programming. This characterisation of lattices is taken from [Llo84].

A relationR on a setS is apartial order if xRx, xRy ∧ yRx→ x = y andxRy ∧ yRz → xRz for all
x, y, z ∈ S. A posetis a set with some partial ordering.

If S is a poset with partial order≤ thena is anupper boundofX ⊆ S if x ≤ a for all x ∈ X . Similarly,
a is alower boundofX if a ≤ x for all x ∈ X . X may not always have an upper or lower bound, depending
on the nature of the poset. Theleast upper boundof X is the smallest possible upper bound onX and is
denoted by lub(X). Thegreatest lower boundofX is the largest possible lower bound ofX and is denoted
by glb(X).

A posetL is acomplete latticeif lub(X) and glb(X) exist for allX ⊆ L. A complete lattice has atop
element, lub(L), denoted by> and abottom element, glb(L), denoted by⊥.

A mappingT : L → L is monotonicif x ≤ y → T (x) ≤ T (y) for all x, y ∈ L. A fixpointof T is
an elementa ∈ L whereT (a) = a. The least fixpointof T is defined as lfp(T ) = glb({x : T (x) = x}).
Similarly, thegreatest fixpointof T is defined as gfp(T ) = lub({x : T (x) = x}).

X ⊆ L is directedif every finite subset ofX has an upper bound inX . T is continuousif T (lub(X)) =
lub(T (X)) for every directed subsetX of L.



Chapter 2

An Overview of Parallel Logic
Programming

This chapter presents a general overview of the bewildering variety of parallel logic programming systems,
with the exception of those based on the Andorra principle, which are discussed in chapter3.

Most parallel logic programming systems are based on the familiar Prolog and attempt to provide a
degree of transparent parallelism. In principle, there are two basic forms of parallelism which can be
exploited in logic programs.Or-Parallelismattempts to derive several answers to a non-determinate goal in
parallel.And-Parallelismattempts to execute several parts of a goal in parallel. In turn, and-parallelism can
take two subsidiary forms:Independent and-parallelismevaluates conjunctions that are independent of each
other (ie. no shared variables).Dependent and-parallelismevaluates conjunctions that share information.

Most models of parallelism in logic programming languages view the computation as an and-or tree
[Con83]. The computation tree consists of alternating layers of and- and or-nodes. Conjunctions of goals
running in parallel are viewed as and-nodes. Disjunctions of possible answers are regarded as or-nodes,
with each or-branch representing a choice.

2.1 Or-Parallelism

Or-Parallelism normally takes a logic program and attempts to transparently evaluate successive or-branches
in the computation tree in parallel.

An example of a program where or-parallelism can be exploited is the traditional ancestor program,
shown in figure2.1. The query?-ancestor(cedric, gustavus) can proceed in parallel as each
call to parent(X, Z) produces a new crop of possibilities.

The normal view of or-parallelism is that of several processors, calledworkers, standing ready to explore
or-branches. An or-parallel computation normally proceeds by evaluating a query until a nondeterminate
call is reached. If there are idle workers, several clauses can be evaluated in parallel. When clauses are
evaluated in parallel, multiple bindings may be made to a single variable. The essential problem in or-
parallelism is how to resolve the multiple binding problem.

2.1.1 The Hash Window Binding Model

The hash window binding model was developed by Borgwardt [Bor84] and is used in the Argonne Na-
tional Laboratory’s parallel Prolog [BDL+88] and the PEPSys system [WR87]. Each alternative or-branch
maintains a hash table, called a hash window, for storing conditional bindings. When a process makes a
binding to a variable that other processes may be able to bind to, the binding is stored in a hash window.
Dereferencing a variable involves searching up through the chain of hash windows until a binding is found.
The hash window model differs from the other models presented below (sections2.1.2, 2.1.3and2.1.4) in
that the extra data structures used to handle multiple bindings are associated with the search-tree rather than
with the worker.

7
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parent(jemima, rose).
parent(jemima, bill).
parent(cedric, rose).
parent(cedric, bill).
parent(cedric, alonzo).
parent(betty, alonzo).
parent(rose, fredrick).
parent(rose, david).
parent(mark, fredrick).
parent(mark, david).
parent(bill, peter).
parent(betty, peter).
parent(fredrick, gustavus).

ancestor(X, Y) :- parent(X, Y).
ancestor(X, Y) :- parent(X, Z), ancestor(Z, Y).

?-ancestor(cedric, gustavus).

Figure 2.1: An Example Program for Or-Parallelism

By itself the hash window system is very inefficient, as every dereference to a possibly shared variable
needs to work through the ascending chain of hash windows. The shallow binding [BDL+88, WR87]
optimisation reduces the need for entries in hash windows. Once a workers starts on a branch of the tree,
any variables that it creates and then binds need not be entered into the hash window, as the variable is only
visible to the creating worker. The worker can trail variables and backtrack, provided that it does not export
any or-branches to another worker.

Scheduling using hash windows is very flexible. A context switch, where a worker switches to an
unexplored part of the computation tree simply involves changing the hash table that the worker uses.

A computation for the example from figure2.1using hash windows is shown in figure2.2. This com-
putation has two workers, which are currently exploring alternate branches in the or-tree.

2.1.2 The Binding Array Model

The binding array model has been used in both one version of the SRI-Model [War87] and the Aurora
system [LBD+90]. Each worker maintains an array of bindings, with shared variables having the same
index into the array across workers.

When a variable that has not been conditionally bound is conditionally bound, a new binding entry
is added to the top of the array, and the variable is associated with the entry. Bindings are stored in the
associated array entry for that worker. Two workers share the same bindings to the extent that their binding
arrays contain the same entries. Each or-node stores the current top of the array. Another worker can acquire
an or-branch from a worker by synchronising its bindings up to the index maintained in the or-node. An
example of the binding array model, using the example from figure2.1and three workers is shown in figure
2.3.

When a worker finishes a branch of the computation tree, it needs to be rescheduled to work on another
branch of the tree. Moving to another branch of the tree involves unwinding the binding array up to the
shared or-node between the original and new branches, and then acquiring the new binding array from the
new branch. Optimal scheduling for the binding array model, therefore, means that a worker has to move
as small a distance as possible from its original position in the tree, to avoid the copying overhead of a large
move.

The Manchester scheduler [CS89] keeps two global arrays, indexed by worker number. The first array
contains the tasks that each worker has available for sharing, along with information on how far the task
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ancestor(Z, gustavus)

Z=rose

ancestor(Z1, gustavus)

ancestor(Z, gustavus)

Z=bill

parent(cedric, Z)

parent(Z, gustavus) parent(Z, Z2)parent(Z, Z1)parent(Z, gustavus)

parent(cedric, gustavus)

ancestor(cedric, gustavus)

ancestor(cedric, gustavus)

Z=rose Hash Window Unexplored Branch

Z1 = fredrick

Node Processor Failed Branch

Figure 2.2: Example Or-Parallelism Using Hash Tables
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parent(cedric, gustavus)

ancestor(cedric, gustavus)

ancestor(cedric, gustavus)

parent(cedric, Z)
Z at 0

ancestor(Z, gustavus) ancestor(Z, gustavus)

parent(Z, gustavus) parent(Z, Z2)parent(Z, gustavus)
parent(Z, Z1)

Z1 at 1

ancestor(Z1, gustavus) ancestor(Z1, gustavus)

fredrick

Node Processor Failed Branch

W1 W2

W3

Unexplored Branch

W1 W2 W3

0

1

2

rose bill

david

rose

Figure 2.3: Example Or-Parallelism Using Binding Arrays
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is from the root of the computation tree. The second array contains information about the status of each
worker, and how far it is from the root if idle. When a worker becomes idle, it is assigned the task with the
least migration cost. If there are no available tasks, workers shadow active workers; when work becomes
available, the shadowing workers can cheaply pick the work up.

Binding arrays provide a more complex scheduling problem than hash windows, which can be rapidly
moved to any unexplored branch. Binding arrays, however, provide the advantages of constant access time
to bindings. Intuitively, binding arrays should be superior to hash windows in cases where there are few
workers, leading to fewer large context changes.

2.1.3 The Multi-Sequential Machine Model

The multi-sequential machine model was proposed separately by Ali [Ali86] as the multi-sequential ma-
chine and Clocksin (further refined by Alshawi) as Delphi [AM88], Both models are designed to allow
or-parallelism with a minimal amount of communication between processes. Clever initialisation of work-
ers allow workers to distribute or-branches between themselves with little communication.

The multi-sequential machine model starts a number of workers executing the same program. Each
worker is given a virtual worker number and the number of worker within its group. When an or-branch
is reached, the workers split the work amongst themselves; each worker knows how many workers are in
the group, and what its worker number is, so the workers can reach agreement on which branches to take
without communication. As an example, suppose that 5 workers reach a three way branch, then two workers
could be assigned to the first branch (to further split when encountering another branch), two to the second
and one to the third. Balanced, left-biased and right-biased allocation schemes are all possible allocation
strategies.

When a worker becomes idle after completing all solutions, it is assigned to a local manager. The local
manager collects a group of idle workers and, when the group is large enough, requests work from a busy
worker group. The state of the busy worker group is copied to the new group and then the new group is
started as an independent worker group.

The Delphi model is designed to avoid workers having to exchange state. The model uses bit strings,
calledoraclesto control the search space, which has been pre-processed into a binary search tree. A central
manager sends a worker an oracle, giving a path to search. The path is searched to a given depth, and then
either solutions, failure or additional oracles are returned to the manager. As the program executes, the
oracles grow to represent deeper and deeper branches.

When a worker receives an oracle, it can re-synchronise itself by backtracking along its current oracle
until the two oracles are the same and then following the path of the new oracle to where processing has
started. Following the new path may be expensive.

2.1.4 The Copying Model

The copying model was proposed by Ali [AK90] for the Muse or-parallel Prolog system. The copying
model, rather than trying to maintain shared bindings for the same variable uses copying of the entire
worker’s workspace to allow multiple bindings.

Copying is similar to the binding array model, except that all the workspace is synchronised rather than
just the variable bindings. When an or-branch becomes available for parallel execution, another worker can
acquire the or-branch by asking for a copy of the stacks used in the computation. Only the parts of the
stacks that differ between the two workers need to be copied. The worker acquiring the work is then in the
same state as the original worker; it can then backtrack and take the next available or-branch.

Although complete copying is expensive, the corresponding advantage to using copying is that, once
copying has finished, each worker is largely independent of all other workers and can dereference and bind
variables without any overhead. Performance results suggest that the copying method is often superior to
the binding array method [AK91b].
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diff(c, 0).
diff(x, 1).
diff(A + B, DA + DB) :-

diff(A, DA),
diff(B, DB).

diff(A * B, (DA * B) + (A * DB)) :-
diff(A, DA),
diff(B, DB).

?-diff((x * 5) + (2 * x), D).

Figure 2.4: An Example Independent And-Parallel Program

qsort([P | U], S) :-
partition(P, U, U1, U2),
qsort(U1, S1),
qsort(U2, S2),
append(S1, S2, S).

?-qsort([5, 6, 2, 1, 9, 0, 3], S).

qsort(R, SR)

partition(P, I, L, R)

qsort(L, SL)

append(SL, SR, S)

SR

SL

R

L

Figure 2.5: Example Independent And-Parallelism Call-Graph

2.2 Independent And-Parallelism

Independent and-parallelism (IAP) attempts to transparently exploit the parallelism which appears when
two goals in a conjunction have no common variables. If the goals share no variables, then the two goals
can be evaluated in parallel without the need for any synchronisation between processes.

An example program, a fragment of a differentiator, which can be run with IAP is shown in figure2.4.
The clauses that handle compound expressions each calldiff/2 twice recursively. If the expressions are
independent of each other (ground, or no shared variables) then the recursive differentiations can be run in
parallel. If the recursive differentiations do contain shared variables (eg.?-diff(X * X, D) ) then the
recursive differentiations must be run in sequence.

The central problem in IAP is the construction of a call-graph showing which literals in a clause must
be run in sequence and which can be run in parallel. An example call-graph is shown in figure2.5. The
largest difference in implementations of IAP is whether the call-graphs are constructed by run-time checks,
static analysis at compile-time, or by some hybrid of the two.
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2.2.1 Run-Time Detection of Independent And-Parallelism

The flow of dependency between subgoals can be detected at run-time and the call-graph adjusted dynami-
cally.

An example of the run-time approach is Lin and Kumar’s bit-vector model [LK88]. The bit vector
model essentially associates a token with each variable in a clause. The tokens are passed from literal to
literal, with a literal becoming available for execution when it holds the tokens for all the shared variables
that it uses. If a literal fails, backtracking to the literal which was the producer of a token allows the skipping
of irrelevant speculative computation.

In the bit vector model, each variable in a clause is associated with a bit vector which has bits set for
each literal in the clause which uses the variable. Each literal has a bit-vector mask associated with it,
indicating the position of the literal in the clause. In the example shown in figure2.4, the third clause has
four variables,A, B, DA andDBwith the bit vectors of10 for A andDAand01 for B andDB. The literal
masks are00 for diff(A, DA) and10 for diff(B, DB) . If a variable is bound to a ground term, then
the bit vector for the variable is set to all zeros. If two variables become dependent, then the bit vectors of
both variables are or-ed together.

The finish vector is a bit vector where the bits are set to0 as each literal completes. In the above
example, the finish vector is11 at the start of the clause,01 if diff(A, DA) has completed and00 when
all literals have completed.

Detecting whether a literalG is ready to run consists of seeing whether(∨vV ) ∧ vG ∧ F is zero for all
variablesV in G, wherevV is the bit vector for variableV , vG is the literal mask andF is the finish vector.

In the example, ifdiff/2 is called with?-diff(x + c, D) , thenvA = 00, vB = 00, vDA =
10, vDB = 01, asA andB are both ground. Fordiff(A, DA) the readiness condition is(00 ∨ 10) ∧
00∧ 11 = 00. Fordiff(B, DB) the readiness condition is(00∨ 01)∧ 10∧ 11 = 00. As both readiness
conditions are zero, both literals can be run in parallel.

If the call is ?-diff(X + X, D) thenvA = 11, vB = 11, vDA = 10, vDB = 01, asA andB are
dependent on each other. Fordiff(A, DA) the readiness condition is(11 ∨ 10) ∧ 00 ∧ 11 = 00. For
diff(B, DB) the readiness condition is(11 ∨ 01) ∧ 10 ∧ 11 = 10. The first literal is ready to run,
the second literal must wait. After the first literal completes, the finish mask is set to01 and the readiness
condition for the second literal is now(11 ∨ 01) ∧ 10 ∧ 01 = 00. The second literal can now be safely
evaluated.

2.2.2 Static Detection of Independent And-Parallelism

Dynamic detection of IAP is expensive, especially the tests for groundness and variable independence,
although groundness tests can be cached [DeG84]. An alternative to expensive run-time checks is to perform
a static analysis of the data-flow dependencies of the program for some top-level goal and generate a single
call-graph for the goal.

The method used in [Cha85] is to use a static analysis where variables are classified into sets of ground
variables, independent variables and groups of variables that may be dependent on each other. The most
pessimistic assumptions are made about variable aliasing, ensuring safe parallel execution.

2.2.3 Conditional Graph Expressions

The purely dynamic models of IAP tend to produce excess run-time testing. Static analysis restricts the
amount of parallelism available. Hybrid methods, such as program graph expressions [DeG84] and condi-
tional graph expressions (CGEs) [Her86a, Her86b] attempt to tread a path between the two extremes.

CGEs consist of compiled expressions specifying the conditions under which a set of literals or other
CGEs can be run in parallel; these conditions can be evaluated at run-time. CGEs have the form( C =>
G) whereG is a list of literals and other CGEs andC is a list of conditions. The conditions can be any
of the tests:true , false , ground( Vars ) or indep( Vars ) . The testground( Vars ) is true if
all variables inV ars are ground. The testindep( Vars ) is true if all variables inV ars are mutually
independent.

If the conditions in a CGE all evaluate to true, then the list of literals or CGEs can be executed in
parallel. Otherwise, the list must be executed sequentially.
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p(a).
p(b).

q(c).
q(d).

r(X, Y) :- p(X), q(Y)

?-r(X, Y)

Figure 2.6: An Example Program Causing a Cross-Product

Applying the principles of CGEs to the example differentiator produces:

diff(A + B, DA + DB) :-
(indep(A, B), indep(A, DB), indep(B, DA), indep(DA, DB) =>

diff(A, DA)
diff(B, DB)

)

This CGE will detect most IAP, although it will miss some parallelism that the bit-vector method would
catch. Eg. the parallelism in?-diff(X + c, X + 0) will be detected by the bit-vector method, but
will be rejected by theindep(X, X) test.

Conditional graph expressions are well suited to optimisation by compile-time analysis, as the expres-
sions can be grouped and manipulated by various forms of static analysis [MH90, XG88].

Conditional graph expressions also provide a means for handling nondeterministic and-parallelism. A
failure while executing sequentially can be handled in the normal backtracking manner. A failure inside a
CGE which is executing in parallel can cause all parallel calls to be killed and the computation to backtrack
to the first choice outside the CGE. A failure outside a parallel CGE which backtracks into the CGE needs
to search (right to left) along the list of goals in the CGE for a choice; the goals to the right of the choice
then need to be restarted.

2.2.4 Combining Independent And-Parallelism and Or-Parallelism

Independent and-parallelism and or-parallelism are essentially orthogonal in their effects on a program.
The main implementation difficulty that combining the two presents is the effect of two subgoals running
in parallel producing multiple answers.

For example, in the program shown in figure2.6 the subgoalsp(X) andq(Y) can clearly be run in
and-parallel. However, if or-parallelism is allowed in these subgoals then each subgoal can independently
produce a set of or-parallel bindings,{{ X/a }, { X/b }} for p(X) and{{ Y/c }, { Y/d }} for q(Y) . These
solutions need to be combined via some sort of cross-product operation:

{{ X/a }, { X/b }} ⊗ {{ Y/c }, { Y/d }} =
{{ X/a, Y/c }, { X/a, Y/d }, { X/b, Y/c }, { X/b, Y/d }}

The And/Or process model [Con83], and its practical realisation in OPAL [Con92] uses a tree of and-
and or-processes to collect solutions. Or-processes collect incremental copies of non-ground terms.

The PEPSys system [WR87] uses hash windows (section2.1.1) to maintain or-parallelism. Creating a
cross-product essentially means creating a cross-product of the candidate hash windows. IAP ensures that
there will be no conflicting variable bindings in the hash windows created by different and-branches. Join
cells are used to link hash windows for each possible element of the cross-product.

The ACE system [GH91] is a combination of conditional graph expressions and the copying model for
or-parallelism. A group of workers executing a set of IAP subgoals makes a single area, which can be
copied in total.
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p(0, []).
p(N, [N | R)) :- N > 0, N1 is N - 1, p(N1, R).

sum([], S, S).
sum([N | R], S, S1) :- S2 is S + N, sum(S2, S1).

?-p(5, L), sum(L, 0, S).

Figure 2.7: An Example Dependent And-Parallel Program

The Reduce-OR model [Kal87] maintains sets of variable bindings, called tuples, for each branch of
an and-parallel computation. These tuples are lazily combined where the execution graph joins to make a
cross product.

The AO-WAM [GJ89] builds a tree of and- and or-nodes, extended by crossproduct- and sequential-
nodes. The crossproduct-nodes combine solutions in a similar manner to the Reduce-OR model.

2.3 Dependent And-Parallelism

Dependent and-parallelism (DAP) or stream and-parallelism takes a view of parallelism similar to Hoare’s
communicating sequential processes [Hoa78]. Subgoals within a clause are executed as individual pro-
cesses, with shared variables acting as conduits of information between the processes.

An example program capable of DAP is shown in figure2.7. If called with a number and variable as
arguments, thep/2 predicate produces a stream of numbers, with the variable being progressively instan-
tiated to form a list. Thesum/3 predicate can incrementally consume this list of numbers, constructing a
partial sum as each number is produced byp/2 . The shared variableL acts as a communication channel
between the two subgoals, synchronising the two processes.

Clearly, this example is expected to act as a producer-consumer pair, withp/2 acting as the producer
andsum/3 acting as the consumer. However, Prolog-like logic programming languages are inherently
modeless, and conditionally bind variables while searching for a solution. Ifsum/3 is called with an
uninstantiated first argument, then it will try the first clause, conditionally binding the variable to[] .
However,p/2 is also executing at this time and will attempt to bind the variable to[5 | L1] . Some sort
of mode information is needed to identify the expected producers and consumers of bindings.

If a producer of a binding makes a conditional binding, then this binding will be used by any consumer
which shares a variable with the producer. If a failure occurs, then some form of distributed backtracking is
needed, with consumers being resynchronised.

2.3.1 Committed Choice Languages

The distributed backtracking problem, described above, led to an abandonment of the standard Prolog-style
nondeterminism (don’t know nondeterminism) in exchange for a form of nondeterminism which ensures
that there is only a single solution to a query, eliminating the problems of backtracking (don’t care non-
determinism). If there are several solutions to a goal, then all solutions, bar one, are nondeterminately
eliminated. The computation then commits to the remaining solution. This process of commitment gives
the class of languages that support this feature the name of Committed Choice Languages (CCLs).

The various committed choice languages: Concurrent Prolog [Sha83], Parlog [CG86], GHC [Ued86]
and KL1 [UC90] all share similar features. Over time, these languages have devolved as features that
are difficult to implement and do not seem to be needed by programmers are stripped from them. An
entertaining review of the CCLs and their devolution can be found in [Tic95].

CP [Sar87] is a formal unification of the various features of don’t know and don’t care nondeterminism,
and the various synchronisation features that different CCLs supply. The Andorra model, discussed in
the next chapter, and Parallel NU-Prolog [Nai88] have similar behaviour to CCLs, but allow restricted
nondeterminism.
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Syntax

Clauses in CCLs are written as

H :- G1, . . . , Gn | B1, . . . , Bm

whereH is the head of the clause,G1, . . . , Gn is theguardandB1, . . . , Bm is thebody. The | element
is the commit operator, separating the guard from the body. When a predicate is called, all clauses in the
predicate attempt to solve their guards in parallel. If a guard succeeds, then any other non-failed guards are
pruned, and the computation commits to that clause and begins executing the body atoms. The program in
figure2.7, rewritten in the CCL style would be:

p(0, []).
p(N, [N | R)) :- N > 0 | N1 is N - 1, p(N1, R).

sum([], S, S).
sum([N | R], S, S1) :- | S2 is S + N, sum(S2, S1).

Flat CCLs restrict guard atoms to being primitive operations, such as unification and arithmetic compar-
ison, as opposed to deep guards, where the guards may be arbitrary literals. Examples of flat CCLs are FCP
[YKS90] and Flat GHC [UF88]. The main motivation for introducing flat languages is the difficulty of im-
plementing deep guards. A full implementation of deep guards requires separate binding environments for
each guard computation, making it as least a hard a problem as or-parallelism. Crammond’s JAM [Cra88]
for Parlog only allows one deep guard to be evaluated at a time, allowing deep guards, but eliminating a
source of parallelism.

Modes

CCLs also need to provide some mechanism for specifying which subgoals are producers of bindings and
which are consumers — modes. Each CCL provides different means of supplying mode information. The
different ways of declaring modes, roughly in decreasing order of flexibility (and implementation difficulty)
are:

1. Read Only VariablesConcurrent Prolog provides read-only variable annotations. Variables that are
marked with a? in a literal are read-only and may not be bound by that literal. In the example in
figure2.7, the initial query would be written as?-p(5, L), sum(?L, 0, S) .

2. Ask:Tell Clauses in Concurrent Prolog may have an Ask:Tell part at the start of the clause. Con-
straints in the Ask part of the clause must be supplied externally to the clause. The Tell part of the
clause atomically exports the bindings that it contains. The first clause ofp/2 in the example would
be written asp(N, L) :- N = 0 : L = [] .

3. SuspensionThe GHC and KL1 suspension rule forces a clause to suspend when a guard attempts to
bind a variable that is external to the clause. The first clause ofp/2 in the example would be written
asp(N, L) :- N = 0 | L = [] . Suspension is similar to the Ask:Tell notation above, but
the body part is not guaranteed to be atomic.

4. Mode Declarations Parlog and Parallel NU-Prolog both use mode declarations on predicates to
indicate which arguments are input and which are output. Arguments which are marked as input
cause the goal to suspend until the argument is sufficiently instantiated to satisfy any candidate guards
without requiring further variable bindings. if the guard attempts to bind the argument. In the above
example,sum/3 has a mode of?-mode sum(?, ?, ↑) in Parlog and?-lazyDet sum(i,
i, o) in Parallel NU-Prolog and calls tosum/3 would suspend until the first argument is bound,
although the argument need not be ground. Mode declarations are less flexible than rules based on
individual variables. The program below is an example of a GHC program which can not be given a
simple mode declaration:



2.3. DEPENDENT AND-PARALLELISM 17

and(X, Y) :- X = 0 | Y = 1.
and(X, Y) :- X = 1 | Y = 0.
and(X, Y) :- Y = 0 | X = 1.
and(X, Y) :- Y = 1 | X = 0.

2.3.2 Reactive Programming Techniques

Dependent And-Parallelism allows an array of programming techniques, that are impossible in ordinary
Prolog-like systems, with their left-to-right computation rule. Since goals can be suspended until informa-
tion becomes available, networks of processes can be created, passing streams of data between themselves.

Stream Programming

Lists in DAP can be regarded as streams of data, with producers and consumers acting as processes passing
streams of messages to each other. As an example, the following predicate (in GHC) filters an incoming
stream, removing any adjacent duplicate elements:

unique([], O) :- true | O = [].
unique(I, O) :- I = [ ] | O = I).
unique([X, X | I1], O) :- true | unique([X | I1], O).
unique([X, Y | I1], O) :- X ∼= Y | O = [X | O1], unique([Y | O1], O).

Duplicating streams is a matter of repeating variables in a goal. For example,
unique(I, U), replace(U, a, b, U1), replace(U, a, c, U2) has tworeplace/4
filters, each being fed from the same stream contained inU.

Themerge/3 predicate can be used to combine two streams into a single stream:

merge([], I2, O) :- true | O = I2.
merge(I1, [], O) :- true | O = I1.
merge([X | I1], I2, O) :- true | O = [X | O1], merge(I1, I2, O1).
merge(I1, [X | I2], O) :- true | O = [X | O1], merge(I1, I2, O1).

This predicate relies on the commit operator eliminating alternate clauses when a guard has been satis-
fied. When a binding appears on an input stream, an eligible clause is committed to, regardless of the state
of the other input stream. The merge predicate produces a nondeterminate merging of the two streams, with
the order of the output stream matching the order that elements appeared on the two input streams.

Object Oriented Programming

Objects can be represented as processes which communicate using streams of messages. A predicate re-
ceives the messages and responds to each message appropriately; the clauses of the predicate provide the
method definitions for the object. An example of an object implementation is:

io([], ) :- true | true.
io([open(Name) | R], ) :- true |

open file(Name, Handle),
io(R, Handle).

io([close | R], Handle) :- true |
close file(Handle),
io(R, x).

io([write(C) | R], Handle) :- true|
write file(Handle, C),
io(R, Handle).
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This object represents a simple file stream, which receives anopen message, followed by a sequence of
write messages, followed by aclose message. Access to the object is granted by the message stream.
If there are to be several objects that use this object, then each object produces a message stream and the
message streams are merged. An example to theio/2 predicate in use is
?-io([open(foo)|Io],x), merge(Io1, Io2, Io), writer1(Io1), writer2(Io2).
In this example, the object is represented by the stream onIo . The two writers produce streams of messages
which are merged and forwarded to theIo stream.

Incomplete Messages

Incomplete messages [Sha86] extend the object-oriented model described above by providing a mechanism
for back communication. If an uninstantiated variable is included in the arguments of a message, that
variable may be bound by the predicate which is handling the object’s messages. An example of incomplete
messages is this stack implementation:

stack([], ) :- true | true.
stack([push(X) | R], S) :- true | stack(R, [X | S]).
stack([pop(X) | R], S) :- true | S = [X | S1], stack(R, S1).
stack([top(X) | R], S) :- true | S = [X | ], stack(R, S).

In this example, if thepop message is sent with an uninstantiated variable as its argument, then the
variable will be bound to whatever is on top of the stack.

2.3.3 Don’t Know Nondeterminism and Dependent And-Parallelism

The CCLs described above all rely on don’t care nondeterminism to avoid the sticky problems of distributed
backtracking. Other approaches combine don’t know nondeterminism and DAP.

Ptah [Som87, SRV88, Som89] uses strict mode declarations to identify the producers and consumers of
variable bindings. The strict mode declarations allow a data-flow graph to be built for the computation. If a
part of the computation fails, the source of the original binding that caused the failure is known and which
parts of the computation must be retried and which parts need to be restarted. can be deduced.

Ptah allows the reactive programming of section2.3.2. However, the amount of mode information
needed to identify producers and consumers can make for a quite onerous task, removing the attractive
conciseness of logic programming.

Shen’s Dynamic Dependent And-Parallel Scheme (DDAS) [She92, She93] provides transparent ex-
ploitation of and-parallelism. Conceptually, the scheme is a token-passing system similar to the IAP model
discussed in section2.2.1. Each variable has a producer token which is initially given to the left-most and-
node that refers to the variable. As and-nodes complete, producer tokens are passed on to the next and-node
that refers to the variable. If an and-node which does not hold the producer token for a variable attempts
to bind the variable, it suspends until an and-node to the left binds the variable, or it acquires the producer
token.

In practise, the DDAS is implemented by using a variety of the CGEs discussed in section2.2.3. CGEs
are used to partition goals into independent groups of goals, with the goals within the groups potentially
dependent on each other. Rather than assign producer tokens to each variable, each group has a single
producer token that passes from left to right along the group.

The DDAS can be regarded as an attractive form of IAP; it transparently provides the same behaviour as
Prolog, without some of the restrictions of IAP. The reproduction of Prolog-like behaviour means that the
reactive programming techniques discussed in section2.3.2are not possible, although allowing a flexible
computation rule for the DDAS is an intriguing idea.

2.4 Other Forms of Parallelism

The preceding sections have discussed the major forms of parallelism inherent in logic programs. These
forms of parallelism are those considered throughout the rest of this thesis. However, there are a number
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of additional approaches to parallelism in logic programs; a brief summary of these approaches is given
below.

Both or- and independent and- parallelism attempt to transparently extract parallelism from Prolog-
like programs. Dependent and-parallelism, despite the use of CCLs, still attempts to supply an implied
model of parallelism. Process-oriented logic programming languages, such as Delta-Prolog [PN84] or CS-
Prolog [FF92] use explicit message passing operators to transmit and receive messages between essentially
unconnected Prolog processes.

Data-flow models, such as Kacsuk’s 3DPAM [Kac92] or Zhang’s DIALOG [ZT91], model the and-or
tree by means of tokens passing between the nodes of the tree.

Reform parallelism [Mil91] is a form of vector parallelism where recursively defined predicates are
flattened into iterative loops and constructed so as to allow execution on a vector parallel processor.
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Chapter 3

The Andorra Model

The basis of the Andorra model can be reduced to a single statement:“Do the determinate bits first.”
This simple statement provides both a way of unifying dependent and- and or-parallelism and an efficient
computation rule for logic programs. The Andorra Kernel Language allows nondeterministic independent
and-parallelism to be also united under the Andorra flag.

Dependent and-parallelism is much simpler to implement when the computation is determinate. The
problems of distributed backtracking over several cooperating computations tends to prevent mixing depen-
dent and- and or-parallelism, with the exceptions of DDAS and Ptah. Independent and-parallelism avoids
the major problems of distributed backtracking by prohibiting and-parallel calls from influencing each other.
As a result, dependent and-parallel languages tend to be committed choice languages — Concurrent Prolog,
Parlog, GHC — which enforce determinism.

The roots of the Andorra model can be found in Naish’s thesis [Nai86]. Naish proposed that a desirable
computation rule would choose atoms in the following order: tests that were likely to fail, deterministic
calls, non-deterministic calls with a finite number of solutions, non-deterministic calls likely to cause loops
and uninstantiated system predicates (eg. negation). The Andorra model collapses this list into a simple
distinction between deterministic calls and non-deterministic calls. This distinction can be made by simple
run-time tests, making the Andorra model an efficient computation rule [Nai93].

Early versions of the Andorra model for dependent and-parallelism go back to Yang’s P-Prolog [YA87],
where sets of alternate clauses were chosen by means of explicitly grouping them together. Naish’s paral-
lel NU-Prolog [Nai88] is also implicitly organised about the Andorra model; goals delay until sufficient
information becomes available to commit to a single clause.

3.1 The Basic Andorra Model

The Andorra model was first named by D.H.D. Warren at a Gigalips meeting in 1987, who pointed out that
determinism could be made the basis of transparently exploiting dependent and-parallelism. This model is
theBasic Andorra Modelor BAM. A description of the BAM can be found in Santos Costa’s thesis [SC93].
The BAM recognises two basic operations:

• Any literals that can be detected as deterministic are reduced (in parallel, if possible)

(A1, . . . , Ai, . . . , An)⇒ (A1, . . . , B1, . . . , Bm, . . . , An)

• If no literals are detected to be deterministic, then a goal is selected, and forked into a set of alternate
configurations.

(A1, A2, . . . , An)⇒ (B11, . . . , B1m1 , . . . A2, . . . , An) ∨ · · · ∨ (Bl1, . . . , Blml
, . . . A2, . . . , An)

As an example of the BAM, consider the program

21
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p(b, a, a).
p(a, b, a).
p(a, a, b).

and the query?-p(X, Y, Z), p(Z, W, W) . Initially, p(X, Y, Z) could match any of the
three clauses ofp/3 . However, this query can be computed determinately, since only one clause ofp/3
matchesp(Z, W, W) . The first step of a BAM computation, therefore, is the reduction step
p(X, Y, Z), p(Z, W, W) ⇒ p(X, Y, b) . The goal is nowp(Z, Y, b) which now also
matches a single clause ofp/3 , and can also be reduced with a final substitution of{W/a, X/a, Y/a, Z/b}.

The BAM is an idealised description of the Andorra model. To become a practical system, an instance
of the BAM needs to supply such details as how determinism is detected and how extra-logical features
(eg. cut) are handled. There are a number of applications of the BAM: Andorra-I [SCWY91b] is a parallel
version of the BAM which executes Prolog programs. Andorra-I includes a sophisticated pre-processor
that allows Andorra-I programs to act exactly like a Prolog program. Andorra Prolog [HB88] is an initial
attempt to apply the Andorra model to Prolog. Pandora [BG89] uses the Andorra model in conjunction with
Parlog. NUA-Prolog [PN91] is a basic application of the BAM to Prolog, using negations instead of cuts.

3.2 Andorra Prolog

Andorra Prolog [HB88] is an instance of the BAM. Andorra Prolog provides semantics for cut and commit
operators, missing from the BAM, and formalises the execution model in terms of a series of configurations.
While never fully implemented, unlike Andorra-I, Andorra Prolog is of interest as one of the predecessors
of the AKL, discussed in section3.4. In particular, the configuration-based approach forms a natural bridge
between Andorra Prolog and the AKL.

3.2.1 Execution Model

The execution model presented here is based on that of Haridi and Brand [HB88]. The implicit node-tree
built in [HB88] has been made explicit; the explicit node-tree makes the relationship between Andorra
Prolog and the AKL (section3.4) more apparent.

Programs in Andorra Prolog consist of a set of definite clauses in the form:H :- G,B The head,
H , is a single atom. The guard,G, and the body,B, are sequences of atoms, withG restricted to simple
tests, such as==/2 , </2 or atom/1 .

Given a substitutionθ, an atomA, and a clauseS ≡ H :- G,B, S is acandidate clausefor A if
Aθ unifies withH , andG is satisfiable in the context ofθσ, whereσ = mgu(Aθ,H). In an Andorra Prolog
computation, each atom in a goal is associated with a list of candidate clauses.

A goal is a pair(A,C), whereA is an atom andC = [C1, . . . , Cn] is a list of candidate clauses forA.
(A,C) is determinateif C contains a single clause. Aconfigurationis (L, θ,N)mode whereL is a list of
goals,θ is a substitution,N is a list of child configurations andmode is one ofAnd, Or or Failure. An
initial query,?- A1, . . . , An, is written as([(A1, C1), . . . , (An, Cn)], ε, [])And, where eachCi is the set of
candidate clauses forAi andε is the empty substitution.

An Andorra Prolog computation then proceeds using the operations of failure, and-reduction, and-
extension and or-extension, in the following order of priority:

1. Failure: If the configuration is(L, θ,N)And and there is a goal inL with an empty clause list, then
the configuration is changed to(L, θ,N)Failure.

2. And-reduction: If the configuration is(L, θ,N)And and there is a determinate goal,
Li = (A, [H :- G,B]) in L, thenAθ is unified withH to give a new substitutionσ. The
configuration is then changed to
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n(0, 0). (C1)
n(N, s(R)) :- N > 0, N1 is N - 1, n(N1, R). (C2)

e(0). (C3)
e(s(s(E))) :- e(E). (C4)

?-n(3, V), e(V).

([(n(3, V) , [C2]), (e(V) , [C3, C4])], ε, [])And

⇓
([(n(2, R) , [C2]), (e(V) , [C4])], { V/s(R)}, [])And

⇓
([(n(1, R1) , [C2]), (e(R1) , [C3, C4])], { V/s(R), R/s(R1)}, [])And

⇓
([(n(0, R2) , [C1]), (e(R1) , [C4])], { V/s(R), R/s(R1), R1/s(R2)}, [])And

⇓
([(e(R1) , [])], { V/s(R), R/s(R1), R1/s(R2), R2/0}, [])And

⇓
([(e(R1) , [])], { V/s(R), R/s(R1), R1/s(R2), R2/0}, [])F ailure

Figure 3.1: An Example And-Parallel Andorra Prolog Execution

whereG = G1, . . . , Gl, B = B1, . . . , Bm, CA is the candidate clause list for atomA andL′
j is Lj

with all clauses in the candidate clause list forLj which are not compatible withσ removed.

The guard part of the clause needs to be included in the final configuration, since it may include such
atoms asX < 1, whereX is a variable.

3. And-extension: If the configuration is(L, θ,N)And and there are no determinate goals inL then the
configuration is changed to(L, θ,N)Or.

4. Or-extension: If the configuration is([(A,C), L2, . . . , Ln], θ,N)Or andC = [C1, . . . , Cm] is non-
empty then the configuration is changed to:

([(A, [C2, . . . , Cm]), L2, . . . , Ln], θ,N · [([(A, [C1]), L2, . . . , Ln], θ, [])And])Or

whereN ·M is the concatenation of two lists.

The Andorra Prolog execution model builds a tree of nodes, with and- and failure-nodes at the leaves and
or-nodes at higher levels of the tree. Since or-extension chooses the left-most and first clause for extension,
the Andorra Prolog search rule closely follows the Prolog search rule.

Andorra Prolog computations are implicitly parallel. And-parallelism occurs when several and-reduc-
tions are applied to a single configuration concurrently. Or-parallelism occurs if separate configurations
are reduced or extended concurrently. Example Andorra Prolog computations for and-parallelism and or-
parallelism are shown in figures3.1and3.2respectively.

3.2.2 Commit

Commits are permitted in Andorra Prolog immediately after a guard; a clause can be written as
H :- G, | , B. Tests in the guard,G, must be completely solved before the commit operator is
applied, although unifications may proceed. When the guard is completely solved, the commit operator
prunes all other candidate clauses from the list of candidate clauses. If several candidate clauses have
solved guards, then a single clause is (nondeterministically) chosen. An example of the commit operator is
shown in figure3.3.

At or-extension, unsolved guards and their commit operators are carried with the or-extended con-
figurations. When the guard is solved, the commit operator eliminates all other nodes in the parent or-
configuration. See figure3.4for an example of commit occurring after or-extension.
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nondet(a). (C1)
nondet(b). (C2)

?-nondet(X).

([(nondet(X) , [C1, C2])], ε, [])And

⇓
([(nondet(X) , [C1, C2])], ε, [])Or

⇓
([(nondet(X) , [C2])], ε, [([(nondet(X) , [C1])], ε, [])And])Or

⇓
([], ε, [([], { X/a }, [])And, ([(nondet(X) , [C2])], ε, [])And, ])Or

⇓
([], ε, [([], { X/a }, [])And, ([], { X/b }, [])And])Or

Figure 3.2: An Example Or-Parallel Andorra Prolog Execution

max(X, Y, X) :- X >= Y, | . C1
max(X, Y, Y) :- X =< Y, | . C2

?-max(5, 5, Z).

([(max(5, 5, X) , [C1, C2])], ε, [])And

⇓ Both5 >= 5 and5 =< 5 are solved.
([], { Z/5 }, [])And

Figure 3.3: Example of a Andorra Prolog Commit

p(X, a) :- X >= 0, | . C1
p(X, b) :- X =< 0, | . C2

q(0). C3
q(2). C4

?-p(Y, Z), q(Y).

([(p(Y, Z) , [C1, C2]), (q(Y) , [C3, C4])], ε, [])And

⇓
([(p(Y, Z) , [C1, C2]), (q(Y) , [C3, C4])], ε, [])Or

⇓(
[], ε,

[
([{Y >= 0, | }, (q(Y) , [C3, C4])], { Z/a}, [])And,
([{Y =< 0, | }, (q(Y) , [C3, C4])], { Z/b }, [])And

])
Or⇓(

[], ε,

[
([], { Z/a}, [([{Y >= 0, | }], { Y/0 }, [])And, ([{Y >= 0, | }], { Y/2 }, [])And])Or,

([], { Z/b }, [([{Y =< 0, | }], { Y/0 }, [])And, ([{Y =< 0, | }], { Y/2 }, [])F ailure])Or

])
Or⇓ Choose one of the possible commits

([], ε, [([], { Z/a}, [])Or, ([], { Z/b }, [([], { Y/0 }, [])And, ])Or])Or

Figure 3.4: Example of a Andorra Prolog Commit after Or-Extension
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The commit operator, as defined for Andorra Prolog, does not exactly act in an intuitive manner. For
example, the program

p(a) :- | .
p(b) :- | .

works in a similar manner to the GHC program,

p(X) :- true, | , X = a.
p(X) :- true, | , X = b.

rather than the expected1 GHC program,

p(X) :- X = a, | , true.
p(X) :- X = b, | , true.

Explicit test predicates are needed to make the Andorra Prolog program act like a GHC program. The
program above can be rewritten as

p(X) :- X == a, | .
p(X) :- X == b, | .

The ==/2 predicate only accepts input bindings. The predicate is therefore forced to wait untilX is
bound.

3.2.3 Cut

The cut operator (!) is similar to the Prolog cut operator. The use of cut in Prolog assumes a left-to-right
computation rule. For example, given the program:

p(1) :- !.
p(2).

the query?-p(X), X = 2 would fail in Prolog, but succeed in an Andorra Prolog computation. This
problem occurs whenever cuts which remove solutions from the program occur — red cuts, as opposed to
green cuts which simply eliminate redundant solutions.

The solution suggested in Haridi and Brand’s description of Andorra Prolog is to have a relaxed form
of cut, one which acts as a normal cut during or-extension, but relaxes and acts in a similar manner to a
commit during and-reduction.

The implementation of Andorra-I [SCWY91b] provides a mechanism that enforces the semantics of the
Prolog cut. A preprocessor identifies red cuts, and inserts a sequencing operator (written as:: ) into
the code. All goals to the left of the sequencing operator must complete before any goals to the right are
executed. In the above example, the query would be re-written as?-p(X) :: X = 2 , producing
Prolog-like behaviour.

1Expected in the sense that unifications to the left of the commit operator are intuitively part of the guard.
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3.3 The Extended Andorra Model

The BAM described in section3.1 is simple, but it cannot detect deep determinism. For example, it would
be useful to extract determinism from a program such as:

p(X, Y, a) :- member(X, Y).
p(X, Y, b) :- not member(X, Y).

In this case, a sufficiently instantiated call top/3 would be deterministic. However the BAM execution
model would not recognise this possibility2, andp/3 would have to wait for forking. Generally, implemen-
tations of the BAM are flat, relying on head arguments and a few test predicates to detect determinism.

The BAM also prevents nondeterministic independent and-parallelism, as a single goal is chosen for
forking.

The Extended Andorra Model (EAM) was designed by Warren to allow the detection of most parallelism
within a logic program. A Description of the EAM can be found in Santos Costa’s thesis [SC93]. EAM
computations are formally defined in terms a set of rewrite rules on trees ofboxes:.

And-box: [∃X : θ ∧ C1 ∧ · · · ∧ Cm] where eachX is the set of variables local to the and-box,θ is a set of
constraints on variables external to the and-box and eachCi is either an atom or box.

Or-box: {C1 ∨ · · · ∨Cn} where eachCi is a box.

Choice-box: {G1 % C1 ∨ · · · ∨Gn % Cn} where % is a guard operator (either cut or commit), eachGi

is a list of guard atoms and boxes and eachCi is a list of body atoms and boxes.

The EAM computation proceeds by applying the following rewrite rules:

Reduction:

A⇒ {[∃Y1 : θ1 % Ci] ∨ · · · [∃Yn : θn % Cn]}

Reduction expands an atom into an or-box.

Promotion:

[∃X : S ∧ [∃Y,W : Z = θ(W ) ∧ C] ∧ T ]⇒ [∃X,W : X = θ(W ) ∧ S ∧ [∃Y : C] ∧ T ]

Promotion moves constraints from an inner (determinate) and-box to an outer and-box.

Substitution:

[∃X,Z : Z = θ(W ) ∧ C]⇒ [∃X : Cθ]

Substitution imposes a constraint (substitution) on a variable and propagates the consequences of the
substitution throughout the tree.

Forking:

[∃X : {C1 ∨ · · · ∨ Cn} ∧G]⇒ {[∃X : C1 ∧G] ∨ · · · ∨ [∃X : Cn ∧G]}

Forking distributes a guard across a conjunction. Forking usually implies that the configuration in-
side the or-box has suspended on some variable. Forking is normally immediately followed by a
promotion.

2Unless there was anextremelysophisticated compiler available.
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The EAM prevents over-eager computation by two control rules. An and-box suspends if it attempts to
constrain a variable external to it. Suspension of an and-box allows dependent and-parallelism. Forking is
always tried last, allowing the Andorra principle to be applied.

If the producer of a variable binding can be identified, then the computation can be allowed to eagerly
fork, with a system oflazy copyingonly copying the configuration of a forking operation when a forked
box suspends. The forking rule then becomes:

[∃X : {C1 ∨ · · · ∨ Cn} ∧G]⇒ {[∃X : C1 ∧G] ∨ [∃X : C2 ∧Gp] ∨ · · · ∨ [∃X : Cn ∧Gp]}

where theGp are references to the originalG.
To allow lazy copying, variables need to be classified as eitherguessable, non-guessableor other. Vari-

ables are marked as guessable if it is certain that the variable will be constrained nondeterministically.
Variables are marked as non-guessable if forking should only be tried as a last resort. Variables can either
be marked by some programmer supplied annotation, or by some pre-processor.

3.4 Andorra Kernel Language

The EAM represents an idealised model of parallelism in logic programming. The EAM is designed to
extract the maximum amount of parallelism from logic programs without much attention being applied to
efficiency or control. An actual implementation of the EAM needs to refine parts of the raw EAM execution
model and provide some means for controlling execution.

The Andorra Kernel Langauge (AKL) is an instance of the EAM which uses guards to provide a simpler
control model. Guarded clauses are used to separate guards and bodies, to allow deep guards and to identify
which variables can be constrained. A number of different guard operators are permitted, describing a
variety of pruning behaviours. The odd behaviour of the Andorra Prolog pruning operators (section3.2.2)
has been replaced by a simple set of well-behaved pruning rules.

The EAM suspends an and-box when a external variable is about to be constrained. Since the AKL
uses guard operators to separate the speculative parts of a clause from the body of the clause, the AKL can
speculatively pre-compute parts of a clause which would be suspended in a pure EAM computation.

The model for AKL presented here is a combination of the original Kernel Andorra Prolog (KAP)
described by Haridi and Janson [HJ90] and the later Andorra Kernel Language [JH91]. The model retains
the constraint-based description of the original KAP, but includes such elements as thebagof/3 predicate
introduced by the AKL. The AKL terminology of using? for wait operators, | for commit operators
and -> for conditional operators, instead of:, | and! respectively, has been used.

3.4.1 AKL Programs

Guarded clauses are built using the following grammar (seq. is an abbreviation of sequence)
< guarded clause> ::= < head> :- < guard>< guard operator>< body>

< head> ::= < program atom>
< guard> ::= < seq. of atoms>
< body> ::= < seq. of atoms>
< atom> ::= < program atom>|< constraint atom>|< aggregate>

< aggregate> ::= bagof (< variable>,< body>,< variable>
< guard operator> ::= ? | -> | |

Constraint atomsare formulas in some constraint system. The choice of the constraint system used is
made by the implementation, but it at least needs to be capable of using the Prolog constraint system of
syntactic equality on terms. The existence of some constraint algorithm is assumed (unification in the case
of equality) that can establish the consistency of conjunctions of constraints, and simplify them as required.

Program atomsare atomic formulas of the formp(t1, . . . , tn) wheret1, . . . , tn are terms. In a guard
or body, a formula of the formp(t1, . . . , tn) can be treated as being equivalent toX1 = t1, . . . , Xn =
tn, p(X1, . . . , Xn), whereX1, . . . , Xn are distinct variables. The head atom can be rewritten as
p(X1, . . . , Xn) :- X1 = t1, . . . , Xn = tn.



28 CHAPTER 3. THE ANDORRA MODEL

A predicate definitionis a finite sequence of guarded clauses, each with the same head atom and guard
operator. Aprogramis a finite sequence of predicate definitions.

The bagof/3 predicate only allows variables as first and third arguments. More complex forms
of bagof/3 are possible, where terms are used instead of variables in these arguments. However, the
more complex forms ofbagof/3 can be reduced to the simple form by rewritingbagof(T1;G;T2) as
bagof(V ; (G, V = T1);U) , U = T2.

3.4.2 Execution Model

The AKL execution model is described in terms ofconfigurations, nested expressions built from atoms, and
terms called boxes. Configurations can be built from the following grammar:

< configuration> ::= < and-box>|< or-box>
< and-box> ::= and(< seq. of local goals>;< constraint>)<set of vars>
< or-box> ::= or

(
< seq. of configurations>

)
| fail

< local goal> ::= < atom>|< choice-box>|< bagof-box>
< choice-box> ::= choice

(
< seq. of guarded goals>

)
| fail

< bagof-box> ::= bagof(< variable>;< goal>;< variable>)
< guarded goal> ::= < configuration>< guard operator>< seq. of atoms>

< goal> ::= < configuration>|< local goal>|< guarded goal>
In the following rules,R andS are used to denote sequences of configurations or goals,θ andσ are

used to denote constraints,% to represent a generic guard operator,G to represent guard sequences of
goals,B to represent body sequences of goals andV,W,X andY to represent sets of variables.

In an and-boxand(R; θ)V the constraint,θ, is quietif it only constrains variables occurring inV .
The execution model starts with a query,G, being written asand(G; true)vars(G) and proceeds accord-

ing to the following set of transition rules:
Theconstraint imposition rule

and(R, op(σ), S; θ)V ⇒ and(R,S;σ ∧ θ)V

is applied wheneverop(σ) is a constraint operation producing the constraintσ, andσ and the environment
of the box are compatible.

Theenvironment synchronisation rule

and(R, op(σ), S; θ)V ⇒ fail

occurs wheneverσ and the environment of the box are incompatible.
The local forking rule

A ⇒ choice
(

and(G1; true)V1
% B1, . . . ,and(Gn; true)Vn

% Bn

)
converts a program atomA which does not occur in the body of a guarded goal into a choice-box.
A :- G1 % B1, . . . , A :- Gn % Bn is the predicate definition ofA, with the arguments ofA
substituted for formal parameters and the local variables of theith clause replaced by the variables inVi.
The ordering of clauses within the predicate definition is important and must be preserved. The local forking
rule is similar to a call in an ordinary Prolog execution.

Thefailure propagation rule

and(R, choice() , S; θ)V ⇒ fail

may be used to fail an and-box whenever one of the child choice-boxes has failed.
Thecut rule

choice
(
R, and(;σ)V -> B,S

)
⇒ choice

(
R, and(;σ)V -> B

)
and thecommit rule

choice
(
R, and(;σ)V | B,S

)
⇒ choice

(
and(;σ)V | B

)
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are the pruning rules of AKL and are only applied ifσ is quiet. The cut rule provides behaviour similar
to the Prolog cut (! ), and eliminates solutions after its application. The commit rule provides symmetrical
pruning behaviour similar to the commit of GHC.

The above rules provide a mechanism for building a configuration corresponding to the guards which
match some query. The Andorra model specifies that any guard which is now determinate can be promoted,
and any constraints applied to the immediate environment. Thedeterminate promotion rule

and
(
R, choice

(
and(; θ)V % B

)
, S;σ

)
W
⇒ and(R,B, S;σ ∧ θ)V ∪W

is the Andorra part of AKL. If the guard operator is a conditional (-> ) or commit ( | ) guard, thenθ
must be quiet for the determinate promotion rule to take effect.

In addition to the determinate promotion rule, some mechanism is need to allow the controlled execution
of non-determinate branches of the computation, after all other determinate avenues of computation have
been explored. Thenon-determinate promotion rule

and
(
R1, choice

(
S1, and(;σ)V ? B,S2

)
, R2; θ

)
W
⇒

or
(

and(R1, B,R2; θ ∧ σ)V ∪W , and
(
R1, choice

(
S1, S2

)
, R2; θ

)
W

)
is used to provide controlled don’t-know non-determinism. The non-determinate promotion rule is only
applied to an and-box that isstable. An and-box is stable if no other rule can be applied to the and-box, and
no external constraint can affect the and-box.

Theguard distribution rule

choice
(
R, or

(
G,S

)
% B, T

)
⇒ choice

(
R,G % B, or

(
S
)

% B, T
)

is applied to distribute the effects of a non-determinate promotion up to the next choice-box.
Bagof-boxes provide a form of aggregation. Bagof-boxes can be created by encountering abagof/3

program atom:

bagof(X,B, Y ) ⇒ bagof
(
X ; and(B; true){X} ;Y

)
Bagof-boxes are controlled by thebagof rules

and(R, bagof(X ; fail ;Y ) , T ; θ)V ⇒ and(R, T ; θ ∧ Y = [])V

and
(
R1, bagof

(
X ; or

(
S1, and(;σ)W , S2

)
;Y
)
, R2; θ

)
V
⇒

and
(
R1, bagof

(
C; or

(
S1, S2

)
;Y ′) , R2; θ ∧ Y = [X ′|Y ′] ∧ σ′)

W∪V ∪{X′,Y ′}

whereσ is quiet, andσ′ is σ with the variables renamed so thatX is replaced byX ′. The bagof rules do
not preserve the order of solutions.

Given a goalG, a AKL computation starts with an and-boxand(G; true)vars(G) and ends with with
either an and-boxand(; θ)vars(G)∪vars(θ) or an or-box

or
(

and(; θ1)vars(G)∪vars(θ1)
, and(; θ2)vars(G)∪vars(θ2)

, . . .
)
, eachθi is a solution ofG.

3.4.3 Control

The computation rules described above implicitly contain a hierarchy of control. At the most basic level,
rules involving guessing, in this case the nondeterminate promotion rule, should be applied only after all
other guess-free rules have been exhausted. The combination of the determinate promotion rule and delay-
ing the nondeterminate promotion rule produces behaviour similar to Andorra Prolog and the BAM, with
determinate promotion replacing and-reduction and nondeterminate promotion replacing or-extension.

The use of the conditional operator provides an effect similar to the cut operator of Prolog. Completion
of a conditional guard in a clause causes all clauses below that clause to be removed. In addition, any
speculative computation that has occurred in the guard is pruned, and the first answer accepted. As an
example, consider the program in figure3.5 which allows two possible choices during nondeterminate
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p(X, Z) :- q(X, Y) -> Y = Z.

q(X, Y) :- X = a , Y = b ? true.
q(X, Y) :- X = a , Y = c ? true.
q(X, Y) :- X = b , Y = d ? true.
?- p(a, Z)

and(p(X, Z) ; X = a){X, Z}
⇓

and
(

choice
(

and(q(X, Y) ; ){Y } -> Y = Z
)

; X = a
)
{X, Z}

⇓

and


choice


 and

(
choice

(
and(X = a, Y = b ; ) ? true
and(X = a, Y = c ; ) ? true
and(X = b, Y = d ; ) ? true

)
;

)
{Y }

-> Y = Z


 ; X = a



{X, Z}

⇓

and

(
choice

(
and

(
choice

(
and (; Y = b) ? true
and (; Y = c) ? true

)
;

)
{Y }

-> Y = Z

)
; X = a

)
{X, Z}

⇓

and

(
choice

(
or

(
and(; Y = b){Y } -> Y = Z

and(; Y = c){Y } -> Y = Z

) )
; X = a

)
{X, Z}

⇓

and

(
choice

(
and(; Y = b){Y } -> Y = Z

and(; Y = c){Y } -> Y = Z

)
; X = a

)
{X, Z}

⇓
and

(
choice

(
and(; Y = b){Y } -> Y = Z

)
; X = a

)
{X, Z}

⇓
and(Y = Z; X = a ∧ Y = b){X, Y, Z}

⇓
and(; X = a ∧ Y = b ∧ Y = Z){X, Y, Z}

Figure 3.5: AKL Computation with Nondeterminate Promotion and Conditional

promotion. When these two solutions are promoted to the parent choice-box, the conditional guard operator
eliminates the second choice, producing identical behaviour to a Prolog program where the-> has been
replaced by a! .

A similar effect occurs if commit operators are used in place of conditional operators, but with symmet-
ric pruning.

The quietness condition, applied to conditional and commit guarded predicates, ensures that over-eager
commitment does not occur. An example of the effect of the quietness condition is:

p(a) :- true ? true.
p(b) :- true ? true.

q(c) :- true | true.
q(a) :- true | true.

?- p(X), q(X)

The configuration produced by the callq(X) is
choice

(
and(;X = c) | true , and(;X = a) | true

)
. If the quietness condition were not enforced,
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one of these clauses would be chosen by the commit rule. The first clause could be promoted, leading to
the constraintX = c being promoted and the failure of the computation. Enforcing the quietness condition
ensures that the configuration produced fromp(X) is nondeterministically promoted, and the solution
X = a is computed.

3.4.4 Using the AKL

This section describes some of the uses the AKL can be put to. The examples in this section are largely
derived from [JH91].

Dependent And-Parallelism

The determinate promotion rule can be used to provide dependent and-parallelism. Figure3.6 shows the
execution path of a simple dependent and-parallel program. In the figure, parts of execution that can be
performed in parallel, are. The producer,p(2, X) and the consumer,c(X) quickly settle down to an
alternating pattern, where the consumer is consuming a binding as the producer gets the next binding ready.

Or-Parallelism

Or-parallelism in the AKL is handled by use of nondeterminate promotion and stability. Figure3.7shows
an example or-parallel computation. After the initial nondeterminate promotion, the remaining two clauses
are free to be nondeterminately promoted again.

Nondeterministic Independent And-Parallelism

Nondeterministic independent and-parallelism can be produced by delaying output bindings until nondeter-
minate promotion has occurred. Several nondeterminate computations are encapsulated by placing them in
guards.

p(a) :- true ? true.
p(b) :- true ? true.
p(c) :- true ? true.

q(b) :- true ? true.
q(c) :- true ? true.
q(d) :- true ? true.

p1(X) :- p(Y) ? X = Y.

q1(X) :- q(Y) ? X = Y.

r(X) :- p1(Y), q1(Z) ? X = Y, X = Z.
?-r(X)

In the above program the guards ofp1/1 andq1/1 have local environments that are not restricted by
the external environment. The calls top/1 andq/1 are able to independently execute and nondeterminis-
tically promote. A join occurs inr/1 after bothp1(Y) andq1(Z) have completely nondeterministically
promoted. The join is implicit in the nondeterminate promotion rule, which occurs when part of a config-
uration is copied; and-boxes with inconsistent constraints are eliminated by application of the environment
synchronisation rule.
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p(0, X) :- true ? X = [].
p(N, X) :- N > 0 ? X = [N | X1], plus(N1, 1, N) p(N1, X1).

c([]) :- true ? true.
c([ | X]) :- true ? true.

?- p(2, X), c(X)

plus(A, B, C) is defined so thatA+B = C.

and(p(1, X), c(X) ; ){X}
⇓

and




choice

(
and(1 = 0; ) ? X = []

and(1 > 0; ) ? X = ...p(N1, X1)

)
,

choice

(
and(X = []; ) ? true

and(X = [ |X2]; ){X2} ? c(X2)

) ;



{X}

⇓

and


 choice

(
and (; ) ? X = ...p(N1, X1)

)
,

choice

(
and(; X = []) ? true

and(; X = [ |X2]){X2} ? c(X2)

)
;



{X}

⇓

and


 X = ...p(N1, X1) ,

choice

(
and(; X = []) ? true

and(; X = [ |X2]){X2} ? c(X2)

)
;



{X, X1, N1}

⇓

and


 choice

(
and(0 = 0; ) ? X1 = []

and(0 > 0; ) ? X1 = ...p(N2, X3)

)
,

choice
(

and (; ) ? c(X1)
) ; X = [1|X1] ∧ N1 = 0



{X, X1, N1}

⇓
and

(
choice

(
and(0 = 0; ) ? X1 = []

)
,

c(X1)
; X = [1|X1] ∧ N1 = 0

)
{X, N1, X1}

⇓

and


 X1 = [] ,

choice

(
and(; X1 = []) ? true

and(; X1 = [ |X3]){X3} ? c(X3)

)
; X = [1|X1] ∧ N1 = 0



{X, N1, X1}

⇓
and

(
choice

(
and(; X1 = []) ? true

)
; X = [1|X1] ∧ X1 = []

)
{X, X1}

⇓
and (; X = [1]){X}

Figure 3.6: Dependent And-Parallelism in the AKL
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p(X, Y) :- X = a ? Y = c.
p(X, Y) :- X = b ? Y = b.
p(X, Y) :- X = c ? Y = a.

?-p(X)

and(p(X, Y) ; true){X, Y }
⇓

and

(
choice

(
and (X = a; true) ? Y = c
and (X = b; true) ? Y = b
and (X = c; true) ? Y = a

)
; true

)
{X, Y }

⇓

and

(
choice

(
and(; X = a) ? Y = c
and(; X = b) ? Y = b
and(; X = c) ? Y = a

)
; true

)
{X, Y }

⇓

or




and (Y 1 = c; X1 = a){X1, Y 1}
and

(
choice

(
and(; X = b) ? Y = b
and(; X = c) ? Y = a

)
; true

)
{X, Y }




⇓

or




and(; X1 = a ∧ Y 1 = c){X1, Y 1}
and(Y 2 = b; X2 = b){X2, Y 2}
and

(
choice

(
and(; X = c) ? Y = a

)
; true

)
{X, Y }




⇓

or




and(; X1 = a ∧ Y 1 = c){X1, Y 1}
and(; X2 = b ∧ Y 2 = b){X2, Y 2}
and(Y = a; X = c){X, Y }




⇓

or




and(; X1 = a ∧ Y 1 = c){X1, Y 1}
and(; X2 = b ∧ Y 2 = b){X2, Y 2}
and(; X = c ∧ Y = a){X, Y }




Figure 3.7: Or-Parallelism in the AKL
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Chapter 4

The AKL and Logic

Since the AKL is intended to be alogic programming language, an AKL program is intended to have a
logical semantics. This chapter covers the logical structure of the AKL, and introduces a fixpoint semantics
for the language that can be used as the concrete semantics for abstract interpretation (see chapter6). This
chapter builds upon the work of Fitting [Fit91] on applying bilattices to logic programming and applies the
bilattice model to committed-choice languages in general and the AKL in particular.

4.1 Logical Aspects of the AKL

Before considering the logical aspects of the AKL, it is necessary to provide an intended interpretation of an
AKL program. The intended interpretation maps a programP onto a set of logical formulaeΣP . The AKL
execution model should be sound in the sense that any answer computed should be a logical consequence
of ΣP , and complete in the sense that all possible logical consequences ofΣP are computed.

The basic logical structure of AKL program is given in [Fra94]. A constraint theory,T C, is assumed,
with a constraint,σ, holding ifT C |= σ. Each predicate in the program is given a completed definition:

Definition 4.1.1 Thecompleted definition, ΣP of an AKL programP is given by replacing each predicate
p/n :

p(x) :- G1(x,y) % B1(x,y)
· · ·

p(x) :- Gm(x,y) % Bm(x,y)

by:

∀xp(x)↔


 ∃y1(G1(x,y1) ∧B1(x,y1))∨

· · · ∨
∃ym(Gm(x,ym) ∧Bm(x,ym))




if % is ? or | . If % is -> , the predicate is replaced by:

∀xp(x)↔




∃y1(G1(x,y1) ∧B1(x,y1))∨
(¬∃y1(G1(x,y1)) ∧ ∃y2(G2(x,y2) ∧B2(x,y2))∨

· · · ∨


¬∃y1(G1(x,y1))∧
· · · ∧

(¬∃ym−1(G1(x,ym−1))∧
∃ym(Gm(x,ym) ∧Bm(x,ym)







The boldfacex, y andz are used to represent vectors of variables.
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4.1.1 Negation

Negation as failure is introduced into the AKL by using conditional guards. Ifp(X) is a predicate, then
not p(X) is given by

not p(X) :- p(X) -> false.
not p(X) :- true -> true.

or more usefully, since we are only interested in seeing whether one branch succeeds,

not p(X) :- some p(X) -> false.
not p(X) :- true -> true.

some p(X) :- p(X) | true.

4.1.2 Commit Guards

The presence of the commit operator (| ) in the AKL tends to produce difficulties with negation. Consider
the standard definition formerge/3 :

merge([], B, O) :- | O = B.
merge(A, [], O) :- | O = A.
merge([X | A], B, O) :- | O = [X | O1], merge(A, B, O1).
merge(A, [X | B], O) :- | O = [X | O1], merge(A, B, O1).

A query such asmerge([1], [2], [1, 2]) may succeed or fail, depending on the exact path of
the computation. Similarly,merge([1], [2], X), not merge([1], [2], X) may succeed,
breaking the identityA ∧ ¬A ≡ false.

Franzén [Fra94] avoids the difficulties with commit by examining only those predicates with authorita-
tive guards:

Definition 4.1.2 An AKL program,P , is authoritativeif for every clause of the form

H(x) :- G(x,y) | B(x,y, z).

in P

T C ∪ ΣP |= G(x,y)→ (H(x)↔ ∃zB(x,y, z))

Authoritative guards guarantee that it does not matter which clause is chosen, in the case of two guards
succeeding, as both bodies produce the same results. An example of a predicate with authoritative guards
is:

min(X, Y, Z) :- X =< Y | Z = X.
min(X, Y, Z) := X >= Y | Z = Y

Authoritative guards restrict the commit operator to simply pruning equivalent solutions to the predicate.
Unfortunately,merge/3 is not authoritative, excluding a large class of reactive programs from this logical
interpretation of the AKL.
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4.1.3 Conditional Guards

Nondeterminate promotion within a conditional guard can produces cases where the guard prunes alterna-
tives within the guard computation that are implied by the completed definition (definition4.1.1). As an
example, consider the program:

p :- r(X) -> X = a.

r(X) :- ? X = b.
r(X) :- ? X = a.

In this case,p/0 will fail, as the second solution tor(X) is pruned. However, the completed definition
of r/1 is ∀Xr(X) ↔ (X = b ∨X = a) and therefore that ofp/0 is p ↔ true. The solution adopted by
Franzén is to restrict the set of programs examined to those with indifferent guards:

Definition 4.1.3 An AKL program,P , is indifferentif, for every clause of the form

H(x) :- G(x,y) -> B(x,y, z).

in P ,
T C ∪ ΣP |= G(x,y) ∧G(x,w)→ (∃zB(x,y, z)↔ B(x,w, z))

Most AKL programs are intended to be indifferent, although an insistence on indifference eliminates
once/1 -style predicates written with conditional guards, which are intended to accept the first solution to
a query. Such predicates can be used to accept a single permutation of some set of values, such as a register
allocation. However these predicates can be re-cast as commit-guarded predicates without damaging the
intended behaviour of the predicate.

4.1.4 Recursive Guards

Recursive guards present a problem in the AKL, as it is possible for a program to enter an infinite loop, even
though the logical semantics for the program have a definite value. As an example, consider the predicate
p/1 :

p(0).
p(s(X)) :- p(X) ? true.

Calling this program with?-p(s(s(s(0)))) will result in a response oftrue . However calling
this program with the query?-p(X) will result in an infinite loop, as the recursive guard is tried within a
new environment with each local fork. Since the AKL always expands guards (a deterministic operation)
in preference to nondeterminate promotion, this query will never terminate.

Generally, recursive guards should be avoided in the AKL; they produce infinite loops and make the
program unstratified, since a recursive call within a conditional guard results in a recursive form of negation.
For this reason only guard-stratified programs are used.

Definition 4.1.4 A programP is guard-stratifiedif it can be partitioned into programsP1, . . . , Pl with
P1 ∪ · · · ∪ Pl = P such that each guard of each clause inPk contains only primitive constraints, or atoms
defined by clauses inP1 ∪ · · · ∪ Pk−1

4.2 A Bilattice Interpretation of AKL Programs

The introduction of authoritative AKL programs weakens the number of uses that a logical interpretation of
AKL can be put to. Authoritative guards are intended to eliminate the situations where a query can either
succeed or fail, keeping the logical definition within the bounds of a classical two-valued logic, with success
mapping onto true and failure onto false.

An alternative to insisting on authoritative guards is to move beyond two-valued logic, and introduce a
multi-valued logic which contains a value that maps on to the notion of “sometimes succeeds — sometimes
fails.”
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Figure 4.1: The logicFOUR

4.2.1 Bilattices

Bilattices were introduced to logic programming by Fitting [Fit91] with the intention of modelling uncertain
and unknown information. The characterisation of bilattices given here is taken from [Fit91], with some
changes in notation1.

Definition 4.2.1 An interlaced bilatticeis a set,B, together with two partial orderings,≤ andv, such that:

1. each of≤ andv givesB the structure of a complete lattice.

2. the lub and glb operations for each partial ordering are monotone with respect to the other partial
ordering.

4.2.2 A Logic Based on FOUR

The AKL, needs the simplest form of bilattice,FOUR[Bel77]. The Hasse diagram forFOUR is shown in
figure4.1.

For the purposes of the AKL,> is interpreted as meaning “both succeeds and fails” and⊥ has a meaning
of undefined, which can be interpreted as either “still being computed,” “infinite loop” or “deadlocked,”
depending on context. The values true and false are interpreted as “always succeeds” and “always fails.”
With these meanings,v can be interpreted as an ordering on the range of possible results a program can
give.

The standard Boolean operations of logical and (∧), or (∨) and not (¬) now have a set of dual operations
based on thev ordering: indecisive-and (u), indecisive-or (t) and indecisive-not (−) 2. Using theFOUR
bilattice, the standard Boolean operators, and their duals, are given in table4.1. The four basic operators are
derived froma ∧ b ≡ glb≤(a, b), a ∨ b ≡ lub≤(a, b), a u b ≡ glbv(a, b) anda t b ≡ lubv(a, b). Negation
is a reflection about thev axis and indecisive negation a reflection about the≤ axis. Implication is defined
by a→ b ≡ ¬− a ∨ b and equivalence bya↔ b ≡ (a→ b) ∧ (a← b).

The quantification operators can be interpreted as conjunction or disjunction over the domain of a vari-
able:∃xa(x) ≡

∨
y∈dom(x) a(y) and∀xa(x) ≡

∧
y∈domx a(y)

3.

1In this thesis,≤ is used instead of the≤t in [Fit91]. Similarly, v is used in place of≤k, u in place of⊗ andt in place of⊕.
2 These names derive from the idea that indecisive-or can’t make up its mind about truetfalse; the initial motivation for introducing
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a b a ∧ b a ∨ b a u b a t b ¬a −a a→ b a↔ b
true true true true true true false true true true
true > > true true > false true > >
true ⊥ ⊥ true ⊥ true false true ⊥ ⊥
true false false true ⊥ > false true false false
> true > true true > > ⊥ true >
> > > > > > > ⊥ true true
> ⊥ false true ⊥ > > ⊥ ⊥ false
> false false > false > > ⊥ ⊥ ⊥
⊥ true ⊥ true ⊥ true ⊥ > > ⊥
⊥ > false true ⊥ > ⊥ > true false
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ > > true
⊥ false false ⊥ ⊥ false ⊥ > true >
false true false true ⊥ > true false true false
false > false > false > true false true ⊥
false ⊥ false ⊥ ⊥ false true false true >
false false false false false false true false true true

Table 4.1: Boolean operators forFOUR

The combination ofFOUR and the operations defined above form an extended Boolean algebra, sat-
isfying the normal identities of a Boolean algebra. These identities are summarised in table4.2; most are
consequences of the properties of interlaced bilattices (see [Fit91]).

4.2.3 Commit Predicates

Armed with the bilattice described above, it is now possible to describe a logical interpretation of a commit-
guarded predicate. If two guards can potentially succeed and one body succeeds and the other body fails,
then the truth-values of these two clauses can be combined via indecisive-or into a truth-value of>.

Intuitively the failure of a guard should give the clause a truth-value of⊥. This means that the clause
will not appear in the truth-value of the predicate. A guard operator should have the following properties:

a‖b =
{
⊥ if a = ⊥ or a = false
b otherwise

This guard operator can be defined asa‖b ≡ (¬a t true) u (a t false) u b.
All predicates in the AKL follow the negation as failure rule; if no clause succeeds, then a truth value

of false is assumed. As a special case, all guard operators failing is also assumed to mean a truth value of
false. With the above definition ofa‖b, all guards failing will yield a truth value of⊥. While this truth
value may be aesthetically satisfying it does not match the definition of the language, and an explicit term
for failure needs to be introduced. If a predicate is defined by a set of clauses,

H(x) :- Gi(x,y) | Bi(x,y, z), 1 ≤ i ≤ n,

then the additional term for failure can be defined as:

fail(G1, . . . , Gn) =
{

false if allGi are false or>
⊥ otherwise

fail(G1, . . . , Gn) ≡ G1 u · · · uGm u false matches this definition.

a multi-valued logic. In [Fit91] indecisive-not is called confluence.
3 Similar quantification operators can be defined for the indecisive operators. These operators play no part in the fixpoint semantics

for the AKL and are therefore ignored.
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Null
a ∧ false= false a ∨ true= true
a u ⊥ = ⊥ a t > = >
Identity
a ∧ true= a a ∨ false= a
a u > = a a t ⊥ = a
Idempotent
a ∧ a = a a ∨ a = a
a u a = a a t a = a
Inverse
¬¬a = a −− a = a
a ∧ ¬ − a = false a ∨ ¬ − a = true
a u ¬ − a = ⊥ a t ¬ − a = >
Commutative
a ∧ b = b ∧ a a ∨ b = b ∨ a
a u b = b u a a t b = b t a
Associative
(a ∧ b) ∧ c = a ∧ (b ∧ c) (a ∨ b) ∨ c = a ∨ (b ∨ c)
(a u b) u c = a u (b u c) (a t b) t c = a t (b t c)
Distributive
a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) a ∧ (b u c) = (a ∧ b) u (a ∧ c)
a ∧ (b t c) = (a ∧ b) t (a ∧ c)
a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) a ∨ (b u c) = (a ∨ b) u (a ∨ c)
a ∨ (b t c) = (a ∨ b) t (a ∨ c)
a u (b ∧ c) = (a u b) ∧ (a u c) a u (b ∨ c) = (a u b) ∨ (a u c)
a u (b t c) = (a u b) t (a u c)
a t (b ∧ c) = (a t b) ∧ (a t c) a t (b ∨ c) = (a t b) ∨ (a t c)
a t (b u c) = (a t b) u (a t c)
Absorption
a ∧ (a ∨ b) = a a ∨ (a ∧ b) = a
a u (a t b) = a a t (a u b) = a
DeMorgan’s
¬(a ∧ b) = ¬a ∨ ¬b ¬(a ∨ b) = ¬a ∧ ¬b
¬(a u b) = ¬a u ¬b ¬(a t b) = ¬a t ¬b
−(a ∧ b) = −a ∧−b −(a ∨ b) = −a ∨−b
−(a u b) = −a t−b −(a t b) = −a u−b

Table 4.2: Boolean identities onFOUR



4.3. A FIXPOINT SEMANTICS FOR THE AKL 41

FOUR can now be used to give a logical interpretation of the AKL. The interpretations of? and
-> guarded predicates are the same as section4.1. A set of commit-guarded clauses,

H(x) :- Gi(x,y) | Bi(x,y, z), 1 ≤ i ≤ n,

now has the logical interpretation:

∀xH(x)↔




∃y1(G1(x,y1)‖B1(x,y1))t
· · · t

∃ym(Gm(x,ym)‖Bm(x,ym))t
(∃y1G1(x,y1) u · · · u ∃ymGm(x,y) u false)




4.3 A Fixpoint Semantics for the AKL

A fixpoint semantics for the AKL can now be derived in terms of some suitable immediate consequences
operator. The treatment here follows that of [Fit91].

Definition 4.3.1 An interpretationis a mappingv from a subset of ground atomic formulae toFOUR. The
interpretation isin the constraint theoryT C provided that for each constraintθ, if T C |= θ thenvθ = true
and ifT C 6|= θ thenvθ = false.I denotes the domain of interpretations.

It may be possible to extend the constraint theory to handle the full four values ofFOUR. However, the
proofs of the soundness and completeness theorems (theorems4.4.1and4.4.2) require constraints to only
have two values.

Throughout this section functional notation is used to reduce the number of parentheses;v θ is inter-
preted as the application of the mappingv to the argumentθ.

Definition 4.3.2 Thecompositionof two interpretations,v1 andv2, denoted byv1 � v2, is defined as

(v1 � v2)A =
{
v1A if A ∈ dom(v1)
v2A otherwise

Definition 4.3.3 Given two interpretationsv1 and v2, v1 ≤ v2 if for all closed atomic formulaeA ∈
dom(v1), v1A ≤ v2A. A similar definition holds forv.

Definition 4.3.4 If v is an interpretation andφ a closed formula, thenvφ is constructed by interpreting∧
in φ as∧ onFOUR, ∨ in φ as∨ onFOUR, etc.

An immediate consequences operator for an AKL program can now be defined. The immediate conse-
quences operator is intended for use on guard stratified program. The operator takes two arguments: the first
argument is the interpretation provided by previous stratifications, the second is the current interpretation.

Definition 4.3.5 LetP be an AKL program.ΦP : I → I → I is defined as follows:

1. If H(x) :- Gi(x,y) ? Bi(x,y, z) ∈ P then

ΦP p v H(x) = (p � v)


 ∃y1, z1G1(x,y1) ∧B1(x,y1, z1)∨

· · · ∨
∃ym, zmGm(x,ym) ∧Bm(x,ym, zm)
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2. If H(x) :- Gi(x,y) -> Bi(x,y, z) ∈ P then

ΦP p vH(x) = (p � v)




∃y1, z1G1(x,y1) ∧B1(x,y1, z1)∨
· · · ∨


¬∃y1G1(x,y1)∧
. . .∧
¬∃ym−1Gm−1(x,ym−1)∧
∃ym, zmGm(x,ym) ∧Bm(x,ym, zm)







3. If Hi((x)) :- Gi(x,y) | Bi(x,y, z) ∈ P then

ΦP p v H(x) = (p � v)




∃y1, z1G1(x,y1))‖B1(x,y1, z1)t
· · · t

∃ym, zmGm(x,ym))‖Bm(x,ym, zm)t
(∃y1G1(x,y1) u · · · u ∃ymGm(x,ym) u false)




4. ΦP p v φ = (p � v)φ otherwise.

Definition 4.3.6 GivenP , an indifferent, guard stratified program , withQ as one of the stratifications, and
an interpretation,p, then:

ΦQ p ↑ 0 = p.
ΦQ p ↑ α = ΦQ p(ΦQ p ↑ (α− 1)), if α is a successor ordinal.
ΦQ p ↑ α = lub{ΦQ p ↑ β : β < α}, if α is a limit ordinal.

Proposition 4.3.1 SupposeP is an indifferent, guard stratified program, partitioned into sub-programs
{P1, . . . , Pm}. Further suppose that there exists an interpretation,p, which is inT C, and has a domain
covering all guards inPi = Q. ThenΦQ p is continuous.

Proof The proof is a suitable variation of that in [Llo84]. ΦQ p is continuous iflub(ΦQ pX) =
ΦQ p lub(X) for all directed sets X.

Since both≤ andv are defined in a pointwise fashion on interpretations (definition4.3.3), it is clear
that lub(X)φ = lub(X φ) for all formulaeφ ∈

⋃
dom(X) for both orderings.

ΦQ p lub(X)H = t, t ∈ FOUR
iff H ↔ φ ∈ ΣQ and lub(X)φ = t
iff H ↔ φ ∈ ΣQ and lub(X φ) = t
iff lub(ΦQ pX H) = t 2

Corollary 4.3.1 ΦQ p has a least fixpoint and greatest fixpoint, with lfp(ΦQ p) = ΦQ p ↑ ω. See [Llo84].

Theorem 4.3.1 (Fixpoint characterisation of the AKL)
Suppose P is an indifferent, guard stratified program, partitioned into sub-programs

{P1, . . . , Pm}. Further suppose thatp is a model inT C for P1 ∪ · · · ∪Pi−1. ThenΦPi p ↑ ω is a model for
T C ∪ P1 ∪ · · · ∪ Pi.

Proof This proof is, again, a variation on [Llo84]. To start with,v is a model forPi if ΦPi p v v v since
v is a model forPi if, for eachH ↔ φ ∈ ΣPi , v H = v φ. SinceΦPi p ↑ ω = lfp(ΦPi p) it follows that
ΦPi p (ΦPi p ↑ ω) v ΦPi p ↑ ω. 2
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4.4 The AKL Execution Model

The fixpoint semantics for the AKL derived in section4.3provide a suitable model for the intended mean-
ing of an AKL program. However, the AKL itself follows a top-down execution model and it becomes
necessary to derive the relationship between the fixpoint semantics and the execution model.

The AKL execution model consists of a series of transitions over configurations. IfA andB are con-
figurations (as defined in section3.4) thenA ⇒t B is a derivation fromA to B via the execution rule
t. If the execution rule is obvious from the context, thenA ⇒ B is a suitable shorthand. Multiple un-
specified transitions, can be written asA ⇒∗ B. A configurationA is a terminal configurationif there
exists no admissible transitionA ⇒ B. A terminal configurationA is anend configurationif A has the
form choice

(
and(; θ1)vars(θ1)

? true , . . . ,and(; θn)vars(θn) ? true
)
. Terminal configurations

that are not end configurations aredeadlock configurations.
A logical mapping for AKL configurations is also necessary. Following the model of sections4.1and

4.2.3each box can be mapped onto a logical interpretation in a manner similar to that of [Fra94], but
adjusted to the new definition for commit.

Definition 4.4.1 Thelogical interpretationof a configurationC, written asC∗, is defined recursively as:

1. fail∗ = false.

2. A∗ = A, whereA is an atom or primitive constraint. In particular,true ∗ = true.

3. (A,B)∗ = A∗ ∧B∗

4. and(R; θ)∗V = ∃V (R∗ ∧ θ).

5. choice
(
G1 ? B1, . . . , Gn ? Bn

)∗ = G∗
1 ∧B∗

1 ∨ · · · ∨G∗
n ∧B∗

n.

6. choice
(
G1 -> B1, . . . , Gn -> Bn

)∗ = G∗
1 ∧B∗

1 ∨ · · · ∨ ¬G∗
1 ∧ · · · ∧ ¬G∗

n−1 ∧G∗
n ∧B∗

n.

7. choice
(
G1 | B1, . . . , Gn | Bn

)∗ = G∗
1‖B∗

1 t · · · tG∗
n‖B∗

n t (G∗
1 u · · · uG∗

n u false).

8. or
(
C1, . . . , Cn

)∗ = C∗
1 ∨ · · · ∨ C∗

n

Lemma 4.4.1 Given a programP with modelv and an initial goalG, and the transition sequenceA =
choice

(
and(G; true)vars(G) ? true

)
⇒∗ B thenvB∗ v v∃G.

Proof The proof proceeds by induction on the number of transitions. Clearly, for zero transitions,vA∗ =
v∃G. Suppose that the proposition holds forA ⇒∗ C and the next transition in the sequence isC ⇒t B,
then each transition can be examined:

In the cases of constraint imposition, environment synchronisation, failure propagation, determinate
promotion and non-determinate promotion, the transition is a re-arrangement of the expressionC∗ follow-
ing the identity rules ofFOUR. ObviouslyvB∗ = vB∗.

In the case of local forking, the transition is
H ⇒ choice

(
and(G1; true)vars(G1) % B1, . . . ,and(Gn; true)vars(Gn) % Bn

)
for someH . Since

H ↔ φ ∈ ΣP hasφ given by definitions in4.1.1and section4.2.3, and these are the same as the definition
given in definition4.4.1, it must be thatvC∗ = vB∗.

In the case of an application of the cut rule, there exists a final guardG = and(; θ)V andvG = true
sinceT C |= θ. In this case all subsequent guards have¬G in them, and must therefore havev¬G = false.
From the identity rules ofFOUR, vC∗ = vB∗.

If a commit rule is applied, then all surroundingt parts of the expression inC∗ are removed. Sincet
is defined in terms of lub onv it follows thatC∗ v B∗. 2

Lemma4.4.1can be used to provide a soundness theorem for the AKL:
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Theorem 4.4.1 (Soundness of AKL) IfP is an indifferent, stratified AKL program,G a goal and
choice

(
and(G; true)vars(G) ? true

)
⇒∗ B whereB is an end configuration, thenΣP ∪ T C |=

B∗ v ∃G

Proof By application of lemma4.4.12

In theorem4.4.1, B will be a collection of constraints which are modelled byT C. Thev is necessary,
rather than implication, sinceG may have a truth value of> and true→ > has a truth value of>.

Theorem4.4.1also serves as a proof of soundness of failure, since the end configuration may befail .
Completeness is a little more difficult for AKL programs. Assuming that the program actually termi-

nates, then it is not possible for completeness to be meaningfully defined for programs that have predicates
with a truth value of>. However completeness is possible for the subset of authoritative AKL programs
and queries that terminate.

Theorem 4.4.2 (Completeness of AKL) IfP is an authoritative, indifferent, guard stratified AKL program,
G a goal andchoice

(
and(G; true)vars(G) ? true

)
⇒∗ B whereB is an end configuration then

ΣP ∪ T C |= ∃G↔ B∗

Proof If P is authoritative, then using definition4.1.2, it is not possible forG to have a truth value of>.
B consists only of constraints, and constraints must have a truth value of true or false. SinceΣP ∪ T C |=
B∗ v ∃G, B∗ is true or false and∃G is either true, false or⊥ then∃G is either true or false and therefore,
from the Hasse diagram ofFOUR ΣP ∪ T C |= G↔ B∗. 2

The above theorem also shows the relationship between the logical semantics derived by the fixpoint
construction given here and the semantics given in [Fra94]. Provided a program is authoritative, indifferent
and guard stratified, no goal has a truth-value of> and (with the exception of undefined goals — those
having a truth value of⊥) the true and false truth values must match.

Since there is a value of⊥ for undefined truth values, a more accurate model of the truth value of an
AKL configuration can be derived by giving unevaluated atoms a truth value of⊥.

Definition 4.4.2 The execution interpretationof a configurationC, written asC+ is the same as that of
the logical interpretation ofC, replacing all instances of∗ by + with the exception of case 2. For case 2
A+ = ⊥ if A is an atom or primitive constraint.

Lemma 4.4.2 Given a programP with modelv and a configurationC, thenv(C+) v v(C∗).

Proof Both C∗ andC+ are monotone with respect to their sub-components. This is clearly true in all
cases except case 7 in definition4.4.1, since the∧ and∨ operations are monotone onv. In case 7, thet
operator builds alub of its arguments and is therefore also monotone onv.

Since the difference betweenC∗ andC+ is thatC+ replaces any atomA with ⊥ instead ofv(A) and
⊥ v v(A) it follows thatC+ v C∗. 2

4.5 Some Examples

This section gives some examples of theΦP operator acting on programs with various degrees of well-
behavedness. For convenience,ΦPi is used instead ofΦPi (ΦPi−1 ↑ ω).
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p(X, Y) :- X = a ? Y = b. q(X, Y) :- p(X, Y) -> true.
p(X, Y) :- X = b ? Y = a. q(X, Y) :- p(X, Z) -> q(Z, Y).

P1 = {p/2 }

ΦP1 ↑ 0 = {p(X, Y ) ↔ ⊥}
ΦP1 ↑ 1 = {p(X, Y ) ↔ (X = a ∧ Y = b) ∨ (X = b ∧ Y = a)}

ΦP1 ↑ ω = ΦP1 ↑ 1

P2 = {q/2 }

ΦP2 ↑ 0 = ΦP1 ↑ ω ∪ {q(X, Y ) ↔ ⊥}

ΦP2 ↑ 1 = ΦP1 ↑ ω ∪


q(X, Y ) ↔


 (X = a ∧ Y = b) ∨ (X = b ∧ Y = a)∨(

(¬(X = a ∧ Y = b) ∨ (X = b ∧ Y = a))∧
∧(X = a ∨ X = b) ∧ ⊥

) 




ΦP2 ↑ 2 = ΦP1 ↑ ω ∪


q(X, Y ) ↔




(X = a ∧ Y = b)∨
(X = b ∧ Y = a)∨
(X = a ∧ Y = a)∨
(X = b ∧ Y = b)






ΦP2 ↑ ω = ΦP2 ↑ 2

Figure 4.2: A Guard Stratified, Indifferent, Authoritative Program

p(X, Y) :- X = a | Y = b.
p(X, Y) :- X = a | Y = a.

q :- p(a, b).

P1 = {p/2 , q/0 }

ΦP1 ↑ 0 = {p(X, Y ) ↔ ⊥, q ↔ ⊥}

ΦP1 ↑ 1 =

{
p(X, Y ) ↔

(
((X 6= a t true) u (X = a t false) u Y = bt
((X 6= a t true) u (X = a t false) u Y = at

(X = a u false)

)
, q ↔ ⊥

}

ΦP1 ↑ 2 =

{
p(X, Y ) ↔

(
((X 6= a t true) u (X = a t false) u Y = bt
((X 6= a t true) u (X = a t false) u Y = at

(X = a u false)

)
, q ↔ >

}

ΦP1 ↑ ω = ΦP1 ↑ 2

Figure 4.3: A Guard Stratified, Indifferent Program
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p :- p

q(X) :- p | X = a.
q(X) :- true | X = b.

P1 = {p/0 }

ΦP1 ↑ 0 = {p ↔ ⊥}
ΦP1 ↑ ω = ΦP1 ↑ 0

P2 = {q/1 }

ΦP2 ↑ 1 = ΦP1 ↑ ω ∪ {q(X) ↔ ⊥}
ΦP2 ↑ 1 = ΦP1 ↑ ω ∪ {q(X) ↔ X = b}

ΦP2 ↑ ω = ΦP2 ↑ 1

Figure 4.4: A Guard Stratified, Indifferent Program with Looping

4.5.1 Well-Behaved Programs

Well-behaved programs are guard stratified and indifferent. An example well-behaved program, which is
also authoritative, is shown in figure4.2. In this programq/2 computes the transitive closure ofp/2 , with
a conditional guard to ensure thatq/2 is used for queries only.

An example non-authoritative, well-behaved program is shown in figure4.3. In this case a race condition
exists between the two clauses ofp/2 , which will result in a query toq/0 either succeeding or failing. As
a resultq/0 has a truth value of>.

Another example of a well-behaved program is a program with an infinite loop in it. In figure4.4, p/0
has no single truth value and so retains a truth value of⊥. If this truth value is fed into the guard ofq/1
then the other clause completely describes the predicate. Operationally, if the computation rule is fair, the
second guard ofq/2 will succeed before the first guard and prune the first guard away.

The fixpoint for the semantics does not necessarily perfectly reflect the actual behaviour of an AKL
program. Clearly if the commit rule prunes unfairly then some of the success configurations implied by the
fixpoint semantics will never be reached. The fixpoint semantics take no account of modes, which can lead
to certain unreachable configurations being defined as true. For example, the program

p(X, Y) :- X = a | Y = b.
p(X, Y) :- X = b | Y = a.

q(X, Y) :- true | Y = a.
q(X, Y) :- X = a | Y = b.

r(X) :- p(X, Y), q(Y, X).

has a fixpoint of


p(X,Y )↔ (X = a‖Y = b) t (X = a‖Y = b) t (X = a uX = b u false)
q(X,Y )↔ Y = a t (X = a‖Y = b)
r(X)↔ (X = a tX = b)




This fixpoint for r/1 is correct if r/1 is called with a fully constrained argument —?-r(b) may
fail, depending on whetherp(b, Y) or q(Y, b) is first called. However ifr/1 is called with an uncon-
strained argument, then only one solution can be reached:X = a.
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p(X) :- true ? X = a.
p(X) :- true ? X = b.

one p(X) :- p(Y) -> X = Y.
P1 = {p/1 }

ΦP1 ↑ 0 = {p(X) ↔ ⊥}
ΦP1 ↑ 1 = {p(X) ↔ (X = a ∨ X = b)}

ΦP1 ↑ ω = ΦP1 ↑ 1

P2 = {one p/1 }

ΦP2 ↑ 0 = ΦP1 ↑ ω ∪ {one p(X) ↔ ⊥}
ΦP2 ↑ 1 = ΦP1 ↑ ω ∪ {one p(X) ↔ (X = a ∨ X = b)}

ΦP2 ↑ ω = ΦP2 ↑ 1
and (one p(X) ; ){X}

⇓∗

and

(
choice

(
and
(

choice
(

and (; ) ? Y = a
and (; ) ? Y = b

)
;
)
{Y }

-> X = Y

)
;

)
{X}

⇓∗

and

(
choice

(
and (; Y = a){Y } -> X = Y

and (; Y = b){Y } -> X = Y

)
;

)
{X}

⇓∗

and
(

choice
(

and (; Y = a){Y } -> X = Y
)

;
)
{X}

⇓∗
and (; X = a){X}

Figure 4.5: A Non-Indifferent Program

4.5.2 Non-Indifferent Programs

Figure4.5shows a program which is not indifferent, along with its fixpoint and the actual AKL computation
which will occur.

The AKL computation implies a fixpoint of

ΦP2 ↑ ω = {p(X)↔ (X = a ∨X = b), one p(X)↔ X = a}

which contains less possible successes than the fixpoint computed by theΦP operator. Since non-indifferent
programs contain alternate solutions within their guards, some of which will be pruned away by the condi-
tional guard operator, non-indifferent programs generally succeed less times than the fixpoint would imply.
Non-indifference in conditional guards contains some similarities to red cuts, so this behaviour is not unex-
pected.

4.5.3 Non-Guard Stratified Programs

Figure4.6shows a non-guard stratified program, along with its fixpoint derived fromΦP and an example
computation. Not being guard stratified does not prevent a program from having its fixpoint calculated.
However non guard-stratified programs contain hidden infinite loops which are caused by new environments
contained in the guards being able to speculatively bind unconstrained arguments and continue. If the query
?-e(s(s(0))) was tried, the program would terminate.

Guard stratification is not strictly needed to make negation monotone, as is the case with stratification
of negation using theTP operator. Predicates within guards are not assumed to be false, but rather⊥ until
they are completely computed. As an example,

p :- not q.

q :- not p.

simply has a fixpoint of{p↔ ⊥, q ↔ ⊥}.
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e(0).
e(s(X)) :- o(X) ? true.
o(s(X)) :- e(X) ? true.

P1 = {e/1 , o/1 }

ΦP1 ↑ 0 = {e(X) ↔ ⊥, o(X) ↔ ⊥}
ΦP1 ↑ 1 =

{
e(X) ↔ (X = 0 ∨ (X = s(X1) ∧ ⊥)),

o(X) ↔ (X = s(X1) ∧ ⊥)

}

ΦP1 ↑ 2 =

{
e(X) ↔ (X = 0 ∨ (X = s(s(X1)) ∧ ⊥)),
o(X) ↔ (X = s(0) ∨ (X = s(s(X1)) ∧ ⊥)

}

ΦP1 ↑ 3 =

{
e(X) ↔ (X = 0 ∨ X = s(s(0) ∨ (X = s(s(s(X1))) ∧ ⊥)),

o(X) ↔ (X = s(0) ∨ (X = s(s(s(0))) ∨ (X = s(s(X1)) ∧ ⊥)

}
...

and (e(X) ; ){X}
⇓∗

and

(
choice

(
and (; X = 0) ? true ,

and (o(X1) ; X = s(X1)){X1} ? true ,

)
;

)
{X}

⇓∗

and

(
choice

(
and (; X = 0) ? true ,

and

(
choice

(
and (; X1 = s(0)) ? true ,

and (o(X2) ; X1 = s(s(X2))){X2} ? true ,

)
; X = s(X1)

)
{X1}

? true ,

)
;

)
{X}

.

.

.

Figure 4.6: A Non-Guard Stratified Program

4.6 Related Work

TheFOUR based logic used above has a strong relationship to the stable model semantics developed by
Gelfond and Lifschitz [GL88]. The stable model semantics uses two sets: one for successes (S) and one for
failures (F ). An immediate consequences operator is developed that uses bothS andF to construct further
atoms;H ← S1, . . . , Sn,¬F1, . . . ,¬Fm results inH being included in the nextS if eachSi ∈ S and each
Fj ∈ F .

The relationship betweenFOUR and the stable model semantics has been examined by Giordano et al
[GMS96]: G ↔ ⊥ if G 6∈ S ∪ F , G ↔ > if G ∈ S ∩ F , G ↔ true if G ∈ S − F andG ↔ false if
G ∈ F − S.

Naish [Nai89] uses four different sets to represent potential success and failure in committed choice
programs, splitting success sets into definite and potential success sets and failure into definite and potential
failure sets.

Gabbrielli and Levi [GL92] use an unfolding mechanism to derive a fixpoint semantics for committed
choice programs. The unfolding mechanism is careful to retain the reactive behaviour of the program,
ensuring that spurious successes are not possible and that deadlocks are correctly modelled.

The main advantage to usingFOUR for formulating the semantics of a logic program is that the program
retains its original logical flavour.



Chapter 5

The DAM

This chapter presents an abstract machine for use with the AKL: Doug’s Abstract Machine, or the DAM.
The DAM is intended for parallel execution of AKL programs and, therefore, has a number of features
intended to model parallel execution. As a preliminary step, two existing abstract machines are described,
to provide a foundation for the description of the DAM.

5.1 An Overview of Abstract Machines

Most programming languages have a computation model that can be reduced to a handful of basic opera-
tions. For example, Prolog can be reduced, via SLD resolution, to unification, term expansion and branch
choice operations. C can be reduced to arithmetic, control flow and stack operations.

From this perspective, a programming language can be considered to have an ideal machine, which
directly models the computation model of the language. The primitive operations for the language can then
be encoded into a sequence of simple, assembly-like instructions. This “abstract machine” is similar in
conception to an ordinary computer architecture, but may allow instructions that are not directly realisable
on a real architecture; an example is the normal implementation of unification in Prolog, which may not
terminate.

The instruction set, registers, data areas, etc. of an abstract machine can be optimised towards the
computation model of a particular language. The language can then be compiled into these abstract machine
instructions and executed by an emulator1. The advantages of using an abstract machine and compiler rather
than an interpreter are obvious: rather than interpreting a program, the emulator does not need to do a great
deal of work in decoding the program; each instruction tends to be fairly simple and can therefore be
optimised effectively by the emulator; the compiler can be used to statically make optimisation decisions
on the abstract instruction set.

This section briefly describes two abstract machines: the WAM and the JAM. Both these machines have
influenced the design of the DAM and provide a basis for comparison. The JAM is a parallel implementation
of Parlog. The WAM is included as an example of a reasonably efficient abstract machine design for a logic
programming language (Prolog).

5.1.1 The WAM

The WAM, or Warren Abstract Machine, is an abstract machine formalised for use with Prolog. Elements
from the WAM design can be seen in most abstract machines for logic programming languages. A complete
description of the WAM can be found in [War83]. A more approachable description can be found in
[AK91a].

The basic WAM architecture consists of three main data areas, a set of registers and an instruction set.
These elements are summarised in table5.1. The original WAM specification drew a distinction between

1 Or an actual physical machine, if such a thing is achievable. An example is the CARMEL series of processors for FCP [HG91].
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Heap Stores permanent structures
Data Areas Stack Stores temporary structures: environments and choice-

points
Trail Used to reset some variables that have been bound on

backtracking
Push-Down List A stack for use during unification
P Program pointer
CP Continuation pointer (return address)
E Environment (stack frame)
B Choice-point

Registers A Top of stack
H Top of heap
TR Top of trail
HB Heap position corresponding to creation ofB
S Structure pointer into heap
X0, X1, ... Temporary registers
get constant, ... Get instructions
put constant, ... Put instructions
unify constant, ... Unify instructions

Instructions call, ... Predicate call
allocate, ... Environment allocation
try, ... Choice point creation
switch on term, ... Indexing

Table 5.1: Elements of the WAM

the set of temporary registers,X1, X2, ..., and the set of argument registers,A1, A2, .... In actual practise,
no distinction needs to be drawn between them. (However, see section5.1.2.)

Execution Model

The WAM treats a Prolog program, suitably encoded into WAM instructions in a similar manner to an
ordinary imperative-language program. Each predicate call is treated in a similar manner to an imperative
language procedure call; arguments are loaded into registers rather than the stack (an advantage when
using an abstract machine is that you can use a huge number of registers) and the return address is loaded
into theCP register rather than stacked. Argument values and the return address are only stacked when
necessary. Each clause is treated in a similar manner to a procedure definition, with a stack frame (called
the environment) being used to store local values between calls within the procedure.

The major point of departure from the traditional imperative execution model is the creation of a stack
of choice points and a trail. Choice points record snapshots of the WAM state at the start of a predicate call.
When the computation fails, usually as the result of a unification failure, the WAM state is unwound back
to the first choice point on the stack, a process known as backtracking. This choice point can be used to
recover the machine state and then try the next clause in the series of clauses defining a predicate. Upon
execution of the last clause in a predicate, the choice point corresponding to that predicate is removed from
the stack. A subsequent failure therefore, returns to the previous choice point.

To unwind the state of the WAM, a trail is used to record the changes that have been made since the last
choice-point was created. When a variable is bound to a new value, the variable is added to the trail stack.
Upon failure, the trail is unwound back to the position recorded in the current choice point. Each variable
recorded in the trail is returned to the unbound state.

The WAM provides a primitive form of automatic memory management. New structures are built from
blocks of word-size cells on the heap, the top of which is referenced by theH register. Upon failure, the
H register is reset to the position given in the current choice point (and theHB register), recovering any
memory used in speculative computation. The stack register,A, and the trail registerTR are similarly reset.
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Successful computations continuously increase the size of the heap and some form of garbage collection
exists in most fully implemented WAM systems.

Representation

The most common representation of structures in the WAM consists of a series of cells. The cells are usually
a convenient word size for the underlying hardware to implement (eg. 32 or 64 bits).

Prolog terms are represented by words containing a value and a tag. The tags take between 2 and 8 bits
and give the type of the term. The remainder of the word usually contains a reference to another term or
structure or, in the case of a constant, the value of the constant. Since all references in the WAM are word-
aligned and the value of a term is often a reference to another term, the lower bits of the word are usually
used to record the tag for references. The tags usually represent variables, constants, integers, references to
structures and references to lists.

Bound and unbound variables share the same tag. Bound variables are represented by containing a
reference to the term to which the variable is bound or, in the case of a constant, the actual value of the
term representation. Unbound variables are represented by a reference to themselves. Since variables are
words, they can be conveniently manipulated by placing them in registers; taking a copy of the value of an
unbound variable turns it into a reference to that variable. A variable is bound to another term by placing
the term representation into the variable’s cell.

Complex structures with an arity greater than 0 are constructed on the heap. The structure consists of
a header cell, containing the structure and its arity, followed byn cells containing the arguments of the
structure. The entire structure is represented by a tagged word containing a reference to the structure. Since
lists are used a great deal in Prolog, lists are simply represented by two cells. A reference to a list is given
a different tag to that of a normal structure.

Instructions

Instructions in the WAM are represented by a series of byte codes, followed by arguments and possible
immediate operands. The instructions can be divided into a number of families.

Get instructions test a register against some term, and if the register is an unbound variable, binds the
variable to that term. If the register fails the test, then the computation fails and backtracking occurs.

Put instructions construct new terms. Put instructions are used to construct the terms used in a predicate
call.

Unify instructions are used to test or construct the arguments of structures. A unify instruction is pre-
ceded by a get or put instruction, which puts the WAM into two possible modes: read or write. In read
mode, the unify instructions act in a similar manner to get instructions. In write mode the unify instructions
act like put instructions. When a getstructure instruction is executed, the WAM is placed in read mode if
the argument being examined is bound to a structure, or write mode if the argument is an unbound variable.

Call instructions invoke predicates. Before calling a predicatename/n, the firstn X registers are loaded
with the arguments to the predicate. TheCP register is set to point to the instruction immediately following
the call instruction andP is set to the address of the code for the predicate being called. At the end of each
clause, a proceed instruction returns by setting theP register back to the value of theCP register.

Environmentsare allocated by use of anallocateinstruction, and deallocated by adeallocateinstruction.
Environments save the currentCP register and provide a stack frame with a number of permanent registers,
for use if terms need to be stored between predicate calls. The permanent registers take the place of the
local variables of an imperative language and are referred to asY registers.

Choice pointinstructions control the creation of choice-points. The set of clauses in a predicate is
encoded into a try–retry–trust sequence. Try instructions create and initialise a choice point, and try the first
clause in the sequence of possibly matching clauses. Retry instructions follow try instructions and use and
update the choice point created by the first try instruction. Trust instructions remove the choice point and
commit the computation to the last clause (since all previous clauses have been tried).

Indexinginstructions allow the WAM to restrict the number of clauses tried. An argument to the pred-
icate is tested, and if it is bound to a non-variable term, the set of clauses tried can usually be restricted.
The switchon term instruction divides the predicate into four classes of clauses, based on the term in the
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p([]).
p([a(X) | Rest]) :- q(f(X), X), p(Rest).

switch_on_term Lv,Lc,Ll,Ls
Ls: fail % No non-list structures
Lv: try_me_else Lv1 % Try first clause
Lc: get_nil X1 % Test against []

proceed % Return if OK
Lv1: trust_me % Remove choice-point
Ll: allocate 2 % Create environment

get_list X1 % Test for list
unify_variable X3 % Get a(X) part for later
unify_variable Y1 % Save Rest
get_structure X3,a/1 % Test for a(X)
unify_variable Y2 % Save X
put_structure f/1,X1 % Construct arguments to q
unify_value Y2 % Make f(X)
put_value Y2,X2
call q/2,1 % Make the call
put_value Y1,X1 % Get Rest back again
deallocate % Recover environment
execute p/1 % Tail recursive call

Figure 5.1: Sample WAM Code

argument: a variable, a constant, a list or a structure. There are similar instructions for testing the actual
values of arguments.

A sample piece of Prolog code and equivalent WAM instructions is shown in figure5.1

Optimisation

There are several simple optimisations that are usually performed on WAM code:

• The last call in any clause can usually have the clause environment removed before it is invoked and
the continuation point for the clause used for the call. This optimisation is a generalisation of the
tail-recursion optimisation.

• If a predicate has only one applicable clause, either via indexing or from only having one clause, then
no choice point needs to be created.

• Variables are always bound so that the younger variable points to the older variable. The stack is
always placed so that stack variables always refer to the heap. With this assumption, only those
variables on the heap outside the range between theHB andH registers need to be trailed.

• New variables could be created on the heap. However many variables are created as return arguments
to calls within a clause. These variables can be created as unsafe variables within the environment of
the clause. If an unsafe variable is still unbound upon its last use, the variable is moved to the heap.

5.1.2 The JAM

The JAM, or Jim’s Abstract Machine, was developed by Crammond to provide an abstract machine for the
parallel execution of Parlog. A complete description of the JAM can be found in [Cra88]. The JAM shares
several common points with the WAM, but has been designed to accommodate the attributes of Parlog:
parallelism, suspension and guard computations. The instruction set and unification primitives are almost
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identical to the WAM and will not be discussed unless some significant difference occurs. See section5.1.1
for a discussion of the WAM.

The JAM, like Parlog, is similar to Conery’s And/Or process model [Con83]. Each conjunction of goals
is represented by an And-process. Each uncommitted predicate call is represented by an Or-Process. A tree
of And- and Or-processes is used to represent the computation. Most of these processes will not actually
be running at a given time. They will either be suspended and waiting for a variable to be bound, or queued
and waiting for a processor.

Each actual processor in the JAM represents an independent element, capable of executing any of the
processes in the And/Or tree.

Execution Model

The execution model of the JAM is that of a set of processors, each with a work queue containing runnable
processes. A processor with no work on its queue can search other processors for work and request work
from another processor’s queue. Each process represents a node in the And/Or tree.

The memory architecture of the JAM is more complex than that of the WAM, although no trail is
necessary as backtracking does not occur. The following data areas are used by the JAM (running from
high memory to low memory addresses):

Run Queue The list of runnable processes.

Process StackTemporary environment space for each process.

Temporary Heap A heap for use while executing a guard.

Permanent Heap The heap for constructing terms.

Argument Stack Sets of arguments for each process.

Program Program area.

The temporary and permanent heaps may be merged. Data areas from each processor are interleaved,
so that all stacks, heaps and queues are grouped together; the JAM uses a similar system to the WAM in
binding high address variables to low address variables.

An attempted unification in the JAM can result in three possible states: success, failure or suspension.
Suspension occurs when a variable external to a guard is tested against a term and that variable is unbound.
At this point, the process is added to the variable’s suspension list and the process is suspended. When that
variable is bound the process is woken, and the test re-applied.

A call in the JAM can either proceed sequentially or in parallel. Sequential calls can be executed directly
by the processor making the call. Parallel calls are queued, to be executed when the processor has no more
work to do. In both cases, an area of the argument stack is allocated and arguments pushed onto the stack.
A suitable Or-process is created to execute the resulting call.

Clauses in the JAM can also be tried either in sequence or in parallel, using a modification of the try–
retry–trust sequence of the WAM.

Representation

Terms in the JAM are represented by a similar tagged format to those of the WAM. Unbound variables
are represented by a separate tag to references, since an unbound variable may have a list of suspended
processes attached to it.

Processes are represented by a process structure, which is built on the heap for each process created,
and recovered or garbage collected at the end of the process. Each process contains a reference to its
parent process, a program pointer, a count of the number of child processes, a flag word, a pointer to the
root process, a pointer to the process arguments, a pointer to the process environment and a link for the
process’s attachment to either a suspension list or processor queue.

There is no need for a separate choice point structure for the JAM, since an or-process structure serves
a similar purpose.
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mode p(?).

p([]).
p([X | R]) <- : q(X), p(R).

try L1 % Parallel clause try
try_one L2 % Final clause

L1: wait_nil,A1 % Wait on first argument for []
commit % Commit to this clause
proceed % End of clause

L2: wait_list,A1 % Wait on first argument
allocate 2 % Keep X and R
unify_y_variable Y1 % Get X
unify_y_variable Y2 % Get R
commit % Commit to this clause
push_y_value Y1 % Set up q(X)
call_promoted q/1,1 % Call q(X) in parallel
put_y_value Y2,A1 % Call p(X)
call_promoted_last p/1,1 % Tail recursive call

Figure 5.2: Sample JAM Code

Instructions

The instruction format for the JAM is similar to that of the WAM. Get, put, unify and indexing instructions
play an almost identical role to those of the WAM. The JAM adds instructions to allow guarded computa-
tions, wait instructions and sequential or parallel call and try instructions.

Thecommitinstruction forces all other branches of an or-process to be killed, leading to a single clause
being available for promotion.

Wait or suspension instructions force a suspension of a process if the variable that they are testing is
unbound. Otherwise, wait instructions behave in a similar manner to get instructions.

An example piece of Parlog code and equivalent JAM instructions are shown in figure5.2.

5.2 Underlying Architecture

The machine architecture underlying an abstract machine has a significant effect on the design of an abstract
machine. In theory, an abstract machine can be implemented on any architecture, but for efficiency reasons
it is best to take advantage of the strengths of a given machine and avoid its weaknesses.

There is no unifying paradigm for parallel architectures similar to the familiar von-Neumann architec-
ture for sequential machines. Machines are usually classified by their approach towards processor commu-
nication, synchronisation, memory locality and the expected number of processors running in parallel. All
of these four factors affect each other, so some combinations are more likely than others.

All parallel systems necessarily involve a set of processors executing instructions semi-independently.
Parallel machines are usually categorised by the Flynn taxonomy [Fly66]. The first rough division between
parallel machines is between single instruction, multiple data (SIMD) machines and multiple instruction,
multiple data (MIMD) machines. The processors of SIMD machines all execute a single program in lock-
step. SIMD machines are well suited to problems that exhibit a high degree of data parallelism, such as
database queries or matrix calculations. SIMD machines lend themselves well to massive parallelism, since
there are few control problems associated with them. In MIMD machines, each processor can execute an
individual program. MIMD machines are suited to most general forms of parallelism.

Architectures can be roughly divided into scalable architectures (where the performance of the system
is roughly proportional to the number of processors present) and non-scalable architectures (where per-
formance of the system tends to tail off as new processors are added). Another way of looking at these
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architectures is by describing them as massively or modestly parallel. While not a hard and fast distinction,
massively parallel architectures tend to have over 100 processors, modestly parallel architectures below
that.

Parallel systems can be divided into fragmented memory and unfragmented memory architectures. Sys-
tems with unfragmented memory share a common memory pool. Contention tends to limit unfragmented
memory systems to a modest level of parallelism. Each processor can access any area of unfragmented
memory by address. Fragmented memory systems break the memory space into independent units, asso-
ciated with some controller, such as a processor or a dedicated memory controller. Access to fragmented
memory is mediated by the controller.

Usually processors need to communicate with other processors. Shared memory communication sys-
tems allocate an area of memory common to both processors. Information can be deposited and retrieved
from an agreed rendezvous point in memory. Shared memory communication systems usually require a
system of locks to prevent contention. Message passing communication systems associate a message buffer
with each processor. Any communication can be represented by sending and processing messages.

Some real-world examples of this taxonomy are: the first Connection Machine (scalable, SIMD, frag-
mented memory, message passing), the SGI (non-scalable, MIMD, unfragmented memory, shared memory)
and the Transputer (scalable, MIMD, fragmented memory, message passing).

Each type of choice described above represents a trade-off between competing sets of requirements.
Contention tends to force massively parallel systems to use fragmented memories. Fragmented memories
tend to enforce a message passing communication system. Some hybrid systems impose a hierarchy of or-
ganisation to support the efficiency of shared-memory communication between small groups of processors
while retaining the massive parallelism possible through local memory and message passing. An exam-
ple is the Parallel Inference Machine [Got87], where small clusters of processors share local memory but
messages are exchanged between clusters. The KSR1 [FBR93] maintains a logically unfragmented address
space, with each processor maintaining a cache and no processor “owning” an address. The Data Diffusion
Machine (DDM) [WH88] allows shared memory access to a system with local memory by providing a
hierarchy of data directories. In both the KSR1 and DDM, a memory request can be referred to another
processor and data copied to the requesting processor; a memory address does not correspond to a fixed
memory location and multiple copies of data for the same memory address may exist.

5.2.1 Target Architecture

In designing an abstract machine for the AKL, a target architecture needs to be chosen. The underlying
architecture of the system will have a great influence on the final design of the abstract machine.

The choice of target architecture for the DAM has been partially influenced by the availability of hard-
ware: no SIMD, scalability or massive parallelism. The machines available all use global, shared memory
for parallelism. However local or global memory can easily be simulated on different architectures, as can
shared memory or message passing. The choice of a target architecture in these cases rests more with the
nature of the task.

Logic programs tend to share structures a great deal. Large structures such as lists can be referenced
by a single pointer to the start of the list. A strictly distributed structure would require copies of terms
to be made when a non-local processor needs to refer to those terms. A variety of incremental copying
schemes have been designed for use with distributed architectures [Nak92, Foo94]. The existence of the
DDM suggests that shared memory could be used for reading terms, leaving the actual location of the term
to the underlying system [RDC92].

The issue of using shared memory with locks or message passing for updating shared structures is more
problematic. In an implementation of AKL, most data structures will be updated by a single processor
most of the time. If it could be arranged that the structure representing data is located on the processor
that “owns” it, then a message passing system would allow that processor to update the state of the box
without the need to lock the data structure each time. The message passing approach also encourages an
object-oriented view of the AKL system, with each piece of data acting as an object. That advantage may be
offset by the data structure now having a preferred processor, leading to a granularity problem. In particular,
stream and-parallelism in the AKL tends to result in several processes sharing an and-box; each non-owning
worker would need to request changes from the owning worker, leading to a bottleneck. An initial design
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did take the message passing approach, with disappointing results. LeBlanc and Markatos report that the
advantages to message passing are often outweighed by the effects of load imbalance [LM92].

The assumed target architecture for the abstract machine can therefore be summarised as:

• Multiple Instruction, Multiple Data.Each processor can execute a separate thread of the computation.

• Modestly Parallel.Only a few (possibly less than 10) processors. Since logic programs can readily
create parallel nodes for both and- and or- nodes, it can be assumed that the processors rapidly become
saturated with work and that a great deal of code is going to be called sequentially.

• Shared Memory.All terms and structures are readily available by reference, with no copying needed
between processors.

• Locking. Access to shared structures is via explicit locking, rather than message passing. Each
structure has no preferred processor.

5.2.2 Locking

Each structure in an AKL computation may need to be locked, and may stay locked for an indeterminate
amount of time (e.g. while localising a variable, section5.3.1). In systems with hardware locks, only a
limited number are available. In systems which provide operating system based software locks, the locks
tend to be fairly large (eg. 20 bytes for a Solaris 2.3 lock) and their use needs to be limited.

An alternative is to directly use a native atomic update instruction. Use of such hardware specifics,
however, tends to destroy the portability of the system.

The approach taken here, and used in [Cra88], is to use a limited number of hardware/software locks,
in conjunction with hashing. Each structure that needs to be locked has an associated status bit assigned
to it. Since each structure can be identified by a reference to it, the structure is locked by first locking a
hardware/software lock, based on a hash-value derived from the reference. When the lock is acquired, the
locking bit in the structure can be set and the hardware/software lock unlocked. A structure can be unlocked
simply by clearing the locking bit in the structure.

A test of the hashing technique, run over a million operations and 12K words of memory on an SGI
system with 6 processors produces the results summarised in table5.2. Three tests were run: using hardware
locks only, using mixed hardware/memory locks, with each processor ranging over all memory and using
mixed hardware/memory locks, with each processor restricted to a separate area of memory. The times
represent a lock followed by an immediate unlock.

In general the use of hardware/memory or software/memory locks imposes a 30% – 40% performance
penalty over simply using hardware or software locks. With the exception of 4 locks, performance is
relatively insensitive to the number of locks available for all tests. An increase in the number of processors
increases the probability of contention, leading to a consistent increase in times, especially in the case of 4
locks, where contention is greatest. Memory locking over separate areas shows a consistent performance
improvement over the shared memory tests. This improvement cannot be due to a lack of contention, since
the hardware locks are still shared between the memory areas. The costs of ensuring cache coherence seems
to be a likely explanation.

An alternative to using hardware locks is to use a software locking scheme such as that of Michael
and Scott [MS93]. Software locks can show significant performance improvement over hardware locks.
However special requirements, such as speed bounds, makes implementation of software locks unattractive.

The locking model chosen for the DAM is a mixed hardware and memory or software and memory
locking scheme, depending on hardware and operating system support, with more locks than processors.

5.2.3 Memory Allocation

Since the expected target architecture for the DAM follows a global memory model, it is possible to allocate
all memory requirements for each processor from a common pool. While this is memory efficient, it requires
locking for each request for memory. An alternative is to allow each processor access to a private heap,
eliminating the need for locking.
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Locks
Processors Model 4 8 16 32 64

Lock 3.0 3.1 3.0 2.9 3.3
1 Memory 4.0 3.9 3.9 3.8 4.5

Separate 3.8 3.8 3.9 3.9 4.5
Lock 3.7 3.1 3.9 3.8 3.9

2 Memory 5.1 5.3 4.8 4.9 5.4
Separate 4.1 4.5 3.9 4.8 4.7
Lock 3.8 3.9 3.7 4.0 3.5

3 Memory 5.4 5.1 5.6 5.4 4.8
Separate 5.3 4.5 5.0 5.0 4.6
Lock 4.1 3.9 4.1 4.0 3.8

4 Memory 6.0 5.8 5.3 5.5 5.5
Separate 5.5 5.0 5.0 5.4 5.2
Lock 4.5 4.4 4.2 4.1 4.0

5 Memory 6.1 5.9 6.0 5.8 5.6
Separate 5.5 5.4 5.7 5.3 5.1
Lock 5.1 4.5 4.3 4.2 4.2

6 Memory 6.4 6.1 6.0 5.7 5.8
Separate 5.8 5.7 5.6 5.6 5.4

All results in s,±20%

Lock: Hardware locking only
Memory: Hware./memory locking, shared memory
Separate: Hware./memory locking, separate memory

Table 5.2: Comparison of Direct Hardware Locking and Hardware/Memory Locking

Processors
1 2 3 4 5 6

Overhead 0.2 0.2 0.2 0.2 0.2 0.2
Separate 1.0 1.0 1.1 1.1 1.1 1.1
Locking 6.3 18.8 29.1 35.9 43.6 44.9
All result in s,±10%.
Overhead: test overhead with no allocation
Locking: single heap with locking
Separate: independent heaps

Table 5.3: Comparison of Heap Allocation Strategies
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Intuitively, a single heap allocation strategy represents a bottleneck. As a test, a million allocation/de-
allocation pairs of randomly generated block sizes were run on a simple top-of-heap allocation strategy
for 1–6 processors, performing either with a single heap and locking, or each with a private heap. The
results are summarised in table5.3. Using locking results in a massive overhead on what should be a simple
operation. Each processor therefore should be given a private heap to manipulate.

Heap allocation follows a “fast fit” allocation strategy [Sta80]. The heap consists of a top of heap pointer
and a set of free lists, grouped into blocks of size ranging from 1 word to 64 words (the maximum structure
size). A request to the heap for memory first checks to see if an appropriate block is already available in
the free list. Otherwise, a block is allocated from the top of the heap. Deallocated blocks are added to the
appropriate free block list.

A block of memory that has been allocated by one processor can be deallocated by another processor.
If the block is returned to the allocating processor’s heap, then there will be a need for locking as the block
is deallocated — something to be avoided. Since the block to be deallocated is under the control of the
processor deallocating the block, it makes sense to simply add the memory block to the free list in the heap
of the deallocating processor (see figure5.3).

A comparison of a simple top-of-heap allocation and the fast fit method was run using ten million
randomly generated block sizes between 1 and 64 words. The results, correcting for overhead, were 4.3s
for the top-of-heap allocation method, and 6.4s for the fast fit method. This represents an overhead of 48%,
which is acceptable in exchange for greatly reduced memory usage.

5.3 Execution Model

The DAM builds an And-Or tree of and-, choice- and bagof-boxes (figure5.4). Or-boxes have been elimi-
nated by combining the nondeterminate promotion and guard distribution rules into a single operation.

Activeboxes are boxes that have further work to do.Waitingboxes are boxes that are waiting for an
external event (such as a child box to complete, a variable to be bound, etc.).Killed boxes are boxes that
have either failed or been killed by a parent box.

Each box contains two program pointers. Theprogram pointerof a box contains the next abstract in-
struction that the box will perform if the box becomes active. Each processor is assigned a machine capable
of executing the work waiting to be done in a box. This machine is called aworker. The continuation
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pointerof a box contains the next abstract instruction that the parent box will perform if the current box
suspends, fails or completes.

And-boxes contain links to a number of other objects. The local variable list is a linked list of all those
variables local to the and-box. The localised variable list contains local copies of variables obtained from
a parent and-box (see section5.3.1). An and-box isquiet if there are no localised variables within the box
that have not been constrained by their parent variables.

Each box also contains a count of the number of workers currently active within it, the number of child
boxes that it has, and the number of suspended child boxes. A box issuspendedif it is in a waiting state,
there are no workers active within it, and the number of child boxes equals the number of suspended child
boxes. An and-box isstableif the box is suspended and quiet.

5.3.1 Constraints

The constraint system used in the DAM is the familiar constraint system of equality over Herbrand terms
[Llo84]. Terms are built from constants, function symbols with a fixed number of arguments, and variables.

Variable Localisation

The AKL computation model allows a hierarchy of constraints, with both variables and constraints being
local to a specific and-box. A child and-box inherits the constraints and variables of its parents, but may
add additional variables and constraints itself. The scope of a variable or constraint, therefore, encompasses
the and-box that it is local to, and any child boxes from that and-box. If an and-box adds a constraint to a
variable local to some parent and-box, some mechanism is needed to ensure that the scope of the constraint
is respected.

One solution to this problem is to use hash-tables to record the local constraints on a variable. This
approach has been taken by Moolenaar and Demoen for the ParAKL system [MD93]. Another approach is
taken by Montelius and Ali in the Penny parallel abstract machine, where each variable that is constrained
further down the and-box hierarchy maintains a list of suspensions [MA96]. Both these approaches have a
non-constant access time for determining bindings.
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The approach taken by the DAM is to treat each variable as a parent variable and a hierarchy of localised
copies. When a variable not local to an and-box is constrained, a chain of localised variables is created
between the parent and-box of the variable and the and-box which constrains the variable. In effect a new
variable (with binding) is created that is valid for the constraining and-box. In most cases further references
to the variable will use this localised copy, leading to a constant access time. This localised variable can
then be used within the scope of the and-box as if it was the original variable referred to. Upon promotion,
the immediate parent of the localised variable can be given the constraint contained in the localised variable.

If a parent variable is constrained the tree of localised variables below the parent can be tested, failing
any and-boxes that contain incompatible constraints.

The operations of localisation, promotion and parent constraint testing are shown in figure5.5.
Localised variables allow constant access time. However, creating a localised variable is a non-constant

time operation, as each level of and-box needs to be searched for an existing localised variable and, if
absent, a new localised variable created. Creating a localised variable also requires a variable to be allocated
to each level as opposed to a single hash-window cell in ParAKL or suspension in Penny. In practise, AKL
programs tend to have a fairly shallow nesting of and-boxes [Mon97], reducing the cost of long chains of
localised variables.

Adding Local Variables

As local variables are created, they need to be added to the list of local variables maintained by the and-box
that owns them. This list is maintained so that the variables in a promoted and-box can have their and-box
entries adjusted to be that of the new and-box. The simplest way to avoid contention when adding to an
and-box is to lock the and-box as each new variable is created.

There are two reasons for wanting to avoid locking the and-box on variable creation: variable creation is
extremely common and having to lock every time a variable is created will lead to a loss of performance and
producer-consumer type programs tend to have producers and consumers sharing an and-box, as and-boxes
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are promoted, and the shared and-box becomes a bottleneck.
It is possible to avoid the expense of locking, in most cases, if each worker uses a local variable to act

as the head of the local variable list. Since each worker is holding a unique local variable as the head of the
local list, there will be no contention when adding a new variable. The new variable can then be inserted
into the local variable list without locking. Figure5.6shows an example of two workers adding variables.

An alternative to maintaining a list of local variables is to mark a promoted and-box as promoted and to
allow the locality checks to follow the chain of promoted and-boxes up to the actual and-box [MA96]. This
method is superior to the method in the DAM, as it both saves on the memory used by the list and the time
taken to promote the variables. The cost of following the and-box chain is relatively trivial.

5.3.2 Indexing

The standard WAM implementation allows indexing on the some argument to a call, usually the first al-
though some implementations (eg. NU-Prolog) allow indexing on any argument. Three instructions allow
different code branches to be selected, based on the overall type of the argument (variable, constant, list or
structure) and the exact value of the constant or structure. In most cases this level of indexing is sufficient;
an initial split between the sets of possible clauses is created, and each clause from the set tried in turn.
Singleton clause sets can executed immediately without creating a choice-point.

In the DAM, the creation of choice- and and-boxes is a more expensive operation than the creation of
a choice-point in the WAM, and it makes sense to pay more attention to indexing issues. If a single clause
can be found, then a choice-box and and-box may not need to be created. Instead of simply indexing on an
argument, a more thorough indexing on all arguments should uncover more cases of simple determinism.
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Naively, it should be simple to generate a decision tree covering all possible combinations of bound
and unbound arguments. However, the size of the decision tree rapidly grows and, in general, creating a
decision tree is NP-Hard [PN91]. An example of a predicate that generates an exponential decision tree is
p/6 :

p(0, 1, 0, , , no).
p(0, , , 1, 0, no).
p(1, 0, , 0, , no).
p( , 1, 0, , 0, no).
p( , , , , , yes).

p/6 is a disguised form of the 3-satisfiability problem [GJ79] for the formulaF = (x1 ∨ ¬x2 ∨ x3) ∧
(x1 ∨ ¬x4 ∨ x5) ∧ (¬x1 ∨ x2 ∨ x4) ∧ (¬x2 ∨ x3 ∨ x5). Any path in the decision tree that commits to the
last clause can be read as a solution to the problem.

There are several ways of avoiding exponential decision trees. If the expected input modes are known
(e.g. from a moded logic programming language such as Concurrent Prolog or Pandora) then the decision
tree can be generated directly [KS88, KT91]. Alternately, partial indexing is possible, abandoning the
indexing when the decision tree becomes too complex and simply trying clauses [SCWY91b].

The approach taken in the DAM is to use theclause setapproach developed for NUA-Prolog [PN91].
The set of possible clauses is represented by a bit-vector, with each set bit representing a candidate clause.
Arguments can then be examined and the set of candidate clauses intersected with the current clause set. If
the clause set reduces to a single bit, then the corresponding clause can be committed to. If the clause set
reduces to more than one bit, the clause set can be used as a filter to select clauses.

The clause set approach avoids NP-Hardness by never maintaining a complete path from argument
bindings to clauses. Any attempt to find a solution toF would require intersecting all combinations of
clause sets to see which reduce to the singleton last clause. The tradeoff is the run-time intersection of
bit-vectors — reasonably fast on any halfway decent computer.

5.3.3 Waiting on Variables

Creating and destroying boxes for speculative computation can be extremely wasteful. In many cases, much
speculative computation can be avoided if the full expansion of the box is left until some variables become
bound. As an example, consider the predicatestack/2 :

stack([], ) :- true ? true.
stack([push(X) | R], S) :- true ?

stack(R, [X | S]).
stack([pop(X) | R], S) :- true ?

S = [X | S1],
stack(R, S1).

stack([top(X) | R], S) :- true ?
S = [X | ],
stack(R, S).

If the first argument of a call to this predicate is sufficiently bound, the abstract machine can immediately
choose a suitable clause without creating any speculative and-boxes. If the wait-guards instack/2 are
replaced by conditional or commit guards, the first argument must be bound to ensure quietness.

In these cases it is sensible to delay the execution of a choice-box until the arguments to the choice-
box are sufficiently instantiated. The DAM therefore allows boxes to be added to the dependents list of a
variable and the box then waits on the variable. When a variable is bound and the dependents list checked,
the box can be made active again.

Boxes with wait guards can benefit from waiting on some variables. However these boxes must even-
tually be made available for nondeterminate promotion. Two forms of waiting on variables are required.
Strong waitingmeans that the variable must be instantiated before the choice-box will proceed. Strong
waiting is suitable for conditional and commit guards.Weak waitingallows the box to beforced. A forced
box ignores any further weak waiting on variables and proceeds to expand the choice box.
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5.3.4 Nondeterminate Promotion

Nondeterminate promotion is achieved in the DAM by copying part of the box tree generated by the pro-
gram’s execution. Copying is also used in Montelius and Ali’s implementation of Penny [MA96].

When an and-box becomes stable, the tree below the and-box is searched for a choice-box which has as
its first and-box an and-box which has completed its guard and is waiting for commitment. This choice-box
can then be used as the basis for a single nondeterminate promotion. Only the first child box in a choice-
box is examined; completed candidates further down the list of and-boxes are ignored to ensure correct
behaviour within a box guarded by conditional guards.

Choice-boxes that are weakly waiting on a variable may also be used for nondeterminate promotion.
A weakly waiting choice-box may be forced, leading to a complete expansion of the box and a possible
further nondeterminate promotion.

The search for a suitable candidate for nondeterminate promotion proceeds depth-first, left-to-right.
There is no particular reason for this choice, beyond the desire to emulate the Prolog search rule and the
simplicity of the search. A more intelligent search rule would examine other alternatives and choose those
with the minimum number of alternatives and the minimum number of constraints. Moolenaar and Demoen
have found that an intelligent search rule can improve search performance by 2–3 times [MD94]. Another
approach would be to provide a programmable search system, similar to Pandora [Bah91].

When a choice-box is selected for copying, a duplicate of the parent and-box and all child-boxes is
created and added to the parent choice box. The and-box selected for promotion is moved to the choice-box
and made active. In addition the choice-box from which the and-box was taken may become active, due to
having only one child left and being eligible for determinate promotion.

When a duplicate of a configuration is made, any unbound local variables also need to be copied, as do
any structures that are not ground.

An example copying operation is shown is figure5.7. During nondeterminate promotion, once a choice-
box has been selected for nondeterminate promotion, the and-box above it and the and-box’s children, along
any with variables and bindings within the scope of the tree, is duplicated. The duplicated box tree contains



64 CHAPTER 5. THE DAM

Message Description
Active The box has become active.
ActiveChild A child box has become active.
AddChild Add a new child box.
Collect Collect a term for a bagof-box.
Commit Commit to determinate promotion.
Copy Make a copy of the box and children.
CopyChild Add a copied child.
DoneChild A child box has been promoted.
Enter A worker has entered this box
Exit A worker has left this box
Fail The box has failed.
FailChild A child box has failed.
Force The weakly waiting box has become active.
Kill Kill the box.
NonDetCandidate Request a candidate for nondeterminate promotion.
NonDetPromote Nondeterminately promote this box.
Promote Promote the variables local to this box.
Recover Recover this box for the heap.
RecoverChild A child box can be recovered.
RequestConditional Request a conditional pruning.
RequestCommit Request a commit pruning.
Suspend The box has suspended.
SuspendChild A child box has suspended.
TakeContinuation Acquire the continuation pointer.

Table 5.4: Box Messages in the DAM

all boxes except for the child of the choice-box selected for nondeterminate promotion. As a result, there
are now two configurations, with at least one configuration ready for determinate promotion.

5.3.5 Box Operations

Boxes communicate with each other by (conceptually) passing messages. Most messages work upwards
from child boxes to parent boxes, however a parent box may kill a child box, or cause it to commit or
promote. The messages that may be passed between boxes are shown in table5.4 and the senders and
receivers are summarised in figure5.8. Boxes, usually via abstract machine instructions, may also send
messages to themselves. In practise, messages sends are simply direct procedure calls. Multiple messages
are handled by locking the box, ensuring that only one message is processed at a time.

Bagof-boxes use similar messages to choice-boxes, although bagof boxes cannot cause an and-box to
commit. Bagof-boxes may also be sent the Collect message, adding a new element to the list generated by
the bagof-box. Variables may also send Fail or Active messages to boxes.

When a box is created, it is added to the parent box by means of an AddChild message. If the box is to
be run immediately, it also takes a worker from the parent box.

The box then continues until it either suspends, fails or promotes. Upon suspension, the box sends a
SuspendChild message to its immediate parent, which can in turn suspend and send further SuspendChild
messages. Suspended boxes can be woken by Active or NonDetPromote messages, whereupon they send
ActiveChild messages to their parents. If the box fails, it sends a FailChild message to the parent. If the
parent box is a choice-box, the choice-box records the failure and waits until only one child box remains,
in which case the remaining child box is sent a Commit message.

When an and-box promotes, it sends a Promote message to the grandparent and-box to pass all local
variables upwards. It also sends a TakeContinuation message to the parent choice-box, to acquire the stored
continuation point in the choice-box, if any exists. Finally the and-box sends a DoneChild message upwards
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to detach the and-box and parent choice-box and deallocate them. All further processing is performed by
the grandparent and-box, which also inherits the worker which performed the promotion.

If an and-box becomes stable, the and-box recursively sends NonDetCandidate messages to its children,
searching for a suitable candidate choice-box with a first child available for nondeterminate promotion. The
candidate is sent a NonDetPromote message, which in turn sends a NonDetPromote message to its parent
and-box. The and-box then makes a copy of itself and all child-boxes via Copy messages. As boxes copy,
they attach themselves to the appropriate parent box by means of CopyChild messages.

A box may be killed if a parent box has failed, or a pruning operation has eliminated the box. When a
box receives a Kill message, it terminates, and sends further Kill messages to all its children.

When a box terminates, either through failure, promotion or being killed, it may be recovered for reuse
by the heap. Promoted boxes may be recovered immediately. Failed and Killed boxes may still have
workers active within them. As a result, they may not be immediately recoverable. When a worker finds
itself in a dead box, it exits the box, and sends a RecoverChild message to its parent. The top-level dead
box accumulates all RecoverChild messages until all workers have left that part of the tree, and then sends
Recover messages to each child box. A box receiving a Recover message is deallocated.

5.4 Abstract Architecture

The abstract architecture of the DAM is based around a set of workers, with each worker assigned to a
separate processor. Each worker maintains a heap, from which it can allocate memory for terms, variables,
box structures, environments and other objects. Each worker also maintains a trail for use during copying.
All workers share a lock table of hardware locks, program and symbol table stores, a common work queue
and a global status register. Figure5.9shows the an outline of the DAM abstract architecture.
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Figure 5.9: DAM Abstract Architecture

5.4.1 Registers

Each worker also maintains a register set, which is used to execute the program. The DAM registers consist
of:

P The program counter: a pointer into the program store giving the next abstract instruction to execute.

CP The continuation pointer: a program address to continue with after the current box has suspended or
ended.

B The current box: a pointer to the box environment that the program is executing in.

E The environment pointer: a pointer to an array of permanent registers, for use by the current box.

VP The local variable pointer: a pointer to the local variable to use when adding new local variables to the
current and-box.

CS The clause set register: a 32-bit set for computing clause sets.

CT The clause table register: a pointer to a clause table corresponding to the bits in the clause set.

X0,...,X255 Temporary registers: A set of temporary registers, each holding a single term.

In addition to these registers, the permanent registers provided by the environment are denoted byY0,
Y1, ....

5.4.2 Instruction Format

The instruction format for the DAM is a sequence of 4-byte words, the first byte containing the instruction
code and the following three bytes containing simple arguments. Any immediate arguments, such as con-
stant values or program addresses to jump to, follow the initial instruction word. All immediate arguments
are word-sized.

Sample instructions and their layout are shown in figure5.10. The actual instructions will be introduced
in the sections describing the operations of the DAM.
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5.4.3 Terms

Most terms in the DAM are represented in a similar manner to the WAM. Each term is represented as a
32 bit, tagged word which either contains a reference to another term, an actual value or a reference to a
structure on the heap. A summary of the various term structures is shown in figure5.11.

The lowest two bits of each term supplies a tag value. This tag value allows the references to be
represented by the reference address, as references are word-aligned and the low tag bits of a reference are
two 0s.

The highest bit indicates whether the term is ground or not. Initially the groundness bit of a term is set
to 0, unless it is known from compilation that the term represented is indeed a ground term. If the term is
later tested for groundness and found to be ground, then the groundness bit can be set, eliminating the need
to re-test for groundness. This approach is similar to that used by DeGroot for restricted and-parallelism
[DeG84].

Variables have a lower tag value of 1. It is no longer possible to represent a variable as a reference to
itself, as the variable may have a number of dependent localised variables and delayed boxes attached to it.
Rather than use an extra word of memory, the reference part of the variable is set to point to the first piece
of the dependency list.
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Instruction Description
PutValueXY n,m Copy the contents ofXn to Ym.
PutValueYX n,m Copy the contents ofYnto Xm.
PutValueXX n,m Copy the contents ofXn to Xm.
PutConstant n,$’c’ Put the constantc into Xn.
PutList n Construct a cons structure on the heap, and put a refer-

ence to this structure intoXn.
PutStructure n,$’f’/a Construct a structure with functorf and aritya on the

heap, and put a reference to this structure intoXn.
PutVariableX n Construct a new variable, local to the current box on the

heap and put a reference to the variable intoXn. Add this
variable to the list of local variables in the box.

PutLiteral n,literal Put a reference to the ground structure given byLiteral
into Xn.

PutListArgument n,a,m Copy the contents ofXn into theath argument (ie. 1 is
the head of the list, 2 is the tail) of the list referenced by
Xm.

PutStructureArgument n,a,m Copy the contents ofXn into the ath argument of the
structure referenced byXm.

Table 5.5: Put Instructions for the DAM

A non-localised variable is represented on the heap by a structure of three words. While the variable
is unbound, the first word contains a variable tag and a reference to the dependency list. When a variable
becomes bound, this word is set to the term that the variable is bound to. The second word contains a
reference to the and-box that contains the variable in its environment. The following word contains a
reference to the next variable in the list of variables local to the and-box.

A localised variable is represented on the heap by a structure containing five words. The first three
words are identical to those of a parent variable. Word 4 contains a reference to the immediate parent of the
localised variable. The fifth word contains a reference to the next word in the parent dependency list.

Constants in the form of symbolic constants, integers and floats have a lower tag value of 2. The high
bit of the term is the groundness bit, which can always be set to 1. The next two bits identify the type of
constant: 0 for a symbolic constant, 1 for an integer and 2 for a floating point number. Symbolic constants
are represented by an arity (which must be 0) and an index into the symbol table. Integers are represented
by signed 27 bit integers. Floating point numbers are represented by a reference to a two-word entry on the
heap, containing a double-precision floating point number.

References to lists and other structures have a lower tag value of 3. The groundness bit is set to reflect
the known groundness state of the structure referenced. The next two high bits contain the type of reference,
either to a list (cons cell) or a structure.

Cons cells are represented on the heap by a pair of terms; the head and tail of the list. Structures
are constructed on the heap as a header word, containing the structure name and arity, and a number of
following words containing terms.

An additional term is the relocation term, identified by a lower tag of 3 and an upper tag of 2. Relocation
terms are used to mark already copied terms on the heap when copying for nondeterminate promotion (see
section5.4.6).

Term Instructions

Term instructions are mostly concerned with performing the unification operations of the constraint system
and moving terms between temporary and permanent registers.

Terms are constructed by a sequence of put instructions, similar to the WAM. The DAM avoids read/wr-
ite unify instructions for reasons given below. Complex structures are built by a sequence of put and put-
argument instructions, where sub terms are built and then placed in the appropriate term position. The put
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DAM Code WAM Code
PutList 0
PutStructure 1,$’f’/2
PutVariable 2
PutStructureArgument 2,1,1
PutStructureArgument 2,2,1
PutListArgument 1,1,0
PutConstant 1,$’[]’
PutListArgument 1,2,0

put structure $’f’/2,X1
unify variable X2
unify value X2
put list X0
unify value X1
unify nil

Figure 5.12: Sample DAM Code for Constructing[f(X, X)]

instructions supported by the DAM are summarised in table5.5.
Sample code for constructing the term[f(X, X)] is shown in figure5.12, along with equivalent

WAM code for comparison.
Unification is somewhat more complex in the DAM than in the WAM, as variable locking and local-

isation needs to be taken into consideration. The approach taken by the DAM is to divide the operations
of the get-type instructions into two groups: testing and binding instructions. Testing instructions simply
test a term to see if it is bound to a particular term, failing the and-box if the test fails or continuing if the
box succeeds. If the term being tested is a variable, then the term that the variable will bind to is to be
constructed and the variable is bound to the term. Before construction and binding the variable needs to be
locked, to ensure no other worker can bind the variable, and localised.

Unification is decomposed in this manner for two reasons: Firstly, in a parallel system, if there are two
workers examining a variable then one may be a reader and one a writer. If the reader worker outruns the
writer worker while performing a sequence of unify instructions, the reader worker may read garbage. By
separating test and bind operations, the DAM can lock a variable, completely construct the term the variable
will be bound to and then bind and unlock it in one operation. Secondly, a suitably optimising compiler
should be able to detect when locking, localisation and binding operations are not needed. Making these
operations separate instructions allows them to be compiled out of the code.

The instructions for unification are summarised in table5.6. Sample code for the unificationY =
[f(X, X)] is shown for both the DAM and WAM in figure5.13. As can be seen, the WAM code
is considerably more compact. DAM code for all but the most simple unifications tends to suffer from
“code sprawl,” as each individual combination of input modes is individually handled. However the DAM
code constructs terms efficiently, using put instructions, and avoids the creation of temporary variables, an
expensive operation in the DAM.

The DAM also supports some simple arithmetic and term operations as primitives, summarised in table
5.7. These primitives can be combined with various mode-testing instructions (see section5.4.5), get and
put instructions to provide implementations of predicates such asplus/3 or functor/3 .

5.4.4 Boxes

Box structures in the DAM are built on the heap and have the formats given in figure5.14. Each box has
a header word that identifies the box as a box using the same tag bits as constants and structure headers.
These tags can be used while copying to avoid relocation clashes. The header word also contains the type
of box and a locking bit to allow the box to be locked while changing it.

All DAM boxes have the same basic structure: a header word, a set of flag and state bits, pointers
to other boxes in the structure and the current program and continuation pointers. The box also contains
a reference to the environment for the box and to a vector of arguments. Each box also keeps a count
of the number of active workers in the box, the number of children and suspended children. If a box is
suspended until a variable becomes bound, the box is linked into the dependents list of that variable. The
box also carries a reference to the variable that the box is suspended on; only one variable can be used for
suspension at present, more complex suspensions can be built by using predicates with commit guards.
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Instruction Description
GetConstant n,$’c’,&label Test the contents ofXn. If a variable, then continue. If

the constant given byc jump to label. Otherwise fail.
GetList n,&label Test the contents ofXn. If a variable, then continue. If a

list reference jump tolabel. Otherwise fail.
GetStructure n,$’f’/a,&label Test the contents ofXn. If a variable, then continue. If a

structure reference to a structure with functorf and arity
a, jump tolabel. Otherwise fail.

GetVariable n,m Unify the terms inXn and Xm, locking and localising
variables as appropriate. This instruction implements a
general unification algorithm.

GetListArgument n,a,m Get the contents of theath argument of the list referenced
by Xnand put it intoXm.

GetStructureArgument n,a,m Get the contents of theath argument of the structure ref-
erenced byXnand put it intoXm.

Lock n,&label Lock the variable referenced byXn. If the variable has
become bound, then jump tolabel, otherwise continue.

Localise n,&label Localise the variable referenced byXn. If Xn is localised
to a variable, then continue, otherwise jump tolabel.

BindConstant n,$’c’ Bind the variable referenced byXn to the constantc.
BindValue n,m Bind the variable referenced byXm to the term inXn.

Table 5.6: Get Instructions for the DAM

Instruction Description
Plus l,n,m Xl andXncontain numbers or ground terms that are arith-

metic expressions.Xm := Xl+Xn.
Times l,n,m Similar to Plus, except thatXm := Xl×Xn.
Subtract l,n,m Similar to Plus, except thatXm := Xl−Xn.
Divide l,n,m Similar to Plus, except thatXm = XldivXn.
Eval n,m Evaluate the ground arithmetic expression inXn and

place the result inXm.
Equal n,m,&label Xn andXmcontain numbers. IfXn = Xm then jump to

label, otherwise continue. Floats are tested to an accuracy
of 10−6.

Less n,m,&label Similar to Equal, but jump ifXn < Xm.
LessEq n,m,&label Similar to Equal, but jump ifXn ≤ Xm.
GetArg l,n,m Xn contains a number,Xl a structure reference. Copy the

contents of theXnth argument of the structure referenced
by Xl to Xm.

PutArg l,n,m Xn contains a number,Xm a structure reference. Copy
the contents ofXl into theXnth argument of the structure
referenced byXm.

GetFunctor l,n,m Take the structure referenced byXl and put the constant
functor name intoXnand the integer arity intoXm.

PutFunctor l,n,m Xl contains a constant andXn contains a number. Con-
struct a structure on the heap with the functorXl and arity
Xn. Put a reference to the structure in registerXm.

Table 5.7: Arithmetic and Term Construction Instructions for the DAM
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DAM Code WAM Code
L1: GetList 0,&L2

Lock 0,&L1
Localise 0,&L1
PutList 1
PutStructure 2,$’f’/2
PutVariable 3
PutStructureArgument 3,1,2
PutStructureArgument 3,2,2
PutStructureArgument 2,1,1
PutConstant 2,$’[]’
PutStructureArgument 2,2,1
BindValue 1,0
Jump &L7

L2: GetListArgument 0,1,1
L3: GetStructure 1,$’f’/2,&L4

Lock 1,&L3
Localise 1,&L3
PutStructure 2,$’f’/2
PutVariable 3
PutStructureArgument 3,1,2
PutStructureArgument 3,2,2
BindValue 2,1
Jump &L5

L4: GetStructureArgument 1,1,3
GetStructureArgument 1,2,2
GetVariable 2,3

L5: GetStructureArgument 0,2,1
L6: GetConstant 1,$’[]’,&L7

Lock 1,&L6
Localise 1,&L6
BindConstant 1,$’[]’

L7:

get list X0
unify variable X1
unify variable X2
get structure $’f’/2,X1
unify variable X3
unify value X3
get nil X2

Figure 5.13: Sample DAM Code for Unifying Terms
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Figure 5.14: DAM Box Representation

And-boxes contain the heads of two lists of variables: those variables local to the and-box and those
localised to the and-box. The and-box also maintains a count of the number of localised variables that have
not been constrained by a parent variable. Choice-boxes contain the current clause set word and clause table
for indexing purposes (see section5.4.5). Bagof-boxes contain a reference to the list to which completed
bagof-calls are added.

The state of the box is represented by a set of flag bits, summarised in table5.8. The Active, WaitChil-
dren, WaitQuiet, WaitGuard, WaitVar and New bits are mutually exclusive. When a box is killed by some
external event, the box may be marked dead or failed, but still be active or queued. This state is used to
ensure that the box is not deallocated until all processing has completed.

The WaitVar state indicates that the box has been suspended on a variable. The suspension can come
in two forms: a strong suspension indicates that the box is committed to waiting for the variable to become
bound, a weak suspension indicates that the box can be woken by the The StrongWait bit indicates a box
not available for nondeterminate promotion.

The messages described in section5.3.5are implemented by directly modifying the box structure, with
locking to ensure mutual exclusion. Messages sent to boxes that have been flagged as dead are abandoned.

An argument vector is used to load theX registers with values when a box is taken from the work
queue. The argument vector is simply a structure built on the heap, with a suitable arity and functor of
$arg . Bagof-boxes have an argument vector equal in size to the arguments of the second argument in the
bagof call. If the call has no arguments, or the arguments are all stored in an environment, then the pointer
to the argument vector is set to a null value.

An environment contains a vector of permanent registers, along with the size of the vector. A reference
to the immediate parent environment is also maintained, to allow a return to the parent at the end of the
clause. The environment also contains the continuation point for the call. The continuation point is initially
set to a null value, and is initialised with the continuation point taken from the parent choice-box upon
promotion.

Box Instructions

Box instructions are largely concerned with the creation and removal of boxes and environments. Box
instructions are also associated with the flow of control within the computation. The box instructions are
summarised in tables5.9and5.10.

A predicate call within the DAM consists of loading the lowest X registers with the arguments to the
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Flag Description
Active The box is currently active on a processor.
WaitChildren The box is waiting for all children to complete.
WaitQuiet The box is waiting until it becomes quiet.
WaitCommit The box has completed its guard and is waiting to be pro-

moted.
WaitVar The box is waiting on a variable.
New The box is a new box, being constructed.
Fail The box has failed.
Killed The box has failed or been killed.
Commit The box has committed to a single clause.
StrongWait The box is waiting on a variable, with no nondeterminate

promotion possible.
Force The box should ignore any weak waits on variables.
Copy The box is to be copied
NonDet The box is for nondeterminate promotion.

Table 5.8: Box Flags for the DAM

DAM Code WAM Code
PutConstant 0,$’a’
PutVariable 1
PutValueYX 1,1
Call 1,’p’/2

put constant $’a’,X0
put variable Y1,X1
Call ’p’/2,2

Figure 5.15: DAM Code for Callingp(a, X)

call and transferring control to the predicate code. The predicate code makes a choice-box if there is local
nondeterminism, or if the predicate is going to wait for a variable to be bound. If the predicate call is
deterministic, no choice or and-box needs to be constructed. If a predicate is to be spawned to execute on a
different worker, the choice-box can be created immediately by the calling box, and queued.

A choice-box creates child and-boxes by executing a series of try instructions. Again an and-box is only
created by the and-box code if this proves to be necessary. Alternatively an and-box can be created by a
choice-box wishing to queue a choice for parallel execution.

Call and Try instructions may attempt to perform parallel calls or tries, producing and- and or-paral-
lelism. Even if a parallel call or try is requested by the instruction, a parallel call is only executed if there
is a idle worker on the work queue waiting for something to be queued. Otherwise the call or try acts as
a sequential instruction. A sequential call or try is more efficient than a parallel call, as the box need not
necessarily be created, and the box does not have to be queued and the arguments reloaded. Rather than
building the parallel call directly, the DAM design assumes that most calls will be sequential calls, and
builds the choice-box and argument vector as a special case.

The sequences of abstract instructions for the DAM and WAM for making the callp(a, X) is shown
in figure5.15. These sequences are almost identical, the major differences being that the DAM will make
the call a parallel call if possible and the WAM reduces the size of the environment where possible.

The code for executing a sequence of choices in both the DAM and WAM is shown in figure5.16. The
major differences between the two sequences is that the DAM separates the operations more directly. The
DAM uses a choice-box to perform the same function as a WAM choice-point. However a choice-box can
be created remotely, so the creation operation is separated from the try and retry operations.
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Instruction Description
AndBox If the current box is not an and-box, make a new and-box

on the heap and make it the current box.
Allocate n Make a new environment withn permanent variables on

the heap, saveCP, and make it the current environment.
Deallocate Recover the oldCP andE registers and deallocate the old

environment.
Call p,’pr’/a If p is 1, attempt to make a parallel call topr/a by con-

structing and queueing a choice-box. Ifp is 0, call the
predicate directly by settingP to the start of the predicate
code andCP to the next instruction.

Execute ’pr’/a SetP to the start of the predicatepr/a , allowing a se-
quential call at the end of the clause.

Proceed Return to the calling predicate at the instruction given by
CP.

Fail Fail the current box.
WaitChildren If the current box has child boxes, wait for all child-boxes

to complete.
WaitQuiet If the current box is not quiet, wait for the box to become

quiet.
WaitCommit If the Commit flag is not set for the current box, wait for

the parent choice-box to commit to this box.
RequestConditional Request the parent choice-box to the current box to prune

any following sibling boxes.
RequestCommit Request the parent choice-box to prune any sibling boxes

and commit to this box.
Promote Promote the local variables and localised variables con-

tained in the current and-box to the grandparent and-box.
Raise Exit the current and-box and make the grandparent and-

box the current box.
Collect n,m Bind the output variable of a bagof-box toXmand make

Xm the new output variable.
Halt Similar to a Proceed instruction but intended for the top-

level and-boxes in the computation.

Table 5.9: And-Box Instructions for the DAM

DAM Code WAM Code
ChoiceBox 2
Try 1,1,&L1
Try 2,1,&L2
Try 3,0,&L3
Defer

try 2,L1
retry L2
trust L3

Figure 5.16: DAM Code for Trying a Sequence of Choices
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Instruction Description
ChoiceBox n If the current box is not a choice-box, make a new ar-

gument structure and copy the firstn temporary regis-
ters into the argument structure. Make a new choice-box
structure on the heap and make it the current box.

BagofBox Make a new bagof-box on the heap and make it the cur-
rent box.

Try c,p,&label Try a clause starting atlabel if c is 0, orc is contained
in the current clause set. Ifp is 1, try to make a parallel
call by constructing and queueing an and-box. If this is
a non-parallel call, set theCP register to the following
instruction and jump tolabel.

TryOne If the current box is a choice-box, remove the choice box
and make the current box the parent and-box.

Defer If only one child and-box remains for this choice-box,
then commit to that and-box and make the and-box active.
Otherwise, take the continuation point from the current
choice-box and jump to that continuation point.

Quit Terminate the program.
Slave Enter the work queue and wait for a piece of queued

work.

Table 5.10: Choice-Box Instructions for the DAM

5.4.5 Indexing and Modes

The implementation of NUA-Prolog [PN91] constructed clause sets on the heap. The clause sets could be
of any size, and could therefore be adapted to any predicate, no matter how large. This generality carried a
considerable cost, both in memory usage and the time taken to search for a singleton bit. A simpler solution
is to restrict the clause set to 32 bits and have the clause set contained in the register [Han92, CRR92].

Since theCS register is limited to 32 bits it can only handle up to 32 clauses. Most predicates are less
than 32 clauses in size so this is rarely a problem. In the case of predicates with more than 32 clauses,
a decision tree can be used to perform an initial split on some suitably chosen argument, until the set of
possible clauses reduces to 32 or below. If the set of possible clauses stubbornly remains above 32, the
initial clauses can be tried until only 32 clauses remain, in which case clause set indexing can be used.

Associated with the clause set is a clause table, pointed to by theCT register. The clause table simply
consists of a vector of program addresses, corresponding to each clause in the clause set. If the clause set
reduces to a single element at any time, the clause table is consulted to see which clause to commit to.

Strong and weak delays are achieved by suspending on a variable. The box is added to the list of
dependents and the box then waits. As well as being added to the list of dependents, the box also records
the variable that the box has suspended upon. In the case of a box being forced, the box has to be removed
from the dependents list of the variable. If the box is copied, the copied box must be added to the dependents
list of the copied variable.

Weak waits are forced by setting the Force flag in the box and queueing the box. The box is removed
from the variable’s dependents list. A box with the Force flag set ignores any weak suspension instructions;
strong suspensions are still obeyed, however.

Indexing Instructions

The DAM provides a rich set of instructions for indexing and testing modes, summarised in table5.11.
Sample DAM and WAM code for indexing on a simple program is shown in figure5.17. The DAM en-
courages use of specialised forms of clauses for single clause commitment. If the clauses are wait guarded
(or conditional or commit guarded and suitably quiet) it is possible to ignore the process of creating an
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p(a, b) :- true ? true.
p(b, b) :- true ? true.
p(b, c) :- true ? true.

DAM Code WAM Code
ClauseTable 7,(&O1,&O2,&O3)
SwitchOnTerm 0,&L3,&L1,Fail,Fail

L1: SwitchOnValue 2,($a:&O1, $b:&L2),Fail
L2: ClauseSet 6
L3: SwitchOnTerm 1,&L6,&L4,Fail,Fail
L4: SwitchOnValue 2,($b:&L5, $c:&O3),Fail
L5: ClauseSet 3
L6: ChoiceBox 2

Try 1,0,&C1,&T2
GetArguments 2

T2: Try 2,0,&C2,&T3
GetArguments 2

T3: TryLast 3,&C3,&O3
Defer

O1: TryOne
...

C1: ...

O2: TryOne
...

C2: ...

O3: TryOne
...

C3: ...

switch on term 0,L1,L2,L4,L4
L1: try 2,C1

retry C2
trust C3

L2: switch on const 0,(a:C1,b:L3)
L3: try 2,C2

trust C3

L4: fail
C1: ...

C2: ...

C3: ...

Figure 5.17: DAM Code for Indexing
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Instruction Description
SwitchOnTerm n,&v,&c,&l,&s Examine the contents ofXn and jump tov if a variable,

c if a constant, integer or floating point value,l if a list
reference ands if a structure reference.

SwitchOnValue n,&table,&fail Examine the contents ofXn which is a constant or struc-
ture reference. Use the value of the constant or functor
and arity of the structure as a key to the hash table,ta-
ble. If the value is found in the hash table, jump to the
corresponding program address, otherwise jump tofail.

ClauseTable set,&table Make the current clause setset(an integer) and the cur-
rent clause tabletable.

ClauseSet set Intersect the current clause set withset (an integer). If
the resulting clause set is empty, fail the current box. If
the resulting clause set has a single element, jump to the
corresponding entry in the clause table.

JumpVar n,&label If Xncontains a reference to a variable, jump tolabel.
JumpGround n,m,&label If Xn contains a ground structure, then jump tolabel.

Otherwise, place a reference the first unbound variable
in the structure intoXm.

Suspend n,w,&label Strongly suspend on the variable referenced byXn,
restarting atlabel when the variable becomes bound. If
w is 1, then weakly suspend or skip this instruction if the
current box has the Force flag bit set.

Table 5.11: Indexing and Mode Instructions for the DAM

and-box, localising variables and promoting, since all of this is going to happen unconditionally.

5.4.6 Nondeterminate Promotion and Copying

Nondeterminate promotion is handled in the DAM by queueing the choice-box that is to be promoted with
the NonDet flag bit set. The essential approach of the AKL is to be “or-phobic,” wherever possible, so
nondeterminate promotions are never executed immediately.

When a worker takes a box with the NonDet flag from the queue, it performs a nondeterminate pro-
motion on the box rather than executing the box immediately. Eventually the worker will execute the child
and-box that has been chosen for promotion.

Stream and-parallelism tends to create scattered blocks of related data, as the various and-computations
interleave. The binding array and copying models of or-parallelism (see sections2.1.2and2.1.4) rely on
bindings being available as a contiguous block for efficiency while copying.

The multi-sequential machine model (see section2.1.3) relies on workers shadowing the initial branches
of an or-parallel computation. These workers would be more profitably employed performing any and-
parallelism that was available. The Delphi model requires special pre-processing and worker re-synchron-
isation appears to be potentially expensive.

The hash window model (see section2.1.1) has been used successfully in the ParAKL machine [MD93].
However, use of localised variables in the DAM means that there are no readily available hash windows for
maintaining multiple bindings.

The DAM copies box-trees in a manner similar to copying garbage collection. This approach is also
used in the AGENTS abstract machine [Jan94] and the Penny system [MA96]. Each object that is part of the
structure being copied is allocated a new block of memory and copied across. As each structure is copied
its first word is replaced by a relocation term, giving the address of the copied object. Further attempts to
copy an already relocated object simply use this relocation term. Each relocation term is trailed and the trail
unwound at the end of copying.
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nrev(1000) Naive reverse with 1000 elements
qsort(2500) Quicksort with 2500 elements
fib(25) Fibonacci number of 25
tree(17) Generate a balanced binary tree of depth 17
subset(15) Generate all subsets of a set of 15 elements
encap(7) Generate a cross product of two subsets of 7 elements.
filter(1000) Filter a list of 1000 elements by selecting the elements

contained in another list.
and(50000) Test the and boolean operator with various combinations

of modes.

Table 5.12: Benchmarks

Starting at the head of the sub-tree, a duplicate of each box is constructed, copying the flags, program
and continuation pointers. And-boxes make copies of their environments, and local and localised variable
lists. Or-boxes make copies of their arguments.

Local variable lists need only have those local variables that are still unbound copied; bound variables
have their bindings copied when the and-boxes environment is copied. Localised variable lists are copied in
two passes, ignoring any localised variables that have been entailed by their parents. Initially copies of each
localised variable are made and the original variables given relocation pointers. After all localised variables
have been copied, each new localised variable has the term that it is bound to copied.

Terms are copied recursively, with each term being checked for groundness before a copy is made.
Ground terms do not need to be copied. The use of groundness bits means that a ground term is only ever
checked once for groundness, making the copying of ground terms a great deal more efficient.

Child boxes are only copied after the environment and variables of the parent box has been copied,
meaning that all references to variables outside the scope of child boxes have been relocated before-hand.

Child boxes can be copied in parallel since no child box can have bindings referring to a sibling box.
Boxes for parallel copying are queued with the Copy flag-bit set, and the copy is made on the heap of the
worker which acquires the box from the queue. The copying worker can also trail relocation references on
its own trial, and unwind the trail at the end of the copy, since the copying of a child box cannot have an
effect on the environment of the parent box. To avoid queueing marginal prospects for copying, only those
child-boxes with at least one child-box themselves are considered for parallel copying.

5.5 Performance

This section presents some performance results for the DAM. The benchmarks are summarised in table
5.12and code for the benchmarks can be found in appendixA. nrev(1000)andqsort(2500)test dependent
and-parallelism.fib(25) and tree(17) test determinate independent and-parallelism.subset(15)tests or-
parallelism. encap(7) tests nondeterminate independent and-parallelism.filter(1000) tests deep guard
performance.and(50000)tests clause set indexing.

Running more standard nondeterminate benchmarks on the DAM, such as the SEND + MORE =
MONEY problem reveals a peculiarity with the scheduling of nondeterminism on the DAM. The work
queue on the DAM tends to produce behaviour similar to breadth-first search, as both a nondeterminate
promotion and the remainder of the promoted choice-box are scheduled for execution. As a result, the
DAM takes almost as long to compute 1 solution to the SEND + MORE = MONEY problem as it takes to
compute all solutions.

For purposes of comparison, the benchmarks were run on the following implementations:

NU-Prolog [ZT86] An example of a sequential Prolog system built around the WAM. Version 1.6.5 was
used.

AGENTS [Jan94] The SICS sequential AGENTS abstract machine, version 1.0.
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Benchmark NU-Prolog AGENTS Penny DAM DAM (no locks)
nrev(1000) 2100 6800 8300 8400 6500
qsort(2500) 1300 3000 5200 4800 3400
fib(25) 4300 4800 5800 4900 4200
tree(17) 2900 3900 5000 5300 4400
filter(1000) 830 2300 5000 18000 17000
subset(15) 430 13000 7600 13000 12000
encap(7) 300 5000 2500 3100 3000
and(50000) 2600 6000 8500 7800 5900
All results in ms,±10%

Table 5.13: Single Processor Performance of the DAM

Penny[MA96] The experimental SICS parallel AKL abstract machine.

DAM Doug’s Abstract Machine.

All systems were compiled using gcc or g++ version 2.7.2.1 using the -O2 optimisation level for gcc
and the -O3 optimisation level for g++.2 The benchmarks were run on a Sun SparcServer 1000 with four
50MHz processors on a 40MHz bus running the Solaris 2.3 (SunOS 5.3) operating system. All benchmarks
were run using the RT (real time) scheduling class, to ensure the highest CPU availability possible.

Both parallel systems tended to produce variable times for most benchmarks, with the variability be-
coming more pronounced as the number of processors increased. The times quoted are the mean of three
consistent trials, with there being approximately 10% variation between most trials.

Single processor performance for the DAM for a set of benchmarks is shown in table5.13. In addition
to the normal DAM, a sequential version of the DAM where all locking was removed was also tested.

As might be expected, the sequential NU-Prolog system outperforms all the AKL systems. In most
cases, the performance of NU-Prolog is 3-4 times that of the best AKL system. The additional overhead
caused by the manipulation of boxes and handling of local/non-local variables would reasonably cost that
much.

When considerable non-determinism is present, in thesubset(15)andencap(7)benchmarks, NU-Prolog
outperforms the AKL systems by anywhere from 7 to 40 times. Since NU-Prolog uses backtracking, as
opposed to the copying mechanisms used the AKL systems, the massive improvement in performance in
a nondeterminate program can be attributed to the superiority of backtracking to copying; when copying,
the DAM needs to trail anything that it is relocating as well as copying it — clearly trailing, copying and
unwinding must take longer than simply trailing and unwinding.

Thefib(25) benchmark results are the results where the AKL most closely match the performance of
NU-Prolog. This benchmark involves a large number of arithmetic operations; operations that are not
usually part of the core abstract machine. In this case, all implementations are more likely to be equal.
Since thetree(17)benchmark is very similar tofib(25), but involves less arithmetic and shows a similar
performance difference between the Prolog and AKL implementations, the arithmetic operations are likely
to be the prime cause of this anomaly.

In general, the DAM tends to outperform Penny on the simpler benchmarks, where box construction
can be avoided. On the simpler benchmarks, the DAM with no locks is roughly equal to AGENTS in
performance. In thefilter(1000)benchmark, where deep guards and a great deal of box creation occurs, the
DAM is much more inefficient than the AGENTS and Penny systems.

Theand(50000)benchmark shows similar performance to the AGENTS system when the overhead of
locks is removed. Theand(50000)also shows the expense of box creation; profiling of the program showed
that 12% of time was spent creating and removing choice-boxes.

In the nondeterminate benchmarks,subset(15)andfib(7), the DAM and AGENTS implementations
tend to show similar performance; an expected result, since nondeterminate promotion tends to use a lot of

2Optimisation levels were left as set by the authors of the programs. -O3 level inclines functions declared as such, a practise usually
ignored in C, where#define s are used instead, but encouraged in C++
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Processors
Benchmark System 1 2 3 4
nrev(1000) DAM 8400 5600 3800 3600

Penny 8300 5300 4400 3700
qsort(2500) DAM 4800 3800 3600 3700

Penny 5200 2900 1600 1500
fib(25) DAM 4900 3200 2500 2400

Penny 5900 3600 2500 1700
tree(17) DAM 5300 4200 3100 3600

Penny 5000 2600 1900 1600
subset(15) DAM 13000 11000 9200 9200

Penny 7600 5500 4900 4600
encap(7) DAM 3100 2400 2100 2300

Penny 2500 1900 1700 1700
filter(1000) DAM 19000 18000 19000 20000

Penny 5000 5300 5200 5200
and(50000) DAM 7800 14000 24000 26000

Penny 8500 16000 19000 20000
All results in ms,±10%

Table 5.14: Parallel Performance of the DAM

time copying. Penny outperforms the DAM and AGENTS on non-determinate benchmarks. Since Penny
uses a similar copying algorithm to the other AKL systems, this difference is more likely to be a result of a
more highly optimised implementation than some underlying architectural difference.

For programs that contain little nondeterminism, there is approximately 20% performance cost, largely
traceable to the costs of locking. Nondeterminate promotion is designed to avoid most locking and so does
not suffer so much from the performance penalty. With locking removed, the DAM performs comparably
to the AGENTS machine and Penny; the extra speed of the DAM in some cases can be explained by the
inlined arithmetic functions available on the DAM.

Parallel processor performance for the DAM is summarised in table5.14. Performance results for 4
processors should be regarded with some caution, as the system used for the benchmarks has 4 processors,
and contention with the operating system is possible when all processors are being used.

The DAM and Penny tend to show roughly the same 1 processor performance for the simpler deter-
minate programs, but a more linear speed-up as more processors are added. In most cases, the parallel
speed-up for the is nowhere near linear, a disappointing result. There seem to be two reasons for this result:

Profiling the DAM shows that the ChoiceBox instruction is very expensive, taking over 100 times the
amount of time that the simpler instructions take. The dependent and-parallel programs tend to use choice-
boxes to synchronise and so pay the penalty.

The work queue can become saturated with tiny pieces of work, leading to a granularity problem. This
is the case with the fib(25) test, since many tiny Fibonacci numbers are computed towards the end of the
computation, and many of these will be queued in parallel. Theand(50000)benchmark contains a great
deal of fragmentary parallelism. Most calls toand/3 are simple and incur little overhead if performed se-
quentially. The subset(15) and encap(7) programs tend to perform many small nondeterminate promotions,
leading to contention at the work queue.

Thefilter(1000) benchmark has little inherent parallelism, and so little or no parallel speed-up should
be expected. In fact, the parallel overhead tends to cause both systems to perform worse on essentially
sequential programs when more processors are added.

No memory benchmarks have been included. Memory benchmarks are difficult to come by, as they
are generally not published, and measurement in systems that do not supply statistics is very difficult.
NU-Prolog can be expected to be generally most memory conservative, since it does not need box and sus-
pension structures for the benchmarks described here. The DAM can be expected to use the most memory.
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The need for large variables (over one cell in size) and the size of box structures tends to make the DAM
memory-wasteful. Thy middle ground between NU-Prolog and the DAM can be expected to be occupied
by AGENTS and Penny.

5.6 Related Work

The closest relation to the DAM is the Penny parallel machine and its sequential predecessor, the AGENTs
abstract machine [MA96, Jan94]. Both these machines use a system of configuration-stacks to control the
computation, rather than the box-based approach of the DAM. In the Penny architecture, workers move
from box to box in a localised fashion, taking work from an immediate parent or child box; in contrast,
the DAM uses a queue and activates a box by placing it on the queue. Scheduling involves other workers
acquiring outstanding tasks from an owning worker, rather than the DAM’s approach of workers picking up
any outstanding work from a common queue. The tendency of the DAM to perform breadth-first search, and
the granularity problems that it experiences suggests that the DAM should use a stacking-based scheduler
for at least some of its work.

The ParAKL system [MD93] uses hash tables to maintain multiple binding environments.
The Andorra-I system [SCWY91a] is intended for use with the basic Andorra model and therefore

does not need the complications of multiple binding environments. Similarly, Pandora [Bah91] is based on
Parlog and the JAM and does not need to consider such complications.
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Chapter 6

An AKL Compiler

This chapter covers the compiler for the DAM. The DAM contains several expensive operations: the cre-
ation and destruction of boxes, locking and localising variables, and copying parts of the box-tree during
non-determinate promotion. A useful compiler for the DAM needs to be able to minimise the number of
times these operations are performed.

A compiler is essentially a program that translates a program in one language, the source language, into
a program in another language, the target language, with the same semantics. The target language is usually
a lower-level language than the source language. An optimising compiler does this translation in such a
way as to minimise some characteristic of the output program, such as the time the program will take to run
or the memory space that the program takes.

A block diagram for the DAM compiler for the is shown in figure6.1. This compiler follows the
typical structure of a logic programming compiler. Individual clauses are compiled into streams of abstract
instructions. All clauses for a predicate are then analysed and apreludeconstructed: a set of instructions
controlling indexing and nondeterminism. The instruction stream is passed through a peephole optimiser
and the resulting stream is then written to a file. The abstract interpretation step is not part of a normal
compiler, but is part of the DAM compiler. The abstract interpretation step allows the program to be
analysed and information about the nature of predicates passed to the clause compilation and indexing parts
of the compiler, with the aim of producing a more efficient compilation.

An optimising compiler gathers information about the expected behaviour of a program. This informa-
tion is then used to tailor the product of the compiler so that it executes in a more efficient manner. Usually
compilers arelocal; the compiler works on one unit — a clause or predicate — at a time, and does not use
information gathered from the compilation of other units. Alternatively a compiler can beglobal to varying
degrees. Global compilers gather information about all parts of a program that are available, and use that
information to optimise the compiler output. Possible global optimisations are:

Goal Ordering: Computations are most efficient when the goals in a clause are ordered so that data
flows from producers to consumers. Although the AKL execution model is largely insensitive to goal
ordering issues, the DAM is most efficient when predicates are called with suitably bound variables; creating
a choice-box and delaying a call are expensive operations and should be avoided.

Determinacy: If a call to a predicate is determinate, it may not be necessary to create a choice-box
and and-box for a local environment. Determinacy can be achieved in two ways. Firstly if the predicate is
known to be dependent on some arguments being bound to be determinate, the call can be delayed until the
appropriate arguments are bound. Secondly, complete indexing of clauses can also help detect determinate
goals.

This chapter concentrates on the more interesting aspects of the compiler; those parts where the com-
piler deviates from simply converting goals into lists of unification and call instructions. The compiler is
intended to optimise the DAM instructions produced, eliminating the most costly operations where possi-
ble. Optimisation is achieved at two levels: an abstract interpretation which gathers the types and modes of
each predicate, and in-line optimisations produced by gathering requirements from the future stages of the
meta-interpretation.

83
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p(X, Y) :- q(X) -> Y = a.
p(X, Y) :- true -> Y = b.

p(i, o).
q(i).

q(X) :- X = a | true.
q(X) :- X = f(Y) | Y = a.

Prelude
Compilation

Clause
Compilation

q(X) :- X = a | true.

Clause
Compilation

q(X) :- X = f(Y) | Y = a.

Abstract
Interpretation

p(_, {a, b}).
q({a, f(a)})

q(X) :- X = a | true.
q(X) :- X = f(Y) | Y = a.

Optimisation

...
... ...

     SwitchOnTerm 0,&0,&1,Fail,&2
0:   Suspend

1:   GetConstant 0,$a,&11 2:   GetStructure 0,$f/1,&21

Compiled
Code

Figure 6.1: Compiler Architecture
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6.1 Abstract Interpretation

Abstract interpretation was introduced by Cousot and Cousot [CC77] as a method of formally deriving
program properties. Using an abstract interpretation involves an approximate execution of the program,
which is guaranteed both to halt and work with a superset of the possible values of the actual program. The
information derived from the approximate execution can then be used to annotate the program in several
ways, giving a compiler clues as to the most efficient way to compile pieces of program.

The simple semantics of logic programming languages make them ideal for abstract interpretation,
and abstract interpretation models have been used for several purposes, such as variable dependence tests
for independent and-parallelism [MH92], specialising versions of predicates [Win92] and compile-time
garbage collection [MWB90].

An abstract interpretation involves two posets, aconcrete domain, denoted by< E,≤>, that is an
accurate representation of the computation and anabstract domain< D,v> that represents some useful
abstraction of the concrete domain. The two domains are related by means of a concretisation function
γ : D → E and an abstraction functionα : E → D. Each operations in the concrete domain, is mapped
onto an abstract operations′ in the abstract domain.

To be a safe abstract interpretation, the domains must beadjoined[MS92].

Definition 6.1.1 LetD andE be complete lattices. The monotonic functionsγ : D → E andα : E → D
areadjoinediff ∀d ∈ D, d = α(γ(d)) and∀e ∈ E, e ≤ γ(α(e)).

In most logic programming languages, abstract interpretations can be built to model either top-down or
bottom-up execution (eg. SLD-resolution and theTP fixpoint semantics respectively in the case of Prolog).
An example of top-down abstract interpretations is the general framework described by Bruynooghe et
al. [BJ88], Another example is multiple specialisation [JLW90], which allows the creation of multiple,
specialised versions of a predicate, selected by run-time tests. Most specific logic programs [MNL88] can
be used to generate more efficient versions of programs; an example of bottom up abstract interpretation is
the generation of most specific programs [MS92].

Abstract interpretations may also be based on a parallel or sequential model of interpretation. Bottom-
up execution is implicitly parallel, as each new fact can be computed independently of all other possible
facts. Bottom-up abstract interpretations therefore, are also implicitly parallel. Top-down execution models,
especially committed-choice languages, may be sensitive to deadlock and race conditions. As a result,
the abstract interpretation must take account of these possibilities. An example of a top-down abstract
interpretation that handles parallelism is Codish’s suspension analysis [Cod91].

The main existing form of abstract interpretation for the AKL is that of Sj¨oland and Sahlin [SS95] which
uses top down interpretation to derive a set of pre- and post- call domain equations which can be solved.
A variety of methods for solving the equations are examined by Sch¨on [Sch95]. An alternative to directly
using top-down abstract interpretation for top-down, parallel execution models is to build an equivalent
bottom-up execution model and use that model to derive the abstract interpretation. This technique has the
advantage that it side-steps the inherent complexities of explicitly modelling parallelism, while producing
the same results in some areas. An example of this technique is the abstract interpretation developed by
Foster and Winsborough for Strand [FW91], used to avoid copying of modified data structures.

The compiler described here uses abstract interpretation to provide more accurate indexing of clauses
throughout the program, and to provide accurate mode information for determining call orders and call
delaying. The bottom-up abstract interpretation used in this compiler uses the fixpoint semantics developed
in chapter4, extended to allow explicit mode information as a concrete domain.

6.1.1 Partitioning the Program

The fixpoint semantics in chapter4 rely on a program being guard stratified. Before being able to perform
any abstract interpretation the program must be partitioned into guard-stratified layers. Stratifications can
be built by building a call graph between all the predicates in the program. The program is then partitioned
in the following manner:

If p andq are two predicates, thenp ≤ q is defined recursively by:p ≤ q if any clause ofq contains a
direct reference top, and ifp ≤ q andq ≤ r thenp ≤ r. The partition of a programP consists of the set



86 CHAPTER 6. AN AKL COMPILER

of equivalence classes of the predicates inP with respect to≤. A programP is guard stratified if, for all
clauses inP , the predicates in the guard of all clauses ofq, p havep < q.

As an example, the program

p1(X) :- true ? p4(X)
p1(X) :- p2(X, Y) ? p4(Y)

p2(f(X), Y) :- true -> X = Y.
p2(g(X), Y) :- p3(X) -> X = Y.

p3(a) :- true ? true.
p3(b) :- true ? true.

p4(X) :- p3(X) ? true.
p4(c) :- true ? p1(a).

has the partition{{p1, p4}, {p2}, {p3}}. The program is clearly guard stratified.
The partition of a programP can be built by constructing a directed graph of all calls in the program

and then computing the transitive closure. All arcs on the graph where both(p, q) and(q, p) exist are part
of the same equivalence class.

In the above example program, the directed graph consists of the edges

{(p1, p2), (p1, p4), (p2, p3), (p4, p1), (p4, p3)}

with a transitive closure of

{(p1, p2), (p1, p3), (p1, p4), (p2, p3), (p4, p1), (p4, p2), (p4, p3)}

Clearly, the only pair of arcs here is(p1, p4), (p4, p1), making the equivalence classes{{p1, p4},
{p2}, {p3}}

Checking that the program is guard stratified essentially means ensuring that all predicates in each
equivalence class do not call each other in their guards. If a program is not guard-stratified, a warning is
issued, and those predicates which are not guard stratified are excluded from the abstract interpretation —
they are assumed to have the most general type and mode.

6.1.2 Determining Types

A major aim of applying abstract interpretation to the AKL is to determine the types of terms that variables
may be bound to. Type determination leads to more efficient indexing of clauses and earlier detection of
determinacy. For example in the program

p(X) :- q1(X) -> r(X).
p(X) :- q2(X) -> s(X).

q1(f(a)).
q1(f(b)).

q2(f(b)).
q2(g(b)).

the predicatep/1 needs its argument to be bound to be determinate. A simple indexing algorithm would
not be able to deduce that this is possible. However an indexing algorithm that has the expected success
patterns ofq1/1 andq2/1 will be able to more efficiently indexp/1 , eliminating useless speculative
computation.

The concrete domain for types is the domain of constraints over Herbrand equality. In order to aid
analysis a normal form is chosen. The approach taken throughout the abstractions developed below is to
group terms together by their position in a term tree.Tracesprovide a consistent way of referring to the
position of sub-terms within terms.
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Definition 6.1.2 A traceis a sequence, recursively defined as follows: the empty trace,ε, is a trace andi.t,
wherei ∈ N andt is a trace, is a trace.N is the domain of natural numbers.

The domain of traces is denoted byT R.
Traces are ordered by

ε ≤ t
sh.st ≤ th.tt if sh < th
sh.st ≤ th.tt if sh = th andst ≤ tt

The concatenation of two tracess andt is denoted bys · t. By an abuse of notation the concatenation
of s andi.ε is also written ass · i.

The application of a tracet to a termr, written asr � t is defined as:

r � t =




r if t = ε
ri � tt if t = i.tt, r = f(r1, . . . , rn) and1 ≤ i ≤ n
⊥ otherwise

Definition 6.1.3 A constraint is intrace conjunctive formif it consists of a set of constraints:θ1 ∧ · · · ∧ θn

where eachθi is of the formVs = c, Vs = f(Vs·1, . . . , Vs·m) or Vs = Vt wheret ≤ s.
A constraintconstrainsVs if there is someθi Vs = c or Vs = f(Vs.1, . . . , Vs.m), orVs = Vt where the

constraint constrainsVt.
The domain of constraints in trace conjunctive form is denoted byCF .
A set of constraints is intrace disjunctive formif it is in the formσ1 ∨ · · · ∨ σl where eachσi is in trace

conjunctive form.

Lemma 6.1.1 Any constraint consisting of equalities of terms can be put in trace disjunctive form.

Proof Any constraint can be put into disjunctive normal form. We begin by renaming all variables to be
of the formVi.ε. Any equalities of the formf(S1, . . . , Sn) = f(T1, . . . , Tn) can be replaced byS1 =
T1 ∧ · · · ∧ Sn = Tn. Any equalities of the formVt = f(T1, . . . , Tn) can then be replaced byVt =
f(Vt.1, . . . , Vt.n) ∧ Vt.1 = T1 ∧ · · · ∧ Vt.n = Tn Any equalities of the formVs = Vt can be rewritten as
Vt = Vs if s ≤ t. 2

Trace form provides a convenient canonical form for the analysis of types. Using trace form we can
define a type system that is specialised towards the instantiation patterns of variables.

Definition 6.1.4 A broad typeis one of the following elements:

1. A lattice of base types such asatom, the set of all atoms,term the set of all non-atomic terms or
integerthe set of all integers. Two base types that must exist are>, the universal type indicating all
terms, and⊥, the empty type. Base types have a functionψ defined to be the set of functor/arity
pairs that can be represented by that base type (e.g.ψ(integer) = {0/0, 1/0,−1/0, 2/0,−2/0, . . .},
where integers, as constants, have an arity of 0)

2. F (T1, . . . , Tn), whereF = {f1/n1, . . . , fm/nm} is a set of functor/arity pairs,n = max(n1, . . . ,
nm) and eachTi, 1 ≤ i ≤ n is a broad type.

The symbolB is used to represent the set of all broad types.
Broad types have a similar trace application operator to terms (see definition6.1.2).
The functor set for a broad type is defined as

Ψ(T ) =
{
F if T = F (T1, . . . , Tn)
ψ(T ) if T is a base type
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Broad types represent a set of terms, with all possible terms that can be built from the type
tree. As an example, the broad type{f/1, g/2}({a/0, b/0}, {a/0, c/0}) represents the set of terms
{f(a), f(b), g(a, a), g(a, c), g(b, a), g(b, c)}.

The broad type {[]/0, ./2}(>, {[]/0, ./2}(>,>)) represents the set of terms
{[], .( , []), .( , .( , ))} or the first three possible lists.

Broad types are both less flexible and less precise than the regular types used by (for example) Zobel
[Zob90]. It is not possible to represent a general recursive type, such aslist = {[], .(>, list)} using broad
types. It is also not possible to separate arguments in broad types, e.g.{f({a, b}), g({c, d})}. However
broad types are well suited to the role they play in the AKL; broad types provide a suitable abstraction for
the purposes of clause set indexing.

Definition 6.1.5 Theunificationof two broad typesT andS, written asT ∧ S is given by

1. If T = > thenS.

2. If T andS are base types glb(S, T ).

3. If T = F (T1, . . . , Tn) andS is a base type, then{f/n : f/n ∈ FT andf/n ∈ ψ(S)}.

4. If T = F (T1, . . . , TnT ) andS = G(S1, . . . , SnS) then (F ∩ G)(T1 ∧ S1, . . . , Tn ∧ Sn) where
n = min(nT , nS). If any ofTi ∧ Si =⊥ orF ∩G = ∅ then this is equivalent to⊥.

Theunionof two broad typesT andS, written asT ∨ S is given by

1. If T = ⊥ thenS.

2. If T andS are base types lub(S, T ).

3. If T = F (T1, . . . , Tn) andS is a base type, thenR whereR is a base type andT ≤ R andS ≤ R.

4. If T = F (T1, . . . , TnT ) andS = G(S1, . . . , SnS) then (F ∪ G)(T1 ∨ S1, . . . , Tn ∨ Sn) where
n = max(nT , nS), andTi =⊥ if i > nT , similarly forS.

Both unification and union are commutative operators.

Examples of unification and union of broad types are:

{f/1, g/2}(>, integer)∧ {f/1}(atom) = {f/1}(atom)

and
{f/1, g/2}(>, integer)∨ {f/1}(atom) = {f/1, g/2}(>, integer)

Definition 6.1.6 Thedepthof a broad type is a function depth: B → N, defined as follows:

depth(T ) =
{

1 if T is a base type
1 + max(1, depth(Ti)) if T = F (T1, . . . , Tn).

The concrete domain,E, for this type abstraction is the set of constraints in trace disjunctive form. For
two elementse1, e2 ∈ E, we have an ordering defined ase1 ≤ e2 if e1 → e2. Our abstract domain is over
the set of mappingsD = ℘(V → B) where a variable is mapped onto a broad type. Only base variables (ie.
variables with a single element trace) need to be included in the mapping.

We can define the concretisation functions and abstraction functions for moving between broad types
and constraints in trace normal form in the following way:

Definition 6.1.7 Theconcretisation functionγ : V × B → E is defined, forγ(Vt, d), as:

1. The constraintisBase(Vt), if d = B whereB is some base type. The base types> and⊥ are
mapped onto the constraints true and false respectively.
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2. The constraint
 (Vt = f1(Vt·1, . . . , Vt·m1)

∨ · · · ∨
(Vt = fn(Vt·1, . . . , Vt·mn)


 ∧ γ(Vt·1, d1) ∧ · · · ∧ ∧γ(Vt·m, dm)

if d = {f1/m1, . . . , fn/mn}(d1, . . . , dm).

The concretisation functionγ : D → E is defined asγ(d) =
∧

V ∈dom(d) γ(V, d(V )).

Definition 6.1.8 The abstraction functionα : V ×E → B is defined as

α(Vt, e) =




α(Vt, e1) ∨ · · · ∨ α(Vt, en) if e = e1 ∨ · · · ∨ en

α(Vs, e) if e = e1 ∧ · · · ∧ Vt = Vs ∧ · · · ∧ en

b if e = e1 ∧ · · · ∧ isBase(Vt) ∧ · · · ∧ en

{c/0}() if e = e1 ∧ · · · ∧ Vt = c ∧ · · · ∧ en

{f/m}(α(Vt·1, e), . . . , α(Vt·m, e)) if e = e1 ∧ · · · ∧
Vt = f(Vt·1, . . . , Vt·m) ∧ · · · ∧ en

b is the base type corresponding toisBase(V ).
The abstraction functionα : E → D is defined asα(e)(V ) = α(V, e) for all V of the formVi.ε.

Lemma 6.1.2 The functionsα andγ as defined in definitions6.1.8and6.1.7are adjoined.

Proof The proof consists of an induction on the depth of the abstract domain element for each variable.
Since the definition ofα decouples variables, only individual variables need to be considered.

If depth(T ) = 1 then T is a base type. In such a caseγ(V, T ) = isBase(V ) and
α(V, isBase(V )) = T . Similarly γ(V, α(V, isBase(V ))) = isBase(V ).

Suppose the proposition holds for all types of depth less than n, then ifT = F (T1, . . . , Tm) where
depth(Ti) < n, 1 ≤ i ≤ m.

γ(Vt, T )) =
(∨

f/m∈F V = f(Vt·1, . . . , Vt·m)
)
∧ γ(Vt·1, T1) ∧ · · · ∧ γ(Vt·m) from the definition ofγ.

This function can be distributed across the disjunctions to give a normal form. From the definition ofα we
have
α(Vt, γ(Vt, T )) =

∨
f/m∈F {f/m}(α(Vt·1, γ(Vt·1, T1)), . . . , α(Vt·m, γ(Vt·1, Tm)) which since the propo-

sition holds for eachT1, . . . , Tm and from the definition of union of broad types we have
α(Vt, γ(Vt, T )) = F (T1, . . . , Tm) = T .

To prove thatγ(α(e)) ≤ ewe use the constraint property that(c1∧c2)∨(c3∧c4) ≤ (c1∨c3)∧(c2∨c4).
For a constrainte, the set of constraints for a variableVt can be written as{Vt = fi(Vt·1, . . . , Vt·mi) : 1 ≤ i ≤ l}
and we haveα(Vt, e) = {f1/m1, . . . , fl/ml}(T1, . . . , Tm) wherem = max(m1, . . . ,ml) from the defini-
tion of broad type union. Applyingγ to this function produces

γ(Vt, α(Vt, e)) =


 (Vt = f1(Vt·1, . . . , Vt·m1)

∨ · · · ∨
(Vt = fl(Vt·1, . . . , Vt·ml

)


 ∧ γ(Vt·1, T1) ∧ · · · ∧ ∧γ(Vt·m, Tm)

and using the above properties of constraints,e ≤ γ(α(e)). 2

With a type system we are only concerned with the type of constraints that may allow a query to succeed.
The abstract interpretation for types collapses the four truth values discussed in chapter4 into two states:
possibly true and definitely false. The types describe the situations under which a predicate is possibly true.

Definition 6.1.9 A type abstractionwith depthk is a mapping of predicates onto terms
p/n → p(T1, . . . , Tn), where depth(Ti) ≤ k, 1 ≤ i ≤ n. The domain of type abstractions is denoted by
T A.
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Assuming that the program,P , can be guard-stratified into a set of sub-programs,{P1, . . . , Pm}, the
ΦP operator is replaced by an abstractΦ′

P operator. This abstract operator takes a set of definitions and
proceeds to successively approximate the workings of theΦP operator:

Definition 6.1.10 The variable projection functionΠ : T × B × V → B is defined asΠ(t, T, V ) =∧
t�s=V T � s if T containsV , and> otherwise.

Given a goalG = G1, . . . , Gn, where eachGi = pi(ti1, . . . , timi) a type abstractionA and a variable
V , the type model of V , written as Λ(G,A, V ) is defined as Λ(G,A, V ) =∧

1≤i≤n Π(G,A(pi/mi), V )
Φ′

P : T A × T A → T A is defined asΦ′
P (A,B)(p/n) = A(p/n) if p/n ∈ dom(A), and

Φ′
P (A,B)(p/n) = p(T1, . . . , Tn) if p/n ∈ dom(B), where eachTi is given by∨
p(V1,...,Vn) :- Gj % Bj

Λ((Gj , Bj), A ∪B, Vi)

Example 6.1.1 An example of the operation of theΦ′
P for the program:

p([], As, Bs) :- true ? As = 0, Bs = 0.
p([a | R], As, Bs) :- true ? p(R, As1, Bs), plus(As1, 1, As).
p([b | R], As, Bs) :- true ? p(R, As, Bs1), plus(Bs1, 1, Bs).

q(L, T) :- p(L, As, Bs) -> plus(As, Bs, T).
q(L, T) :- true -> T = 0.

This program is guard stratified into two levels:{{p/3 }, {q/2 }}. For the purposes of this example the
base type lattice has a base type ofI for the set of integers, andplus/3 has an initial type ofplus(I, I, I).
The depth of the type abstraction is set to 2.

The first stratification has the fixpoint calculation:

Φ′
P1
↑ 0 = {p/3 → p(>,>,>)}.

Φ′
P1
↑ 1 = {p/3 → p({[]/0, ./2}({a/0, b/0}(),>), I, I)}.

Φ′
P1
↑ 2 = {p/3 → p({[]/0, ./2}({a/0, b/0}(), {[]/0, ./2}({a/0, b/0},>)), I, I)}.

Φ′
P1
↑ ω = Φ′

P1
↑ 2

The second stratification has the fixpoint calculation:

Φ′
P2
↑ 0 = {q/2 → q(>,>)}.

Φ′
P2
↑ 1 = {q/2 → q(>, I)}.
Φ′

P2
↑ ω = Φ′

P2
↑ 1

Indexing Predicates

The information gathered by the fixpoint calculations can be used to provide accurate indexing of clauses
using the clause set indexing from chapter5. Broad types are particularly useful for clause set indexing
as they reflect the way functors are gathered together at each point. For indexing purposes, each clause is
numbered, and the types for each variable in the guard are computed. These types can then be used to build
an indexing tree for each argument.

Definition 6.1.11 Suppose we have a suitable type abstraction for a programA and a predicatep/n defined
by a series of clausesp(V1, . . . , Vn) :- Gi % Bi, 1 ≤ i ≤ m. Each clause generates anindexing
expressionp(Ti1, . . . , Tin)→ i where eachTij is given byTij = Λ(Gi, A, Vj)

Theexplicit argument setfor a tracet and set of indexing expressions{P → i} is defined as⋃
{Ψ(P � t) : P � t is not a base type}.

Given a tracet and explicit argument setE for a set of indexing expressions{P → i}, thecandidate
clause setfor some functor/arity pairf/l ∈ E is {i : f/l ∈ Ψ(P � t)}.

Thealternate clause setfor a tracet and set of indexing expressions{P → i} with explicit argument
setE is defined as{i : Ψ(P � t)− E 6= ∅}



6.1. ABSTRACT INTERPRETATION 91

The candidate clause set gives the set of clauses that can be explicitly indexed by functor/arity pairs.
The alternate clause set gives the set of clauses that can be successful, but cannot be explicitly indexed. The
candidate clause sets for the interesting traces ofp/3 in example6.1.1are:

1 {[]/0→ {1}, ./2→ {2, 3}}
1.1 {a/0→ {2}, b/0→ {3}}

The candidate clause sets for the trace1 of q/2 in example6.1.1is
{[]/0→ {1, 2}, ./2→ {1, 2}}. The alternate clause set for same trace is{2}.

6.1.3 Determining Modes

Modes carry information about the degree of constraint needed to ensure that a predicate becomes de-
terminate, or at least not deadlock. The system of mode inferencing described here is designed to allow
the compiler to order atoms within a goal and to delay calls until the arguments to the call have become
sufficiently instantiated.

Mode inferencing is somewhat more subtle than type inferencing. In the case of some wait-guarded
and conditional-guarded predicates it is possible to use the failure of other clauses to deduce the necessary
modes for a clause.

p(a, Y) :- true ? Y = b.
p(b, Y) :- true ? Y = c.
p(X, Y) :- true ? Y = a.

q(a, Y) :- true -> Y = b.
q(b, Y) :- true -> Y = c.
q(X, Y) :- true -> Y = a.

The last clause ofp/2 can only be determinately promoted if both preceding clauses have failed. To
fail the preceding clauses ofp/2 must have had the first argument bound to some variable, and therefore
the last clause implicitly assumes a bound first variable in the case of determinism. In a conditional guarded
predicate, such asq/2 , each clause is dependent on the failure of the preceding clauses and therefore carries
implicit mode information. The last clause ofq/2 is dependent on the failure of the previous two clauses,
and must have X bound in order to proceed.

The AKL is only implicitly moded. To allow abstract interpretation of an AKL program’s modes we
need to introduce a suitable concrete domain.

Definition 6.1.12 Themodingof a predicatep(V1, . . . , Vn) is a set of triples of constraints
u = {< θi, θw, θo >} such that if there is a computation

and(p(V1, . . . , Vn); θ){V1, . . . , Vn}∪vars(θ)
⇒∗ choice

(
. . . ,and(;σ)vars(σ) , . . .

)
the computation will complete with no nondeterminate promotions and withθi∧θw∧θo ↔ σ if θ → θi∧θw.
The computation will complete with one or more nondeterminate promotions and withθi ∧ θw ∧ θo ↔ σ if
θ → θi, but notθ → θi ∧ θw. Otherwise, the computation will deadlock.

θi represents an input mode, such as a constraint in the guard of a commit- or conditional-guarded
predicate.θw represents a writable mode, such as a constraint in the guard of a wait-guarded predicate.
Writable modes indicate constraints that can be promoted during nondeterminate promotion but could in
preference be externally satisfied.θo represents an output mode, the constraints that are imposed by the
body of a clause.

Modings are ordered, with two modings ofp/n , u andv havingu ≤ v if for all < θi, θw, θo >∈ u there
exists some< σi, σw, σo >∈ v such thatθi → σi, θi ∧ θw → σi ∧ σw andθi ∧ θw ∧ θo → σi ∧ σw ∧ σo.
Intuitively u ≤ v if u is a stricter moding thanv.

The domain of modings is denoted byM.
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m ∧ n m ∨ n m . n
n

i w o v
i i w o i
w w w o w

m o o o o o
v i w o v

n
i w o v

i i w o v
w w w o v

m o o o o v
v v v v v

n
i w o v

i i i i i
w w w w w

m o o o o o
v i w o v

Table 6.1: Abstract Mode Operators

An example mode forq/2 , defined above, is{< X = a, true, Y = b >,< X = b, true, Y = c >,<
X 6= a ∧X 6= b, true, Y = a >} The initial constraintX = z will cause the computation to complete with
the final constraint ofX = z∧Y = a. However an initial constraint of true will deadlock, as true6→ X = a,
true 6→ X = b and true6→ X 6= a ∧X 6= b.

The abstract domain is intended to model these mode partitions, allowing the construction of strong or
weak delays in the abstract machine.

Definition 6.1.13 An mode symbolis one ofMS = {i, w, o, v}, with i < w < o < v.
A mode treeis either the modev orm(M1, . . . ,Mn) wherem is one ofi, w or o andM1, . . . ,Mn are

mode trees.
Mode trees have a similar definition of the depth function to broad types (see definition6.1.4) and

can be decomposed by the application of traces (see definition6.1.2). The mode function is defined as
mode(v) = v and mode(m(M1, . . . ,Mn)) = m.

Mode trees are partially ordered bym v v or m(M1, . . . ,Mn) v l(L1, . . . , Ln), wherem ≤ l and
eachMi v Li, 1 ≤ i ≤ n.

A mode abstractionis a mapping from predicatesp(V1, . . . , Vn) to mode tree definitions of the form
p(M1, . . . ,Mn).

The domain of mode trees is denoted byMT and that of mode abstractions is denoted byMA.

Informally, i stands for input,w for writable,o for output andv for unconstrained variable. The abstrac-
tion is intended to model variables which are constrained byθi by i, θw by w andθo by o. Unconstrained
variables are modelled byv.

To allow the modelling of operations on modes, mode trees have the following join and union operators.
Generally input modes are overwritten by any output modes that have been produced.

Definition 6.1.14 The join of two mode symbolsm andn, written asm ∧ n, theunion, written asm ∨ n,
and thetie, written asm . n, are defined in table6.1.

The join of two mode treesM andN , written asM ∧N is defined as

M if N = v
N if M = v
(m ∧ n)(M1 ∧N1, . . . ,Ml ∧Nl, Nl+1, . . . , Nk) if M = m(M1, . . . ,Ml),

N = n(N1, . . . , Nk)
andl ≤ k

(m ∧ n)(M1 ∧N1, . . . ,Mk ∧Nk,Mk+1, . . . ,Ml) if M = m(M1, . . . ,Ml),
N = n(N1, . . . , Nk)
andl ≥ k

Theunionof two mode treesM andN , written asM ∨ N is defined in a similar manner to the join,
replacing the join of the mode symbols with the union. Similarly thetie of two mode trees, written asM.N
is defined by using the tie operator instead of the join operator.

The above mode tree representation does not allow the direct representation of negation. Mode trees
implicitly represent a conjunction of constraints, and the negation operation converts a conjunction into a
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disjunction, eg.¬X = f(a)↔ X 6= f( )∨ (X = f(Y )∧ Y 6= a). Similarly negations of constraints with
multiple variables tends to separate the variables during negation, eg.¬(X = a∧Y = b)↔ X 6= a∨Y 6= b.
However it would be useful to be able to represent some of the effects of negation on modes. In these cases,
the representation of negated modes must be reduced to an inaccurate approximation of the negation.

Definition 6.1.15 The inversionof a mode treeM , written as−M is defined as

v if M = v
m(v, . . . , v) if M = m(M1, . . . ,Mn)

We are now in a position to define suitable abstraction and concretisation functions for moving between
predicate mode trees and modings.

Definition 6.1.16 Theconcretisation functionγ :MA→M is defined as

γ(P ) =
⊗

mode(P�t) 6=v

γ(Vt, P � t)

where< θi, θw, θo > ⊗ < σi, σw, σo >=< θi ∧σi, θw ∧σw, θo ∧σo > andγ : V ×MT →M is defined
as

γ(V,M) =




< true, true, true> if mode(M) = v
< nonvar(V ), true, true> if mode(M) = i
< true, nonvar(V ), true> if mode(M) = w
< true, true, nonvar(V ) > if mode(M) = o

wherenonvar(Vt) is a shorthand for
∨
Vt = t(Vt·1, . . . , Vt·n) for all functor/arity pairs and constants in

the constraint domain; ie.nonvar(Vt) requiresVt to be constrained to be some non-variable term.

As an example,γ(p(i(v, w())) =< nonvar(V1), nonvar(V1.2), true>.

Definition 6.1.17 Theabstraction functionα :M→MA is defined by

α(u)(p(V1, . . . , Vn)) � t =
∨

θ∈u(p(V1,...,Vn)

α(Vt, θ)

whereα : V ×M→MS is defined as

α(V,< θi, θw, θo >) =




i if θi constrainsV
w if θw constrainsV
o if θo constrainsV
v otherwise

An example abstraction ofp(V1, V2) → {< V1 = a, true, V2 = b >,< V1 = b, true, V2 = a >} is
p(i, o).

Lemma 6.1.3 The functionsγ andα as defined in definitions6.1.16and6.1.17are adjoined.

Proof The proof is an induction on the depth of the mode tree in a similar manner to the proof of lemma
6.1.2. Since variables are separated during abstraction, we need only consider individual predicate argu-
ments and predicates of one variable.

If we have a mode treeM with depth(M) = 1 thenM = v. In this caseγ(v) =< true, true, true > and
α(< true, true, true>) = v, soα(γ(M)) = M , andγ(α(< true, true, true >)) =< true, true, true >.

Suppose that the proposition holds for mode trees of depth< n. In such a case, we haveM =
m(M1, . . . ,Mn). If m = i thenγ(p(M)) =< nonvar(V1), true, true> ⊗γ(V11,M1)⊗· · ·⊗γ(V1n,Mn).
Since γ(V11,M1), . . . , γ(V1n,Mn) do not constrainV1, the final constraints will all be of the form
< nonvar(V1) ∧ θi, θw, θo > andα(V1, < nonvar(V1) ∧ θi, θw, θo >) = i. By the induction hypothe-
sis, this relationship holds true forM1, . . . ,Mn and thereforeα(γ(p(M)) = p(M). A similar argument
holds for the mode symbolsw ando.
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Suppose all modings of a predicate< θi, θw, θo > haveθi constrainingV1. Then eachα(V1, <
θi, θw, θo >) = i and the union of all the mode symbols isi. In such a case,α(p(V1)) = p(i(M1, . . . ,Mn))
andγ(p(M)) =< nonvar(V1), true, true> ⊗γ(V11,M1)⊗ · · · ⊗ γ(V1n,Mn). Since each
θi → nonvar(V1) we haveu(p(V1) ≤ γ(α(u)p(V1)), since the induction hypothesis holds for each
M1, . . . ,Mn. A similar argument holds for the mode symbolsw ando. 2

With a pair of suitably adjoined domains, it is now possible to define an approximateΦP function for
modes. ThisΦ′

P function must be able to approximate the effects of guards on the modes that are produced.
In particular theΦ′

P operator must preserve the effects of guards. For example in the program

p(X) :- X = a -> X = a.

p/1 should have the modep(i), despite the implicit mode ofo in the body. The tie operator can be used
to preserve guard modes. We also need to be able to make modes more restrictive.

Definition 6.1.18 Themode restriction operatorfor a mode treeM and mode symboln, written asM ↑ n
is defined as

M ↑ n =
{
v if M = v
(min(n,m))(M1 ↑ n, . . . ,Ml ↑ n) if M = m(M1, . . . ,Ml)

We can now define a suitable approximation to theΦP operator.

Definition 6.1.19 Thevariable projection functionΠ : T ×MT ×V →MT is defined asΠ(t,M, V ) =∧
t�s=V M � s if t containsV andv otherwise.

Given a goalG = G1, . . . , Gn, where eachGi = pi(ti1, . . . , timi), a mode abstractionu and a variable
V , the mode of V , written as Λ(G,A, V ) is defined to be Λ(G,A, V ) =∧

1≤i≤n Π(G,A(pi/mi), V )
Φ′

P :MA×MA→MA is defined as

1. Φ′
P (A,B)(p(V1, . . . , Vn) = A(p(V1, . . . , Vn)) if p(V1, . . . , Vn) ∈ dom(A).

2. Φ′
P (A,B)(p(V1, . . . , Vn)) = p(M1, . . . ,Mn) if p(V1, . . . , Vn) ∈ dom(B) and

p(V1, . . . , Vn) :- Gi ? Bi ∈ P, 1 ≤ i ≤ m, where eachMj =
∨

1≤i≤m(Λ(Gi, B, Vj) ∧
−Λ(G1, B, Vj)∧· · ·∧−Λ(Gi−1, B, Vj)∧−Λ(Gi+1, B, Vj)∧· · ·∧−Λ(Gm, B, Vj)) ↑ w.Λ(Bi, B, Vj).
EachG1, . . . , Gi−1, Gi+1, . . .Gm may only restrict one head variable.

3. Φ′
P (A,B)(p(V1, . . . , Vn)) = p(M1, . . . ,Mn) if p(V1, . . . , Vn) ∈ dom(B) and

p(V1, . . . , Vn) :- Gi -> Bi ∈ P, 1 ≤ i ≤ m, where eachMj =
∨

1≤i≤m(Λ(Gi, B, Vj) ∧
−Λ(G1, B, Vj) ∧ · · · ∧ −Λ(Gi−1, B, Vj)) ↑ i . Λ(Bi, B, Vj). EachG1, . . . , Gi−1 may only restrict
one head variable.

4. Φ′
P (A,B)(p(V1, . . . , Vn)) = p(M1, . . . ,Mn) if p(V1, . . . , Vn) ∈ dom(B) and

p(V1, . . . , Vn) :- Gi % Bi ∈ P, 1 ≤ i ≤ m, where eachMj =
∨

1≤i≤m(Λ(Gi, B, Vj)) ↑
i . Λ(Bi, B, Vj).

Example 6.1.2 This example of the modeΦ′
P operator is on the program

p([], X) :- true | X = 0.
p([ | R], X) :- true | p(R, X1), plus(X1, 1, X).

q(L, X) :- p(L, X1) ? X = X1.
q(L, X) :- L = infinite ? X = -1.
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This program is guard-stratified into{{p/2 }, {q/2 }}. Assuming a depth limit of 3 and thatplus/3
has the modeplus(o, o, o), the fixpoint calculation for the first stratification is:

Φ′
P1
↑ 0 = {p(V1, V2)→ p(v, v)}

Φ′
P1
↑ 1 = {p(V1, V2)→ p(i(v, v), o)}

Φ′
P1
↑ 2 = {p(V1, V2)→ p(i(v, i(v, v)), o)}

Φ′
P1
↑ ω = Φ′

P1
↑ 2

The fixpoint calculation for the second stratification is:

Φ′
P2
↑ 0 = {q(V1, V2)→ p(v, v)}

Φ′
P2
↑ 1 = {q(V1, V2)→ q(w(v, i(v, v)), o)}

Φ′
P2
↑ ω = Φ′

P2
↑ 1

Generating Delays

Mode abstraction has two uses. The first and most obvious use is to provide information so that suit-
able delay instructions can be constructed during the indexing of the predicate. If, for some tracet,
mode(p(M1, . . . ,Mn) � t) = i, a strict delay can be added for thet argument to the indexing code for
p/n . If mode(p(M1, . . . ,Mn) � t) = w then a weak delay can be used for thet argument.

Ordering Goals

The second use of mode information is to allow the compiler to order goals within clauses to provide an
optimal flow of bindings. The AKL assumes no particular order of execution in a list of atoms, beyond that
of guards completing before bodies are executed. The compiler is therefore free to re-order atoms within
goals to maximise execution efficiency. Efficiency is improved whenever moded predicates are called with
bindings already in place, allowing an immediate commit to some clause.

The DAM is designed for use on parallel systems with a small number of processors, and these proces-
sors will rapidly be given work. After all processors have been assigned work, each processor will execute
any goals sequentially. In general the normal mode of execution for any list of goals is a sequential first
to last pattern. The modes available to the compiler from the abstract interpretation allow the goals of the
sequence to be simply ordered.

To allow ordering, we assume an initial sequence of goalsG = G1, . . . , Gn and that there is a mode
abstractionA for the program. For each pair of goalsGi, Gj we defineGi ≤ Gj if there exists a variable,
V ∈ vars(G) and tracest in Gi ands in Gj where mode(A(Gi) � t) ≤ mode(A(Gj) � s) for all V ∈
vars(Gi)∩ vars(Gj) whereGi � t = Gj � s = V . If there is a cycle then, by the above definition,Gi ≤ Gj

andGj ≤ Gi. In the case of a cycle, the original order of the goals is maintained, on the assumption that
the programmer has some reason for ordering the goals in that way. Goal ordering is then a simple matter
of topologically sorting the goals into descending order.

As an example, consider the goalp(X, Y), q(Y, X), r(X) where the mode abstraction isA =
{p(V1, V2)→ p(i(), o()), q(V1, V2)→ q(i(), i()), r(V1)→ r(o()), }

In this case we havep(X,Y ) ≤ r(X) as bothp(X,Y ) � 1 andr(X) � 1 isX , and mode(A(p(X,Y )) �
1) = i,mode(A(r(X)) � 1) = o. We also haveq(X,Y ) ≤ r(X). For the above example,q(X,Y ) ≤
p(Y,X), since mode(A(p(X,Y )) � 2) = o,mode(A(p(Y,X)) � 1) = i.

Sorting the goals gives the sequencer(X), p(X, Y), q(Y, X) .

6.2 Compilation on Partial Information

The advantages of logic programming languages for compilers have been recognised since [War80]. Most
compilation can be viewed as a meta-interpretation of the source code, evaluating it to the point that it
can be transformed into another target language. Since the source and target languages are unlikely to
have an exact mapping between statements, this approach tends to become muddied by collecting forward
information about the interpretation.
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Logic programming languages allow a more direct approach to compiler writing by using logical vari-
ables and difference lists. The use of logical variables means that exact decisions about some elements,
such as register allocations, can be deferred until enough information is available. At that point it is possi-
ble to “fill in” the elements associated with the logical variables before continuing. The use of difference
lists allows compilation to proceed as an interpretation of the code, with the various parts of the code being
assembled at the end.

The AKLs determinacy condition can be used to make a compiler even closer to the ideal of a linear
code interpreter1. Decisions can be deferred until enough data becomes available by allowing each point
in the compilation to combine data from the “past” — pre-built terms, permanent register allocations, etc
— with data from the “future” — specific register positions, modes, etc. Provided that the compiler can
continue with the meta-interpretation, the deferrable parts of the compilation can be spawned, to await
sufficient information. This view of AKL compilation is also used in the AGENTs compiler supplied by
SICS.

6.2.1 Temporary Register Allocation

Since the DAM is a register-based abstract machine, each term in the computation will need to be allocated
a register for its lifetime within the computation. An optimal register allocation minimises the amount
of moves between pairs of registers and between registers and memory; the optimal allocation eliminates
unnecessary “register shuffling”.

Since the DAM has 256 temporary registers it is unlikely that temporary terms will have to be moved
from and to temporary storage between calls. The DAM uses a register passing convention for passing
arguments to calls; an ideal register allocation would ensure that terms which are used as arguments to calls
are always pre-placed.

Generating an optimal register allocation is known to be an NP-hard problem [MJT91]. However regis-
ter allocation for the DAM essentially needs to satisfy only two criteria: a term remains in a register while
it is in use and a term is placed in a calling register if it is to be used in the next call.

Register allocation in the DAM compiler consists of two streams. The forward stream consists of
register allocations made in the computation’s past, where terms are matched against logical variables. The
backward stream consists of allocation requests from the future, where a register is requested as having
‘any’ register, or a specific register number. When a term stops being requested by the future, the term can
be discarded from the set of register allocations, allowing the register to be re-allocated. The two stream
approach combines both optimal register placement and liveness analysis.

Following Matyska et al. [MJT91], we use the following terminology. Aninline call is a call to a
primitive inline predicate, eg. unification or arithmetic operations. Anout of linecall is a call to any other
predicate. Achunkis a sequence of zero or more inline calls, terminated by the end of the clause, a guard
operator or an out of line call.

The domain of registers is denoted byR = {0 . . .m}, wherem is the maximum register number —
255 in the case of the DAM.

Definition 6.2.1 A register assignmentis a functionA : T → ℘R which maps any term onto a set of
temporary registers; the registers that currently hold a reference to the term.A represents the domain of
register assignments.

Theused register setfor a register assignmentA is defined as

Used(A) = ∪{A(t) : t ∈ dom(A)}

Definition 6.2.2 A liveness setis a functionL : T → ℘R∪{⊥,>}which maps any term onto the registers
that could best be used to hold the term; on to⊥ if the term is no longer live, or onto> to indicate a “don’t
care” assignment. For the purposes of set union and intersection⊥ ≡ {} and> ≡ R. L represents the
domain of liveness sets.

Theunavailable register setfor a liveness setL and termt is defined as

Unavail(L, t) = ∪{L(s) : s ∈ dom(L) ands 6= t}
1At least in concept; actual execution is liable to become very intricate.
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Definition 6.2.3 Theclash setbetween an assignmentA and liveness setL is the functionClash : A×L →
℘T where

Clash(A,L) = {t : L(t) 6= ⊥ andA(t) ∩ L(t) = ∅}

Definition 6.2.4 An assignment functionis a functionAss : P ×A× L → A×L.

Given a chunkc with predicatesp1, . . . , pn and some assignment function, we have a corresponding
sequence of register assignments and liveness sets(A1, L1), . . . , (An+1, Ln+1) whereA1 is some initial
register assignment,Ln+1 = {t→ ⊥ : t ∈ T } andAss(pi, Ai, Li) = (Ai+1, Li+1). Assuming that all
register transfers, both permanent and temporary, take up a similar amount of time,2 the cost of a particular
assignment functionAss for the chunkc is given by

Cost(Ass, c) = Σn+1
i=1 |Clash(Ai, Li)|

An optimal assignment function forc minimisesCost(Ass, c).
Given a predicatepi(ti1, . . . , tim) and lettingT = {ti1, . . . , tim}, the register assignment function for

the DAM uses the following elements:
If pi is an inline predicate then

Li =
{t→ Li+1(t) : t 6∈ T }∪
{t→ Li+1(t) : Li+1(t) 6= ⊥}∪
{t→ > : Li+1(t) = ⊥ ∧ t ∈ T }

If pi is an out of line predicate then

Li =
{t→ Li+1(t) : t 6∈ T }∪
{t→ {j : t = tij} : Li+1(t) = >}∪
{t→ Li+1(t) ∪ {j : t = tij} : Li+1(t) 6= >}

The register assignment for the DAM is computed as follows:
If pi is an inline predicate, thenAi+1 = Am

i where

Aj
i =

{t→ Aj−1
i (t)− {Ra(tij , Aj−1

i , Li} : t 6= tij}∪
{t→ Ai(t) ∪ {Ra(tij , Aj−1

i , Li)} : t = tij}

Ra(t, A, L) is defined to be the lowest element of the first non-empty set in the sequence:A, L(t) −
Unavail(L, t),R− Unavail(L, t) orR andA0

i = Ai.
If pi is an out of line predicate, thenAi+1 = Am

i where

Ai+1 =
{t→ Ai(t)− 1, . . . ,m : t 6∈ T }∪

{t→ (Ai(t)− {k : t 6= tik, 1 ≤ k ≤ m}) ∪ {j} : t = tij}

As an example, consider the chunkA = f(X), p(A, A) whereA1 = {X → {1}} (all terms not
included in the set are assumed to bet → ∅). The sequence of liveness sets isL3 = {}, L2 = {A →
{1, 2}}, L1 = {A → {1, 2}, X → >}. The sequence of register assignments isA1 = {X → {1}}, A2 =
{X → {1}, A→ {2}}, A3 = {A→ {1, 2}}.

Once a register has been assigned, appropriate instructions can be inserted into the instruction stream to
allow the construction of the term in the register.

2In the DAM, temporary and permanent registers are stored as vectors in memory, so this assumption is justified. More complex
machines, with different transfer costs, need a more complex weighting
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Processors
Benchmark Compiler 1 2 2 4
nrev(500) Full 1900 1300 900 900

No Modes 2000 1500 1000 1100
No Indexing 15000 13000 13000 24000

bad-qsort(1000) Full 1700 1300 1200 1200
No Goal-Ordering 3500 3000 2800 2900

and(10000) Full 1600 2700 4700 7000
No Clause Sets 5300 6300 7800 8700
No Indexing 6200 7300 8400 8800

All results in ms,±10%.

Table 6.2: Performance of Selectively Compiled Code

6.2.2 Permanent Register Allocation

Permanent register assignment can follow the same pattern as temporary register assignment. Requests for
terms needed in the future can be passed back to the origin of the term and a permanent register assigned
to the term on the construction of the term. Register assignment occurs during the last use of the term in
the permanent register, allowing re-use of permanent registers. A permanent register assignment is needed
wherever a term is used in two chunks.

Following section6.2.1, we use the previous definitions of register assignment, liveness set and register
assignment function (definitions6.2.1, 6.2.2and6.2.4). The register assignment function for permanent
register assignment, is given for a predicatep(t1, . . . , tn), T = {t1, . . . , tn} by:

Li = {Li+1(t) : t 6∈ T } ∪ {t→ {min(R− Unavail(Li+1, t))} : t ∈ T }

If p is an in-line predicate, thenAi+1 = Ai

If p is an out of line predicate, then

Ai+1 =
{t→ ∅ : Li(t) = ⊥}∪
{Ai(t) : t 6∈ T andLi(t) 6= ⊥}∪
{t→ Ra(t, Ai, Li) : t ∈ T andLi(t) 6= ⊥}

As an example, the permanent register assignment for the clause?- p(X) :- q(1, Y), r(X), s(Y))
would have the liveness set sequenceL1 = {Y → {1}, X → {2}}, L2 = {Y → {1}, X → {2}},
L3 = {Y → {1}} andL4 = ∅ and the register assignment sequenceA1 = {X → {2}}, A2 = {X →
{2}, Y → {1}},A3 = {Y → {1}}, A4 = ∅.

6.3 Performance

The effects on performance that the abstract interpretations and optimisations have can be measured by
selectively crippling the compiler and seeing what effect that has on the speed of compiled programs.

Three benchmarks were run with parts of the compiler removed.nrev(500)is the naive reverse bench-
mark described in section5.5. bad-qsort(1000)is the quicksort benchmark described in section5.5, but
with the goals in the clauses reversed, to create an inefficient goal ordering.and(10000)is the and operator
benchmark described in section5.5. Only those benchmarks where the compiler can introduce additional
efficiency have been included in the compiler results. Smaller versions of these benchmarks were used, as
the DAM tended to run into memory problems while executing the crippled versions of the full benchmarks.
The results are summarised in table6.2.

On the naive reverse benchmark, the removal of moding code does not affect the performance of the
benchmark appreciably; although consistent, most improvements are within the bounds of error. This result
is unsurprising, as the calls to the reverse and append predicates are likely to have fully instantiated argu-
ments when called. When run in parallel, the suspensions still create choice-boxes, the most expensive part



6.3. PERFORMANCE 99

of the computation, leading to only a minor improvement in performance. Removal of indexing produces a
spectacular drop in performance, as numerous choice- and and-boxes are created and speculative bindings
made. With 4 processors, the performance is almost double the sequential performance; if a call with bound
variables is made, then the call can quickly commit to the correct clause, if a call with unbound variables is
made, then the call must suspend and then be re-woken when a constraint fails.

Goal-ordering improves the performance of the bad quicksort program so that it runs as well as a sen-
sibly ordered program (which is what has been produced by the goal ordering). The overhead associated
with the non-goal ordered program is largely the creation of choice-boxes (again).

Using clause sets provides a very clear performance improvement. Without clause sets, most calls to
and/3 will create at least two and-boxes. With clause sets, a determinate call can be detected and a clause
committed to before any and box is created.
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Chapter 7

Conclusions

The benchmarks taken for the DAM show that, sequentially at least, the DAM is an efficient abstract ma-
chine for use with the AKL. However the expense of some operations and granularity problems make its
parallel performance less than optimal. In addition, the selection rule of the DAM tends to encourage broad
exploration for solutions, rather than a narrow, focused search for an initial solution.

In hindsight, there are a large number of implementation decisions that I would change if I were to
re-implement the DAM. Clause sets are an obvious success, and I think that localised variables are a nice
way of looking at the problem of multiple constraints on a variable, albeit more memory expensive than
suspensions or hash windows. Other than these two elements, the DAM could do with a re-design:

• To be truly useful, the nondeterministic behaviour of the DAM will need to be modified. The DAM
essentially schedules on a first-come, first-served basis, with work being added to the work queue
as it appears. To control nondeterminism, a scheduler will need to both restrict nondeterministic
promotion until all determinate work has been processed and ensure that the remaining choices in a
nondeterministically promoted choice-box are left until the branch that has been promoted has been
fully explored. The DAM should still be able to explore branches in or-parallel if the workers are
available.

A possible solution to this problem is a scheduling algorithm which maintains a queue of and-parallel
work, a stack of available nondeterminate promotions and a stack of branches split from nondeter-
minate promotions. Work can be preferentially allocated from the and-parallel queue, the nonde-
terminate promotion stack and the branch stack in that order. By preferentially exploring a single
branch during nondeterminate promotion, the search is narrowed. However idle workers will still be
able to acquire work from the nondeterminate promotion and branch stacks if no and-parallel work is
available.

• Granularity remains a significant problem. Ideally, idle workers should only acquire box with a
suitable amount of further work to be done. However it is not easy to pre-estimate the amount of
work that a box contains when deciding whether to queue the work. It is possible that work can
be divided into two classes: light-weight work, such as woken and committed boxes, and small
nondeterminate promotions and heavy-weight work, such as parallel calls and large nondeterministic
promotions. Light work can be performed in-line by the worker that detects the work. Heavy work
can be queued.

Abstract interpretation may be able to detect likely cases of large or small amounts of work, and suit-
ably annotate clauses with simple conditional statements in a manner similar to CGEs. An example
of this approach would be an expression that limits parallel calls on the Fibonacci benchmark to those
with input arguments of (eg.) 4 or more, preventing work fragmentation [DLH90].

• The copying approach to nondeterminism seems to be the simplest approach to implementing the
AKL. Some way of introducing backtracking would improve nondeterminate performance, however.
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• When I started to design the DAM, I was influenced by the RISC approach to architecture, hence the
splitting of the get and unification instructions into separate testing, locking and binding instructions.
Since these instructions tend to be simple and not take very much time to execute, the overhead
associated with decoding them tends to dominate. For example, most variables are local, so the
Localise instruction normally does nothing. The splitting of testing and structure creation tends to
create a code explosion whenever complex terms are unified. A re-implementation of the DAM would
return to the traditional WAM-style get and unify instructions, although I am still concerned about the
possibility of two processors, one reading and one writing the same term getting into a race condition.

• Variables, particularly unconstrained variables are too big. The Penny approach, where unconstrained
variables can be represented by a single cell is very much superior.

• Box creation is too expensive. Part of the expense of box creation is the linking of boxes together
and the locking overheads that this entails. If only a single processor can access a box, some way
of avoiding locking is needed. A scheme of shallow backtracking, where and- and choice- boxes are
lazily created would also help.

• The DAM uses a unified heap. Separating the heap into a heap, a box stack and an environment stack
would allow easier memory reclamation.

The most interesting aspect of this work on the AKL is probably the fixpoint semantics developed in
chapter4. This semantics was originally developed to allow a suitable semantics for the bottom-up abstract
interpretation of the AKL, a language with elements of committed-choice, and the logical difficulties that
that introduces. By extending Boolean logic to the bilattice model and providing semantics in this logic for
commit operators, a coherent logical semantics can be built for the AKL and for other, simpler committed-
choice languages.

A missing feature in the fixpoint semantics for the AKL is that it has no concept of deadlock. Extending
the semantics by including the moded forms given in chapter6 would provide a more accurate semantics.
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Benchmark Code

This appendix contains the code for the various benchmarks used to test the system.

A.1 nrev(1000)

generate(0, L) :- true -> L = [].
generate(N, L) :- true -> L = [N | L1], N1 is N - 1, generate(N1, L1).

nrev([], L) :- true ? L = [].
nrev([X | Rest], Rev) :- true ? nrev(Rest, Rev1), append(Rev1, [X], Rev).

append([], I, O) :- true ? I = O.
append([X | Rest], I, O) :- true ? O = [X | ORest], append(Rest, I, ORest).

?- generate(1000, L), nrev(L, L2).

A.2 qsort(2500)

generate(0, S, L) :- true -> L = [].
generate(N, S, L) :-

true
->
L = [S | L1],
S1 is ((S * 2311) + 25637) mod 4081,
N1 is N - 1,
generate(N1, S1, L1).

qsort([], T, S) :- true ? T = S.
qsort([P | U], T, S) :-

true
?
partition(P, U, UL, UR),
qsort(UL, T, SL),
qsort(UR, [P | SL], S).

partition( P, [], L, R) :-
true
?
L = [],
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R = [].
partition(P, [X | U], L, R) :-

X >= P
?
L = [X | L1],
partition(P, U, L1, R).

partition(P, [X | U], L, R) :-
X < P
?
R = [X | R1],
partition(P, U, L, R1).

?- generate(2500, 10, L), qsort(L, [], L2)

A.3 fib(25)

fib(0, FN) :- true -> FN = 1.
fib(1, FN) :- true -> FN = 1.
fib(N, FN) :-

true
->
N1 is N - 1,
fib(N1, FN1),
N2 is N - 2,
fib(N2, FN2),
add(FN1, FN2, FN).

% ?- mode explicitly adds mode information to a predicate
?- mode add(i, i, o).
add(A, B, C) :- C is A + B.

?- fib(25, ).

A.4 tree(17)

tree(0, T) :- true -> T = nil.
tree(N, T) :-

true
->
T = t(N, T1, T2),
N1 is N - 1,
tree(N1, T1),
tree(N1, T2).

?- tree(17, ).

A.5 subset(15)

% Style used by NU-Prolog and DAM
sstest(X) :- subset(X, S) ? fail.
sstest( X) :- true ? true.



A.6. ENCAP(7) 105

% Style used by AGENTS and Penny
sstest(X) :- unordered bagof(R, subset(X, R), L).

subset([], S) :- true ? S = [].
subset([X | X1], [X | S1]) :- true ? subset(X1, S1).
subset([ X | X1], S) :- true ? subset(X1, S).

?- sstest([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15])

A.6 encap(7)

% Style used by NU-Prolog and DAM
encap :- xprod([1, 2, 3, 4, 5, 6, 7], R) ? fail.
encap.

% Style used by AGENTS and Penny
encap :- unordered bagof(R, xprod([1, 2, 3, 4, 5, 6, 7], R), L).

xprod(X, S1-S2) :- xprod1(X, S1), xprod1(X, S2).

xprod1(X, S) :- subset(X, S1) ? S = S1.

subset([], S) :- true ? S = [].
subset([X | X1], [X | S1]) :- true ? subset(X1, S1).
subset([ X | X1], S) :- true ? subset(X1, S).

A.7 filter(1000)

filter :-
allowed(1000, A),
generate(1000, L),
filter(L, A, L1).

allowed(N, L) :- N =< 0 -> L = [].
allowed(N, L) :- true ->

L = [N | L1],
N1 is N - 10,
allowed(N1, L1).

generate(0, L) :- true -> L = [].
generate(N, L) :- true ->

L = [N | L1],
N1 is N - 1,
generate(N1, L1).

filter([], A, F) :- true -> F = [].
filter([L | LR], A, F) :-

memberchk(L, A)
->
F = [L | FR],
filter(LR, A, FR).
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filter([ L1 | LR], A, F) :- true ->
filter(LR, A, F).

memberchk(A, [A | R]) :- true -> true.
memberchk(A, [ A | R]) :- true -> memberchk(A, R).

A.8 and(50000)

andtest :- andtest1(50000).

andtest1(0).
andtest1(N) :- N > 0 ?

and(1, 0, X),
and(1, Y, X),
and( , 1, Y),
N1 is N - 1,
andtest1(N1).

and(0, 0, 0) :- true ? true.
and(0, 1, 0) :- true ? true.
and(1, 0, 0) :- true ? true.
and(1, 1, 1) :- true ? true.
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Sample DAM Code

This appendix contains the compiled code forpartition/4 in the quicksort benchmark given in section
A.2.

PRED ’partition’/4

0: SwitchOnTerm 0,&1,&2,Fail,Fail
1: ChoiceBox 4

Suspend 0,1,&0
2: SwitchOnTerm 1,&3,&11,&4,Fail
3: ChoiceBox 4

Suspend 1,1,&2
4: GetListArgument 1,1,5

SwitchOnTerm 5,&5,&6,&6,&6
5: ChoiceBox 4

Suspend 5,1,&4
6: ChoiceBox 4

Try 0,0,&21
Try 0,0,&31
Defer

11: TryOne
12: GetConstant 1,$’[]’,&13
13: GetConstant 2,$’[]’,&14

Lock 2,&13
Localise 2,&13
BindConstant 2,$’[]’

14: GetConstant 3,$’[]’,&15
Lock 3,&14
Localise 3,&14
BindConstant 3,$’[]’

15: Proceed

21: AndBox
Allocate 4
GetListArgument 1,1,4
LessEq 4,0,Fail
PutValueXY 0,0
PutValueXY 1,1
PutValueXY 2,2
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PutValueXY 3,3
WaitCommit
Promote
Raise
PutValueYX 2,2

22: GetList 2,&23
Lock 2,&22
Localise 2,&22
PutList 3
PutValueYX 1,1
GetListArgument 1,1,4
PutListArgument 4,1,3
PutVariableX 4
PutListArgument 4,2,3
BindVariable 3,2
Jump &25

23: GetListArgument 2,1,3
PutValueYX 1,1
GetListArgument 1,1,4
GetVariable 4,3

25: PutValueYX 0,0
PutValueYX 1,1
GetListArgument 1,2,1
PutValueYX 2,2
GetListArgument 2,2,2
PutValueYX 3,3
Deallocate 4
Execute ’partition’/4

31: AndBox
Allocate 4
GetListArgument 1,1,4
Less 0,4,Fail
PutValueXY 0,0
PutValueXY 1,1
PutValueXY 2,2
PutValueXY 3,3
WaitCommit
Promote
Raise
PutValueYX 3,3

32: GetList 3,&33
Lock 3,&32
Localise 3,&32
PutList 4
PutValueYX 1,1
GetListArgument 1,1,5
PutListArgument 5,1,4
PutVariableX 5
PutListArgument 5,2,4
BindVariable 4,3
Jump &35

33: GetListArgument 3,1,4
PutValueYX 1,1
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GetListArgument 1,1,5
GetVariable 5,4

35: PutValueYX 0,0
PutValueYX 1,1
GetListArgument 1,2,1
PutValueYX 2,2
PutValueYX 3,3
GetListArgument 3,2,3
Deallocate 4
Execute ’partition’/4

LAST
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Appendix C

Abbreviations

AKL Andorra Kernel Language or Agents Kernel Language

BAM Basic Andorra Model

CCL Committed-Choice Language

CGE Conditional Graph Expression

DAP Dependent And-Parallelism

DAM Doug’s Abstract Machine

DDAS Dynamic Dependent And-Parallel Scheme

DDM Data Diffusion Machine

GHC Guarded Horn Clauses

IAP Independent And-Parallelism

JAM Jim’s Abstract Machine

KAP Kernel Andorra Prolog

KL1 Kernel Language 1

MIMD Multiple Instruction Multiple Data

SIMD Single Instruction Multiple Data

WAM Warren Abstract Machine
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[Mil91] H åkan Millroth. Reforming compilation of logic programs. In Vijay Saraswat and Kazunori
Ueda, editors,Logic Programming, Proceedings of the 1991 International Symposium, pages
485–502, San Diego, USA, 1991. The MIT Press.

[MJT91] L. Matyska, A. Jergov´a, and D. Toman. Register allocation in WAM. In Koichi Furukawa,
editor, Proceedings of the Eighth International Conference on Logic Programming, pages
142–156, Paris, France, 1991. The MIT Press.

[MNL88] K. Marriott, L. Naish, and J.-L. Lassez. Most specific logic programs. In Robert A. Kowalski
and Kenneth A. Bowen, editors,Proceedings of the Fifth International Conference and Sym-
posium on Logic Programming, pages 909–923, Seatle, 1988. ALP, IEEE, The MIT Press.

[Mon97] Johan Montelius.Exploiting Fine-grain Parallelism in Concurrent Constraint Languages.
PhD thesis, Uppsala University, Uppsala, Sweden, April 1997.

[MS92] Kim Marriott and Harald Søndergaard. Bottom-up dataflow analysis of normal logic pro-
grams.The Journal of Logic Programming, 13(1, 2, 3 and 4):181–204, 1992.

[MS93] Maged Michael and Michael Scott. Fast mutual exclusion, even with contention. Technical
report, University of Rochester, Rochester, NY 14627, June 1993.

[MWB90] Anne Mulkers, William Winsborough, and Maurice Bruynooghe. Analysis of shared data
structures for compile-time garbage. In David H. D. Warren and Peter Szeredi, editors,Pro-
ceedings of the Seventh International Conference on Logic Programming, pages 747–762,
Jerusalem, 1990. The MIT Press.

[Nai86] Lee Naish. Negation and control in Prolog. Number 238 in Lecture Notes in Computer
Science. Springer-Verlag, New York, 1986.

[Nai88] Lee Naish. Parallelizing NU-Prolog. In Robert A. Kowalski and Kenneth A. Bowen, editors,
Proceedings of the Fifth International Conference and Symposium on Logic Programming,
pages 1546–1564, Seatle, 1988. ALP, IEEE, The MIT Press.

[Nai89] Lee Naish. Proving properties of committed choice logic programs.The Journal of Logic
Programming, 7(1):63–84, July 1989.

[Nai93] Lee Naish. Applying the Andorra principle.Australian Computer Science Communications,
15(1):191–201, 1993.

[Nak92] K. Nakajima. Distributed implementation of kl1 on the multi-psi. In Peter Kacsuk and
Michael J. Wise, editors,Implementations of Distributed Prolog, pages 89–118. Wiley, 1992.

[PN84] Luis Pereira and Roger Nasr. Delta Prolog: A distributed logic programming language. In
Proceedings of the International Conference on Fifth Generation Computer Systems, pages
283–291, Tokyo, Japan, November 1984.



118 BIBLIOGRAPHY

[PN91] Doug Palmer and Lee Naish. NUA-Prolog: An extension to the WAM for parallel Andorra.
In Koichi Furukawa, editor,Proceedings of the Eighth International Conference on Logic
Programming, pages 429–442, Paris, France, 1991. The MIT Press.

[RDC92] S Raina, Warren D. H. D., and J. Cownie. Parallel prolog on a scalable multiprocessor. In
Peter Kacsuk and Michael J. Wise, editors,Implementations of Distributed Prolog, pages
27–44. Wiley, 1992.
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