A Parallel Implementation
of the Andorra Kernel Language

Douglas Frank Palmer
Technical Report TR 97/21

June, 1997

Submitted in total fulfilment of the requirements
of the degree of Doctor of Philosophy

Department of Computer Science
University of Melbourne
Parkville, Victoria
Australia

Abstract

The Andorra Kernel Language (AKL), also known as the Agents Kernel Language, is a
logic programming language that combines both don’t know nondeterminism and stream
programming.

This thesis reports on the design and construction of an abstract machine, the DAM, for
the parallel execution of AKL programs. Elements of a compiler for the DAM are also
described.

As part of the development of the DAM, a bottom-up abstract interpretation for AKL and a
logic semantics for the AKL, based on interlaced bilattices have also been developed. This
thesis reports on the abstract interpretation and the logical semantics.

This thesis is less than 100,000 words in length, exclusive of tables, bibliography and ap-
pendices.

Contents

List of Figures
List of Tables
Acknowledgements
1 Introduction
1.1 ThesisOutline e
1.2 SomePreliminaries
1.2.1 FirstOrderLogiC. o o o
1.2.2 Prolog. e
1.2.3 Constraints.
1.2.4 Lattices. e
2 An Overview of Parallel Logic Programming
2.1 Or-Parallelism
2.1.1 The Hash Window BindingModel.
2.1.2 TheBinding Array Model.
2.1.3 The Multi-Sequential Machine Model.
2.1.4 The CopyingModel.
2.2 Independent And-Parallelism.
2.2.1 Run-Time Detection of Independent And-Parallelism.
2.2.2 Static Detection of Independent And-Parallelism
2.2.3 Conditional Graph Expressions o
2.2.4 Combining Independent And-Parallelism and Or-Parallelism
2.3 Dependent And-Parallelism.
2.3.1 Committed Choice Languages. o i i
2.3.2 Reactive Programming Techniques.
2.3.3 Don't Know Nondeterminism and Dependent And-Parallelism.
2.4 Other Formsof Parallelism
3 The Andorra Model
3.1 TheBasic AndorraModel.
3.2 AndorraProlog.
3.2.1 ExecutionModel.
3.22 Commit.
3.23 CUut . . .
3.3 The Extended AndorraModel
3.4 AndorraKernelLanguage.
3.4.1 AKLPrograms. e
3.4.2 ExecutionModel.
343 Control.
3.4.4 Usingthe AKL.

oo AN

ii CONTENTS

4 The AKL and Logic 35
4.1 Logical Aspectsofthe AKL. 35
411 Negation. e 36
4.1.2 CommitGuards. 36
4.1.3 ConditionalGuards. e 37
414 RecursiveGuards. e 37
4.2 A Bilattice Interpretation of AKL Programs 37
421 Bilattices. e 38
422 AlogicBasedoROUR 38
423 CommitPredicates e 39
4.3 AFixpointSemanticsforthe AKL o 41
4.4 The AKL ExecutionModel 43
45 SomeExamples. 44
451 Well-Behaved Programs 46
4.5.2 Non-IndifferentPrograms a7
4.5.3 Non-Guard Stratified Programs oo 47
4.6 RelatedWork. e 48
5 The DAM 49
5.1 AnOverview of Abstract Machines. 49
51.1 TheWAM. 49
5.1.2 TheJAM e 52
5.2 Underlying Architecture. 54
5.2.1 TargetArchitecture 55
5.2.2 Locking. e 56
5.2.3 MemoryAllocation 56
5.3 ExecutionModel. 58
5.3.1 Constraints. 59
5.3.2 Indexing 61
5.3.3 Waitingon Variables 62
5.3.4 Nondeterminate Promotion 63
5.3.5 BoxOperations 64
5.4 Abstract Architecture 65
541 Reqgisters. e 66
5.4.2 Instruction Format. 66
543 Terms. e e 67
544 BOXES. 69
545 IndexingandModes 75
5.4.6 Nondeterminate Promotionand Copying. 77
5.5 Performance e 78
5.6 RelatedWork. 81
6 An AKL Compiler 83
6.1 AbstractInterpretation. 85
6.1.1 Partitioningthe Program 85
6.1.2 Determining TYPES o i e 86
6.1.3 DeterminingModes. 91
6.2 Compilation on Partial Information. L o 95
6.2.1 Temporary Register Allocatian. oL 96
6.2.2 PermanentRegister Allocation Lo 98
6.3 Performance e 98

7 Conclusions 101

CONTENTS iii

A Benchmark Code 103
Al nrev(1000) e 103
A2 gsort(2500) e 103
A3 fib(25) . . . e 104
Ad tree(d7) . . oo 104
A5 subset(1h). 104
A6 encap(7). e e 105
A7 Filter(1000) e 105
A.8 and(50000) 106

B Sample DAM Code 107

C Abbreviations 111

CONTENTS

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
4.2
4.3
4.4
4.5
4.6

51
5.2
5.3
54
5.5
5.6
5.7
5.8
59
5.10
511
5.12
5.13
5.14
5.15
5.16
5.17

6.1

An Example Program for Or-Parallelism. 8
Example Or-Parallelism UsingHash Tables 9
Example Or-Parallelism Using Binding Arrays 10
An Example Independent And-Parallel Program. 12
Example Independent And-Parallelism Call-Graph 12
An Example Program Causinga Cross-Product 14
An Example Dependent And-Parallel Program. 15
An Example And-Parallel Andorra Prolog Execution. 23
An Example Or-Parallel Andorra Prolog Execution. 24
Example of a Andorra Prolog Commit. 24
Example of a Andorra Prolog Commit after Or-Extension. 24
AKL Computation with Nondeterminate Promotion and Conditional 30
Dependent And-Parallelisminthe AKL 32
Or-Parallelisminthe AKL. 33
ThelogicdFOUR 38
A Guard Stratified, Indifferent, Authoritative Program 45
A Guard Stratified, Indifferent Program oL oL 45
A Guard Stratified, Indifferent Program with Looping 46
A Non-IndifferentProgram 47
A Non-Guard Stratified Program. 48
Sample WAM Code 52
Sample JAM Code. 54
Memory Deallocation ACross Processors. v v i i i i 58
The DAM And-/Choice-Box Tree. o i i e 59
Variable Localisationinthe DAM. 60
AddingaNew Local Variable. 61
Nondeterminate Promotioninthe DAM 63
Box Messages Sendersand Receivers. 65
DAM Abstract Architecture 66
Instruction Formatsforthe DAM 67
DAM Term Representation 67
Sample DAM Code for ConstructifigX, X)] 69
Sample DAM Code for Unifying Terms 71
DAM Box Representation. 72
DAM Code for Callingp(a, X) 73
DAM Code for Trying a Sequence of Choices 74
DAM Codeforindexing. 76
Compiler Architecture. e 84

Vi

LIST OF FIGURES

List of Tables

4.1 Booleanoperatorsf(fOUR e 39
4.2 Booleanidentities oOROUR e 40
5.1 Elementsofthe WAM 50
5.2 Comparison of Direct Hardware Locking and Hardware/Memory Locking. 57
5.3 Comparison of Heap Allocation Strategies 57
5.4 BoxMessagesinthe DAM 64
5.5 Putlinstructionsforthe DAM 68
5.6 Getlnstructionsforthe DAM e 70
5.7 Arithmetic and Term Construction Instructions forthe DAM. 70
5.8 BoxFlagsforthe DAM. 73
5.9 And-Box Instructionsforthe DAM e 74
5.10 Choice-Box Instructionsforthe DAM 75
5.11 Indexing and Mode Instructionsforthe DAM L. 77
5.12 Benchmarks e 78
5.13 Single Processor Performance ofthe DAM. 79
5.14 Parallel Performanceofthe DAM 80
6.1 AbstractMode Operators. 92
6.2 Performance of Selectively CompiledCode. 98

Vii

Viii LIST OF TABLES

Acknowledgements

I would like to thank my supervisor, Dr. Lee Naish for his patience and support. My discussions with
him were always both entertaining and informative. | would particularly like to thank him for his tolerance
of my tendency to vanish and reappear at odd intervals. Thanks also go to the other two members of my
supervisory committee, Harald Sgndergaard and Zoltan Somogyi.

Great thanks, also go to Alison Wain, my wife, who was convinced that this was whatildbe doing.

Without her moral and financial support, this thesis would never have seen the light of day.

The Department of Computer Science at Melbourne University has always been a friendly and support-
ive environment. Particular thanks go to my room-mates, Fergus Henderson, Robert Holt, Peter Schachte,
and the “dinner circle” of Chaoyi Pang, Devindra Weerasooriya and Eric Yeo, for their stimulating discus-
sions.

Thanks also go to the various lecturers and tutors who have used me as a casual tutor over the years.
Especially Linda Stern, Harald Sgndergaard and Rex Harris; the best way to learn something is to teach it.
To the undergraduates and diploma students: well, it had to be someone.

The management of Applied Financial Services were flexible and supportive while | was writing up.
Thankyou to them.

While studying, | was supported by a Commonwealth Postgraduate Research Allowance and later an
Australian Postgraduate Research Award.

LIST OF TABLES

— - Uses LaTex

LIST OF TABLES

Chapter 1

Introduction

Logic Programmingow74] and its practical realisation in ProloRpu79 introduced a new paradigm

to computer science. Logic programming has a declarative model, where programs are represented by

relationships between entities, rather than by instructions on how to solve problems (the imperative model).

Prolog and logic programming have found ready use in areas where problems can be understood in terms

of relationships between interacting parts: expert systems, natural language recognition, theorem proving.
An example logic program (in Prolog), which can be used to find paths through a graph, is:

arc(a, b).
arc(b, c). arc(b, d).
arc(c, e). arc(c, Q).
arc(d, f). arc(d, g).
arc(e, 9).

path(X, Y) :- arc(X, Y).
path(X, Y) :- arc(X, Z), path(Z, Y).

Each statement in the program is termedause Groups of clauses, with the same name and number
of arguments form aredicate Predicates are normally referred torasne/args, eg. path/2

The program consists of a database of factsatieé?2 predicate, and a means of constructing paths,
thepath/2 predicate. In Englishpath/2 can be read as “there is a path from X to Y if there is an arc
from X to Y, also there is a path from X to Y if there is an arc to some intermediate location, Z, and a path
fromZto Y.

This program can be queried by giving it a goal, sucR-gsth(a, f) , which can be interpreted as
“is there a path frona to f ?” A Prolog interpreter essentially acts as a theorem-prover, attempting to find a
proof for the goal. Clearly, there is some trial-and-error involved and one of the most interesting aspects of
Prolog, and logic programming in general, is its inherent nondeterminism. In searching for a path from
tof, the Prolog interpreter will attempt to construct a series ofaresb,b — c,c — e,e — g. At this
point, there are no arcs which lead out frgmand the Prolog interpreter is unable to satisfy either part of
the path definition. The interpreter must backtrack to a suitable point, and attempt to construct an alternate
route tof ; inthiscasea — b,b — d,d —f.

As an alternative, the program can be interrogated with a query suzipath(c, X) , which can
be interpreted as “what nodes can be reached &®mA Prolog interpreter will construct the first available
solution from the definition opath/2 and return with the answet = d. If another answer is requested,
then the interpreter backtracks to produce= g andX = g again (derived from the path — e,e —
g). Similarly, a goal such a8-path(X, f) will give all the nodes that can rea¢h The declarative
programming opath/2 allows it to be used for several different purposes, purposes which would have to
be explicitly programmed into imperative languages.

Declarative programming also allows a certain amount of order independence in its definitions. For
example, in thepath(X, Y) :- arc(X, Z), path(Z, Y) clause, there is no reason why the

3

4 CHAPTER 1. INTRODUCTION

arc(X, Z) part must be evaluated before thath(Z, Y) part. Although standard Prolog always
evaluates parts of a body in strict left to right order, more advanced versions of Prolog, such as NU-Prolog
[2T86€] or SICStus Prolog$IC89 allow a user-defined order of evaluation.

Rather than order independence, parts of goals can be evaluated in parallel, giving Prolog an inherently
parallel character. There are essentially two forms or parallelism extractable from Prolog programs: And-
parallelism attempts to evaluate individual clauses in parallel; Or-parallelism attempts to parallelise the
nondeterminate matching of clauses, evaluating several possible branches simultaneously.

The introduction of parallelism into Prolog introduces several difficulties, especially in the case of and-
parallelism. Variables in Prolog are single assignment variables; once given a value, the variable does not
change. Single assignment variables are similar to variables as used in mathematics, representing a common
value at all points where they are used. Inthe casea{iX, Z), path(Z, Y) theZ variable is shared
by both parts of the clause. If both parts are run in parallel, then some means of synchronising the two parts
must be found.

A huge variety of attempts to solve the various problems of parallelism in logic programming have been
made over the years. The Andorra/Agents Kernel Language (AKdr94 is an attempt to unify many of
these attempts, as well as provide a general formal structure for handling logic programming. This thesis
presents an implementation of the AKL, designed for parallel execution.

1.1 Thesis Outline

This thesis is a report on the implementation of a parallel abstract machine for the AKL.

Chapter2 provides an introduction to the various forms of parallelism that logic programming languages
are capable of. Chapt8iis a description of the Andorra model and the AKL.

The basic motivation behind the thesis is the design of an abstract machine, the DAM, for the parallel
execution of AKL programs. A description of the DAM can be found in chapter

A compiler for the abstract machine is discussed in chaptdtarts of the DAM can be expensive to
execute, especially the machinery that is used to handle nondeterminism. The compiler uses an abstract
interpretation to gather data about the entire program before performing the compilation, enabling more
efficient ordering of the goals within clauses, and the early selection of determinate clauses.

The abstract interpretation uses a logical semantics for the AKL based on bilattices. Bilattices allow an
extension to the normal two-valued Boolean logic that can capture the more complex behaviour of the AKL.
This logical semantics is described in chapteand soundness and completeness theorems are provided
for the AKL. Despite being a by-product of the attempt to produce the DAM, this semantics is probably the
most interesting aspect of this thesis.

Original contributions in this thesis are the concept of variable localisation in the DAM, the use of bit-
mapped clause sets for clause indexing, the broad type abstract domain and the bilattice formulation of the
AKL's logical semantics.

1.2 Some Preliminaries

This section is intended to provide a convenient reference to the standard terminology used to describe logic
programs. Most of this terminology is derived from Lloyd¢84].

1.2.1 First Order Logic

Most logic programming has first order logic as a foundation. This section provides an informal guide to
the terminology of first order logic.

First order theories are built frorariables constantandfunctionandpredicatesymbols. Functions
and predicates have anity, which is the number of arguments that they takaevnis defined recursively

as: a constantis a term and a variable is a terrfijsfa function with arityn andt4, .. ., ¢,, are terms then
f(t1, ... t,) is aterm. Agroundterm contains no variables.
An atomp(t1,. .., t,) is constructed from a predicatevith arity n and the terms, . . . , ¢,,. A formula

is defined recursively by, -F, F AG, FV G, F — G, F < G, 3xF andvxG whereA is an atomy is

1.2. SOME PRELIMINARIES 5

a variable and” andG are formulae. The meaning of the conjunctionsids negationA is conjunction
(and), Vv is disjunction (or),«— is implication and« is equivalence. The expressigh, ¢ F'(s) means
F(s1)V---VF(sy)foralls € S, similarly for A\ _ g F'(s). 3z F means there exists arfor which I is true.
Va F means that' is true for allz. A formula isclosedif all variables are quantified byor V. By an abuse
of notationdF or VF can be taken to mean thatis quantified over all variables that occkir An atom, or
the negation of an atom is callediteral. A clauseis a formula of the fornvay - - - Va, (A V- -V A, «—
Bi A -+ A Bp,). A definite clauser program clauséas the forn¥zy - - -V, (A <« By A -+ A Bypy).

An interpretationconsists of the domain of the interpretation (D), an assignment of an elemBrtof
each constant in the theory, an assignment of an elementtofeachD™ for each function of arity: in
the theory and an assignment of either true or false to édcfor each predicate of arity. A Herbrand
interpretationsimply has a domain of all the constants and functions in the theory and interprets a constant
cascand a functionf (t1,...,t,) asf(ti, ..., tn).

An interpretation/ is amodelfor a set of closed formulas if applying the values of the interpretation
to eachF’ € S results inF evaluating to truel modelsS is denoted by |= S. A Herbrand modefor S is
a Herbrand interpretation that modélsHerbrand models have the convenient property that sets of clauses
are only unsatisfiable if they have no Herbrand models.

1.2.2 Prolog

Prolog is the original logic programming language. Most other logic programming languages introduce
further elements of syntax and execution model to the common Prolog base.

Constants in Prolog are represented by initial lower case letters or numbédi®) egr 2.2 . Functions
are represented by a lower case functor, and a sequence of arguments in parenthaed)eg.; some
function symbols can be written as infix operators, Ag+ Bis equivalent tor(A, B) . Variables start
with upper case letters or underscores, &gor _. Variables starting with underscores are anonymous
variables, each different from the other. Lists are denotefddyy. .., e,], with theey, ..., e, being the
elements of the list, eg[1, 2, 4, 8] . The constructioff e1,...,e,, | T], is a partial list, where
e1,...,em comprise the head elements of the list dhi the tail, eg[push(X) | R]

Clauses are written ag - Aq,..., A, whereH is the head of the clause and, ..., A, is the
clause body, with eacH; a literal. A clause with no literals is calledfact The normal logical meaning
foraclause i¥ XH «— 3Y (41 A --- A A,,) whereX is the set of all the variables that occur in the head,
andY is the set of all the variables that appear in the body only.

A substitutioris a mapping from variables to terms, written{d§ /T4, . .., V,, /T, }, whereV; is a vari-
able andl’; is a term. If a substitutiofi is applied to a terrfi’, written as’’0 then all instances of variablesin
6 which are found ifil” are replaced by the corresponding term. E@4, g(X,Y)){A/f(a,Y),X/Y} =
f(f(a,Y),g(X,Y)). Substitutions can be composed to form other substitutions, with the composition of
ando written asfo. A variable in a substitution isound

A substitutiond is aunifier for a set of term&" if {70 : T; € T'} is a singleton. Eg{A/a, B/c} is a
unifier for { f (A, ¢), f(a, B), f(A, B)}. Themost general unifiefor a set of termd’, written as mg(I")
is the substitutiod such that all other unifiers @f can be composed frothand some other substitutign
0¢ = o. Theunificationof two termsI’ andS is the computation of mgd’, S).

A Prolog program is evaluated by meansifD-ResolutionA goal consists of a sequence of literals
G4, ...,G,. Each step in SLD-Resolution consists of selecting a literal from the ghadnd finding a
clauseH :- A;, ..., A, whereG; and H are unifiable, with most general unifiér The new goal is
then(G1,...,Gi—1, A1, ..., Am, Git1,...,Gp)0. If the goal eventually dwindles to an empty list, then
is ananswer substitutiofor Gy, ..., G,,.

The function which decides whicfy; to select for expansion is called teemputation rule Prolog
uses a computation rule that always selects the left-most literal. A computation faieifsa literal will
always eventually be selected; the Prolog computation rule is not fair.

An SLD-Resolution fails when there are no clauses that match the selected atom. In such a case, the
computatiorbacktracksit backs up a step, and selects an alternate clause to try. If no alternate clause exists,
then the computation backs up another step, until a new clause is found, or until all steps are eliminated
and the entire computation fails. The order in which clauses are selected is cabetkttteon rule Prolog

6 CHAPTER 1. INTRODUCTION

uses a strict top-to-bottom selection rule. As forward execution and backtracking alternate, the computation
builds a tree called aBLD-tree

An attraction of SLD-Resolution is that it can be shown to correctly compute all the answer substitutions
for a goal. SLD-Resolution isoundin the sense that any computed answer substitution is logically implied
by the program. SLD-Resolution with a fair computation ruledsnpletein the sense that any possible
correct answer substitution is always eventually computed.

Thecutallows pruning within a Prolog program and is added to a clause by

H - Al,...Ai,! 7Ai+1;---aAn

If all the literals to the left of the cut have been eliminated, then the cut prunes the SLD-tree, removing any
alternate clauses which could be found for, . . ., A; 11 and any alternate clauses fr.

1.2.3 Constraints

Prolog essentially uses a Herbrand interpretation, with a few concessions to arithmetic, to decide whether a
goal is satisfiable. Substitutions and unification allow an answer to be computed. However, logic program-
ming can be extended to cover a wider range of interpretati@unstraint Logic Programmin¢JL87]
extends logic programming to handle a variety of constraint systems, where constraints can be arbitrary
closed formulae built from primitive predicates. oddnstraint theoryis an interpretation of the constraint
domain. A constraind is satisfiable in a constraint theo€y if C' |= 6. A constraintd entailsanother
constraing if C' =60 — o.

Substitutions can be seen to be a special kind of constraint, {Witi¢,, ..., V;,/t,,} being replaced
by the constrain{V; =t; A--- AV, = t,}. The constraint theory dflerbrand equalityinterprets the
equality predicate as equality on Herbrand terms.

1.2.4 Lattices

Lattices are a generalisation of ordered sets and are useful in describing the logical semantics of logic
programming. This characterisation of lattices is taken frolmd4].

Arelation R on a setS is apartial orderif x Rx, xRy A yRx — x = y andaRy A yRz — xRz for all
x,y,z € S. A posetis a set with some partial ordering.

If S'is a poset with partial ordet thena is anupper bounaf X C S'if z < aforallxz € X. Similarly,
a is alower boundf X if a < zforall x € X. X may not always have an upper or lower bound, depending
on the nature of the poset. Theast upper boundf X is the smallest possible upper bound ¥rand is
denoted by lubX'). Thegreatest lower boundf X is the largest possible lower boundX¥fand is denoted
by glb(X).

A posetL is acomplete latticef lub(X) and gl X) exist for all X C L. A complete lattice has ®p
elementlub(L), denoted byT and abottom elemenglb(L), denoted byl .

A mappingT : L — L is monotonidf z <y — T'(z) < T(y) forall z,y € L. A fixpointof T is
an element € L whereT'(a) = a. Theleast fixpointof 1" is defined as Iffl") = glb({x : T'(z) = =}).
Similarly, thegreatest fixpoinbf 7" is defined as gfff") = lub({z : T'(x) = z}).

X C Lisdirectedif every finite subset oK has an upper bound . 7" is continuousf T'(lub(X)) =
lub(T'(X)) for every directed subséf of L.

Chapter 2

An Overview of Parallel Logic
Programming

This chapter presents a general overview of the bewildering variety of parallel logic programming systems,
with the exception of those based on the Andorra principle, which are discussed in hapter

Most parallel logic programming systems are based on the familiar Prolog and attempt to provide a
degree of transparent parallelism. In principle, there are two basic forms of parallelism which can be
exploited in logic program®r-Parallelismattempts to derive several answers to a non-determinate goal in
parallel. And-Parallelismattempts to execute several parts of a goal in parallel. In turn, and-parallelism can
take two subsidiary formdndependent and-parallelisavaluates conjunctions that are independent of each
other (ie. no shared variable§ependent and-parallelisevaluates conjunctions that share information.

Most models of parallelism in logic programming languages view the computation as an and-or tree
[Con83. The computation tree consists of alternating layers of and- and or-nodes. Conjunctions of goals
running in parallel are viewed as and-nodes. Disjunctions of possible answers are regarded as or-nodes,
with each or-branch representing a choice.

2.1 Or-Parallelism

Or-Parallelism normally takes a logic program and attempts to transparently evaluate successive or-branches
in the computation tree in parallel.

An example of a program where or-parallelism can be exploited is the traditional ancestor program,
shown in figure2.1. The query?-ancestor(cedric, gustavus) can proceed in parallel as each
call toparent(X, 2) produces a new crop of possibilities.

The normal view of or-parallelism is that of several processors, caiteklers standing ready to explore
or-branches. An or-parallel computation normally proceeds by evaluating a query until a nondeterminate
call is reached. If there are idle workers, several clauses can be evaluated in parallel. When clauses are
evaluated in parallel, multiple bindings may be made to a single variable. The essential problem in or-
parallelism is how to resolve the multiple binding problem.

2.1.1 The Hash Window Binding Model

The hash window binding model was developed by BorgwaBdt$4] and is used in the Argonne Na-

tional Laboratory’s parallel Prolod3DL " 88] and the PEPSys systei/R87]. Each alternative or-branch
maintains a hash table, called a hash window, for storing conditional bindings. When a process makes a
binding to a variable that other processes may be able to bind to, the binding is stored in a hash window.
Dereferencing a variable involves searching up through the chain of hash windows until a binding is found.
The hash window model differs from the other models presented below (se2th8<2.1.3and2.1.4 in

that the extra data structures used to handle multiple bindings are associated with the search-tree rather than
with the worker.

8 CHAPTER 2. AN OVERVIEW OF PARALLEL LOGIC PROGRAMMING

parent(jemima, rose).
parent(jemima, bill).
parent(cedric, rose).
parent(cedric, bill).
parent(cedric, alonzo).
parent(betty, alonzo).
parent(rose, fredrick).
parent(rose, david).
parent(mark, fredrick).
parent(mark, david).
parent(bill, peter).
parent(betty, peter).
parent(fredrick, gustavus).

ancestor(X, Y) :- parent(X, Y).
ancestor(X, Y) :- parent(X, Z), ancestor(Z, Y).

?-ancestor(cedric, gustavus).

Figure 2.1: An Example Program for Or-Parallelism

By itself the hash window system is very inefficient, as every dereference to a possibly shared variable
needs to work through the ascending chain of hash windows. The shallow biriiig" B8, WR87)
optimisation reduces the need for entries in hash windows. Once a workers starts on a branch of the tree,
any variables that it creates and then binds need not be entered into the hash window, as the variable is only
visible to the creating worker. The worker can trail variables and backtrack, provided that it does not export
any or-branches to another worker.

Scheduling using hash windows is very flexible. A context switch, where a worker switches to an
unexplored part of the computation tree simply involves changing the hash table that the worker uses.

A computation for the example from figuBel using hash windows is shown in figu2e2 This com-
putation has two workers, which are currently exploring alternate branches in the or-tree.

2.1.2 The Binding Array Model

The binding array model has been used in both one version of the SRI-Made8 and the Aurora
system [BD*90]. Each worker maintains an array of bindings, with shared variables having the same
index into the array across workers.

When a variable that has not been conditionally bound is conditionally bound, a new binding entry
is added to the top of the array, and the variable is associated with the entry. Bindings are stored in the
associated array entry for that worker. Two workers share the same bindings to the extent that their binding
arrays contain the same entries. Each or-node stores the current top of the array. Another worker can acquire
an or-branch from a worker by synchronising its bindings up to the index maintained in the or-node. An
example of the binding array model, using the example from figurand three workers is shown in figure
2.3

When a worker finishes a branch of the computation tree, it needs to be rescheduled to work on another
branch of the tree. Moving to another branch of the tree involves unwinding the binding array up to the
shared or-node between the original and new branches, and then acquiring the new binding array from the
new branch. Optimal scheduling for the binding array model, therefore, means that a worker has to move
as small a distance as possible from its original position in the tree, to avoid the copying overhead of a large
move.

The Manchester schedulez$89 keeps two global arrays, indexed by worker number. The first array
contains the tasks that each worker has available for sharing, along with information on how far the task

2.1. OR-PARALLELISM

ancestor(cedric, gustavus) Node ’ Processor . Failed Branch

Z=rose ! Hash Window o Unexplored Branch

ancestor(cedric, gustavus)

parent(cedric, gustavus)

parent(cedric, Z)

ancestor(Z, gustavus)

[parent(Z, gustavus) } [parent(Z, Z1) } [parent(Z, gustavus) } [parent(Z, Z2) }

ancestor(Z, gustavus)

ancestor(Z1, gustavus)

Figure 2.2: Example Or-Parallelism Using Hash Tables

10 CHAPTER 2. AN OVERVIEW OF PARALLEL LOGIC PROGRAMMING

ancestor(cedric, gustavus) Node ’ Processor . Failed Branch

. Unexplored Branch

ancestor(cedric, gustavus)

parent(cedric, Z)
Zao

ancestor(Z, gustavus)
[parent(Z, gustavus) } [parent(z, 21) } [parent(Z, gustavus)] [parent(Z, Z2)]
Zlal '

H \ H

parent(cedric, gustavus)

ancestor(Z, gustavus)

[ancestor(Z1, gustavus)] [ancestor(Z1, gustavus) }

w1 w2

w1 w2 w3
0 rose : rose : bill
10 fredrick david

Figure 2.3: Example Or-Parallelism Using Binding Arrays

2.1. OR-PARALLELISM 11

is from the root of the computation tree. The second array contains information about the status of each
worker, and how far it is from the root if idle. When a worker becomes idle, it is assigned the task with the
least migration cost. If there are no available tasks, workers shadow active workers; when work becomes
available, the shadowing workers can cheaply pick the work up.

Binding arrays provide a more complex scheduling problem than hash windows, which can be rapidly
moved to any unexplored branch. Binding arrays, however, provide the advantages of constant access time
to bindings. Intuitively, binding arrays should be superior to hash windows in cases where there are few
workers, leading to fewer large context changes.

2.1.3 The Multi-Sequential Machine Model

The multi-sequential machine model was proposed separately byAl8i6] as the multi-sequential ma-
chine and Clocksin (further refined by Alshawi) as DelphM88], Both models are designed to allow
or-parallelism with a minimal amount of communication between processes. Clever initialisation of work-
ers allow workers to distribute or-branches between themselves with little communication.

The multi-sequential machine model starts a number of workers executing the same program. Each
worker is given a virtual worker number and the number of worker within its group. When an or-branch
is reached, the workers split the work amongst themselves; each worker knows how many workers are in
the group, and what its worker number is, so the workers can reach agreement on which branches to take
without communication. As an example, suppose that 5 workers reach a three way branch, then two workers
could be assigned to the first branch (to further split when encountering another branch), two to the second
and one to the third. Balanced, left-biased and right-biased allocation schemes are all possible allocation
strategies.

When a worker becomes idle after completing all solutions, it is assigned to a local manager. The local
manager collects a group of idle workers and, when the group is large enough, requests work from a busy
worker group. The state of the busy worker group is copied to the new group and then the new group is
started as an independent worker group.

The Delphi model is designed to avoid workers having to exchange state. The model uses bit strings,
calledoraclesto control the search space, which has been pre-processed into a binary search tree. A central
manager sends a worker an oracle, giving a path to search. The path is searched to a given depth, and then
either solutions, failure or additional oracles are returned to the manager. As the program executes, the
oracles grow to represent deeper and deeper branches.

When a worker receives an oracle, it can re-synchronise itself by backtracking along its current oracle
until the two oracles are the same and then following the path of the new oracle to where processing has
started. Following the new path may be expensive.

2.1.4 The Copying Model

The copying model was proposed by ARK90] for the Muse or-parallel Prolog system. The copying
model, rather than trying to maintain shared bindings for the same variable uses copying of the entire
worker’s workspace to allow multiple bindings.

Copying is similar to the binding array model, except that all the workspace is synchronised rather than
just the variable bindings. When an or-branch becomes available for parallel execution, another worker can
acquire the or-branch by asking for a copy of the stacks used in the computation. Only the parts of the
stacks that differ between the two workers need to be copied. The worker acquiring the work is then in the
same state as the original worker; it can then backtrack and take the next available or-branch.

Although complete copying is expensive, the corresponding advantage to using copying is that, once
copying has finished, each worker is largely independent of all other workers and can dereference and bind
variables without any overhead. Performance results suggest that the copying method is often superior to
the binding array method\K91hb].

12 CHAPTER 2. AN OVERVIEW OF PARALLEL LOGIC PROGRAMMING

diff(c, 0).
diff(x, 1).
diff(A + B, DA + DB) :-
diff(A, DA),
diff(B, DB).
diff(A * B, (DA * B) + (A * DB)) :-
diff(A, DA),
diff(B, DB).

2-diff(x * 5) + (2 * x), D).

Figure 2.4: An Example Independent And-Parallel Program

gsort([P | U], S) :-
partition(P, U, Ul, U2),
gsort(Ul, S1),
gsort(U2, S2),
append(S1, S2, S).

2-gsort([5, 6, 2, 1, 9, 0, 3], S).

gsort(R, SR)

partition(P, I, L, R)

append(SL, SR, S)

Figure 2.5: Example Independent And-Parallelism Call-Graph

2.2 Independent And-Parallelism

Independent and-parallelism (IAP) attempts to transparently exploit the parallelism which appears when
two goals in a conjunction have no common variables. If the goals share no variables, then the two goals
can be evaluated in parallel without the need for any synchronisation between processes.

An example program, a fragment of a differentiator, which can be run with IAP is shown in figlire
The clauses that handle compound expressions eactiiff&l twice recursively. If the expressions are
independent of each other (ground, or no shared variables) then the recursive differentiations can be run in
parallel. If the recursive differentiations do contain shared variable?(diff(X * X, D)) then the
recursive differentiations must be run in sequence.

The central problem in IAP is the construction of a call-graph showing which literals in a clause must
be run in sequence and which can be run in parallel. An example call-graph is shown ir2figuidne
largest difference in implementations of IAP is whether the call-graphs are constructed by run-time checks,
static analysis at compile-time, or by some hybrid of the two.

2.2. INDEPENDENT AND-PARALLELISM 13

2.2.1 Run-Time Detection of Independent And-Parallelism

The flow of dependency between subgoals can be detected at run-time and the call-graph adjusted dynami-
cally.

An example of the run-time approach is Lin and Kumar’s bit-vector mod€BB]. The bit vector
model essentially associates a token with each variable in a clause. The tokens are passed from literal to
literal, with a literal becoming available for execution when it holds the tokens for all the shared variables
that it uses. If a literal fails, backtracking to the literal which was the producer of a token allows the skipping
of irrelevant speculative computation.

In the bit vector model, each variable in a clause is associated with a bit vector which has bits set for
each literal in the clause which uses the variable. Each literal has a bit-vector mask associated with it,
indicating the position of the literal in the clause. In the example shown in fgdrehe third clause has
four variablesA, B, DA andDBwith the bit vectors ofl 0 for AandDAand01 for BandDB The literal
masks ar®)0 for diff(A, DA) and10 for diff(B, DB) . If avariable is bound to a ground term, then
the bit vector for the variable is set to all zeros. If two variables become dependent, then the bit vectors of
both variables are or-ed together.

The finish vector is a bit vector where the bits are set &s each literal completes. In the above
example, the finish vector isl at the start of the clause] if diff(A, DA) has completed an@) when
all literals have completed.

Detecting whether a literal is ready to run consists of seeing whethery) A v A F'is zero for all
variablesV in GG, whereuy is the bit vector for variabl®’, v is the literal mask and’ is the finish vector.

In the example, idiff/l2 is called with?-diff(x + ¢, D) , thenvy = 00,vp = 00,vpy =
10,vpp = 01, asA andB are both ground. Fadiff(A, DA) the readiness condition {§0 Vv 10) A
00 A 11 = 00. Fordiff(B, DB) the readiness condition {§0 Vv 01) A 10 A 11 = 00. As both readiness
conditions are zero, both literals can be run in parallel.

If the call is?-diff(X + X, D) thenvy = 11,vp = 11,vps = 10,vpp = 01, asAandB are
dependent on each other. Fiff(A, DA) the readiness condition {81 vV 10) A 00 A 11 = 00. For
diff(B, DB) the readiness condition i[d1 v 01) A 10 A 11 = 10. The first literal is ready to run,
the second literal must wait. After the first literal completes, the finish mask is 8étand the readiness
condition for the second literal is no@1 v 01) A 10 A 01 = 00. The second literal can now be safely
evaluated.

2.2.2 Static Detection of Independent And-Parallelism

Dynamic detection of IAP is expensive, especially the tests for groundness and variable independence,
although groundness tests can be cacBedi84. An alternative to expensive run-time checks is to perform
a static analysis of the data-flow dependencies of the program for some top-level goal and generate a single
call-graph for the goal.

The method used infha83 is to use a static analysis where variables are classified into sets of ground
variables, independent variables and groups of variables that may be dependent on each other. The most
pessimistic assumptions are made about variable aliasing, ensuring safe parallel execution.

2.2.3 Conditional Graph Expressions

The purely dynamic models of IAP tend to produce excess run-time testing. Static analysis restricts the
amount of parallelism available. Hybrid methods, such as program graph expre8s&t] and condi-
tional graph expressions (CGE$)qr86a Her86l attempt to tread a path between the two extremes.

CGEs consist of compiled expressions specifying the conditions under which a set of literals or other
CGEs can be run in parallel; these conditions can be evaluated at run-time. CGEs have thé€'ferm
) whereG is a list of literals and other CGEs andis a list of conditions. The conditions can be any
of the tests:true , false , ground(Vars) orindep(Vars). The testground(Vars) is true if
all variables inVars are ground. The teshdep(Vars) is true if all variables inVars are mutually
independent.

If the conditions in a CGE all evaluate to true, then the list of literals or CGEs can be executed in
parallel. Otherwise, the list must be executed sequentially.

14 CHAPTER 2. AN OVERVIEW OF PARALLEL LOGIC PROGRAMMING

p(a).
p(b).

qa(c).
q(d).

r(X, Y) - p(X), a(Y)

21X, Y)

Figure 2.6: An Example Program Causing a Cross-Product

Applying the principles of CGEs to the example differentiator produces:

diff(A + B, DA + DB) :-
(indep(A, B), indep(A, DB), indep(B, DA), indep(DA, DB) =>
diff(A, DA)
diff(B, DB)
)

This CGE will detect most IAP, although it will miss some parallelism that the bit-vector method would
catch. Eg. the parallelism i-diff(X + ¢, X + 0) will be detected by the bit-vector method, but
will be rejected by théndep(X, X) test.

Conditional graph expressions are well suited to optimisation by compile-time analysis, as the expres-
sions can be grouped and manipulated by various forms of static anal\j$80] XG8§].

Conditional graph expressions also provide a means for handling nondeterministic and-parallelism. A
failure while executing sequentially can be handled in the normal backtracking manner. A failure inside a
CGE which is executing in parallel can cause all parallel calls to be killed and the computation to backtrack
to the first choice outside the CGE. A failure outside a parallel CGE which backtracks into the CGE needs
to search (right to left) along the list of goals in the CGE for a choice; the goals to the right of the choice
then need to be restarted.

2.2.4 Combining Independent And-Parallelism and Or-Parallelism

Independent and-parallelism and or-parallelism are essentially orthogonal in their effects on a program.
The main implementation difficulty that combining the two presents is the effect of two subgoals running
in parallel producing multiple answers.

For example, in the program shown in figuté the subgoalp(X) andq(Y) can clearly be run in
and-parallel. However, if or-parallelism is allowed in these subgoals then each subgoal can independently
produce a set of or-parallel bindindd, X/a }, { X/b }} for p(X) and{{ Y/c },{Y/d }} forq(Y) . These
solutions need to be combined via some sort of cross-product operation:

{{Xa}, { X}y {{Yc}{Yd}} =
{{ Xla, Yic},{ Xla, Yid },{ X/b, YIc },{ XIb, Y/d }}

The And/Or process modeCpn83, and its practical realisation in OPAICpn9] uses a tree of and-
and or-processes to collect solutions. Or-processes collect incremental copies of non-ground terms.

The PEPSys system\[R87] uses hash windows (secti@il.]) to maintain or-parallelism. Creating a
cross-product essentially means creating a cross-product of the candidate hash windows. IAP ensures that
there will be no conflicting variable bindings in the hash windows created by different and-branches. Join
cells are used to link hash windows for each possible element of the cross-product.

The ACE systemGH91] is a combination of conditional graph expressions and the copying model for
or-parallelism. A group of workers executing a set of IAP subgoals makes a single area, which can be
copied in total.

2.3. DEPENDENT AND-PARALLELISM 15

PO, [D.
p(N, [N | R) - N >0, N1 is N - 1, p(N1, R).

sum([], S, 9).
sum(IN | R], S, S1) - S2 is S + N, sum(S2, S1).

?-p(5, L), sum(L, O, S).
Figure 2.7: An Example Dependent And-Parallel Program

The Reduce-OR modeKpl87] maintains sets of variable bindings, called tuples, for each branch of
an and-parallel computation. These tuples are lazily combined where the execution graph joins to make a
cross product.

The AO-WAM [GJ89 builds a tree of and- and or-nodes, extended by crossproduct- and sequential-
nodes. The crossproduct-nodes combine solutions in a similar manner to the Reduce-OR model.

2.3 Dependent And-Parallelism

Dependent and-parallelism (DAP) or stream and-parallelism takes a view of parallelism similar to Hoare’s
communicating sequential processe®@7g. Subgoals within a clause are executed as individual pro-
cesses, with shared variables acting as conduits of information between the processes.

An example program capable of DAP is shown in fig@ré If called with a number and variable as
arguments, the/2 predicate produces a stream of numbers, with the variable being progressively instan-
tiated to form a list. Thesum/3 predicate can incrementally consume this list of numbers, constructing a
partial sum as each number is producedly . The shared variable acts as a communication channel
between the two subgoals, synchronising the two processes.

Clearly, this example is expected to act as a producer-consumer paipAZitlacting as the producer
andsum/3 acting as the consumer. However, Prolog-like logic programming languages are inherently
modeless, and conditionally bind variables while searching for a solutiosuni/3 is called with an
uninstantiated first argument, then it will try the first clause, conditionally binding the varialjle .to
Howeverp/2 is also executing at this time and will attempt to bind the variab[&t¢ L1] . Some sort
of mode information is needed to identify the expected producers and consumers of bindings.

If a producer of a binding makes a conditional binding, then this binding will be used by any consumer
which shares a variable with the producer. If a failure occurs, then some form of distributed backtracking is
needed, with consumers being resynchronised.

2.3.1 Committed Choice Languages

The distributed backtracking problem, described above, led to an abandonment of the standard Prolog-style
nondeterminismdon’t know nondeterminishin exchange for a form of nondeterminism which ensures
that there is only a single solution to a query, eliminating the problems of backtraclong ¢are non-
determinisi If there are several solutions to a goal, then all solutions, bar one, are nondeterminately
eliminated. The computation then commits to the remaining solution. This process of commitment gives
the class of languages that support this feature the name of Committed Choice Languages (CCLS).

The various committed choice languages: Concurrent Pr&og§3, Parlog [CG84, GHC [Ued8q
and KL1 [UC9Q all share similar features. Over time, these languages have devolved as features that
are difficult to implement and do not seem to be needed by programmers are stripped from them. An
entertaining review of the CCLs and their devolution can be foundizdp).

CP [Sar87 is a formal unification of the various features of don’t know and don’t care nondeterminism,
and the various synchronisation features that different CCLs supply. The Andorra model, discussed in
the next chapter, and Parallel NU-Prolddai8§ have similar behaviour to CCLs, but allow restricted
nondeterminism.

16 CHAPTER 2. AN OVERVIEW OF PARALLEL LOGIC PROGRAMMING

Syntax

Clauses in CCLs are written as
H - Gl,...,Gn|B1,...,Bm

whereH is the head of the clausé;y, ..., G, is theguardand By, . .., B,, is thebody. The| element

is the commit operator, separating the guard from the body. When a predicate is called, all clauses in the
predicate attempt to solve their guards in parallel. If a guard succeeds, then any other non-failed guards are
pruned, and the computation commits to that clause and begins executing the body atoms. The program in
figure2.7, rewritten in the CCL style would be:

PO, D).
p(N, [N | R)) - N >0 | Nlis N - 1, p(N1, R).

sum([], S, 9).
sum(IN | R], S, S1) - | S2 is S + N, sum(S2, S1).

Flat CCLs restrict guard atoms to being primitive operations, such as unification and arithmetic compar-
ison, as opposed to deep guards, where the guards may be arbitrary literals. Examples of flat CCLs are FCP
[YKS9(Q] and Flat GHC JF8§. The main motivation for introducing flat languages is the difficulty of im-
plementing deep guards. A full implementation of deep guards requires separate binding environments for
each guard computation, making it as least a hard a problem as or-parallelism. CrammondGra8#i [
for Parlog only allows one deep guard to be evaluated at a time, allowing deep guards, but eliminating a
source of parallelism.

Modes

CCLs also need to provide some mechanism for specifying which subgoals are producers of bindings and
which are consumers — modes. Each CCL provides different means of supplying mode information. The
different ways of declaring modes, roughly in decreasing order of flexibility (and implementation difficulty)
are:

1. Read Only VariablesConcurrent Prolog provides read-only variable annotations. Variables that are
marked with a? in a literal are read-only and may not be bound by that literal. In the example in
figure2.7, the initial query would be written &p(5, L), sum(?L, 0, S)

2. Ask:Tell Clauses in Concurrent Prolog may have an Ask:Tell part at the start of the clause. Con-
straints in the Ask part of the clause must be supplied externally to the clause. The Tell part of the
clause atomically exports the bindings that it contains. The first clausofn the example would
be writtenap(N, L) - N =0: L =]

3. SuspensionThe GHC and KL1 suspension rule forces a clause to suspend when a guard attempts to
bind a variable that is external to the clause. The first claup&ofin the example would be written
asp(N, L) - N=0] L =1 . Suspension is similar to the Ask:Tell notation above, but
the body part is not guaranteed to be atomic.

4. Mode Declarations Parlog and Parallel NU-Prolog both use mode declarations on predicates to
indicate which arguments are input and which are output. Arguments which are marked as input
cause the goal to suspend until the argument is sufficiently instantiated to satisfy any candidate guards
without requiring further variable bindings. if the guard attempts to bind the argument. In the above
examplesum/3 has a mode o?-mode sum(?, ?, 1) in Parlog and?-lazyDet sum(i,

i, 0) in Parallel NU-Prolog and calls tsum/3 would suspend until the first argument is bound,
although the argument need not be ground. Mode declarations are less flexible than rules based on
individual variables. The program below is an example of a GHC program which can not be given a
simple mode declaration:

2.3. DEPENDENT AND-PARALLELISM 17

and(X, Y) :-
and(X, Y) :-
and(X, Y) :-
and(X, Y) :-

< < X X
I

R ORr O

X X < <

ocPor

2.3.2 Reactive Programming Techniques

Dependent And-Parallelism allows an array of programming techniques, that are impossible in ordinary
Prolog-like systems, with their left-to-right computation rule. Since goals can be suspended until informa-
tion becomes available, networks of processes can be created, passing streams of data between themselves.

Stream Programming

Lists in DAP can be regarded as streams of data, with producers and consumers acting as processes passing
streams of messages to each other. As an example, the following predicate (in GHC) filters an incoming
stream, removing any adjacent duplicate elements:

unique([], O) :- true | O = [].

unique(l, O) :- I = 110 =1.
unique([X, X | I11], O) :- true | unique([X | I1], O).
unique([X, Y | I11], O) :- X ~=Y | O = [X | O1], unique(lY | O1], O).

Duplicating streams is a matter of repeating variables in a goal. For example,
unique(l, U), replace(U, a, b, U1), replace(U, a, c, U2) has tworeplace/4
filters, each being fed from the same stream containéd in

Themerge/3 predicate can be used to combine two streams into a single stream:

merge([], 12, O) :- true | O 12.
merge(I1, [], O) :- true | O 11.
merge([X | I1], 12, O) :- true | O
merge(l1, [X | 12], O) :- true | O

[X | O1], merge(l1, 12, O1).
[X | O1], merge(l1, 12, O1).

This predicate relies on the commit operator eliminating alternate clauses when a guard has been satis-
fied. When a binding appears on an input stream, an eligible clause is committed to, regardless of the state
of the other input stream. The merge predicate produces a nondeterminate merging of the two streams, with
the order of the output stream matching the order that elements appeared on the two input streams.

Object Oriented Programming

Objects can be represented as processes which communicate using streams of messages. A predicate re-
ceives the messages and responds to each message appropriately; the clauses of the predicate provide the
method definitions for the object. An example of an object implementation is:

io([l, _) - true | true.

io([open(Name) | R], J) - true |
open file(Name, Handle),
io(R, Handle).

io([close | R], Handle) :- true |
close _file(Handle),
io(R, Xx).

io([write(C) | R], Handle) :- true|
write _file(Handle, C),
io(R, Handle).

18 CHAPTER 2. AN OVERVIEW OF PARALLEL LOGIC PROGRAMMING

This object represents a simple file stream, which receivepan message, followed by a sequence of
write messages, followed bydose message. Access to the object is granted by the message stream.
If there are to be several objects that use this object, then each object produces a message stream and the
message streams are merged. An example tmtBe predicate in use is
?-io([open(foo)|lo],x), merge(lol, 102, l0), writerl(lol), writer2(l02).
In this example, the object is represented by the streatn oiThe two writers produce streams of messages
which are merged and forwarded to tloe stream.

Incomplete Messages

Incomplete messageSha84 extend the object-oriented model described above by providing a mechanism
for back communication. If an uninstantiated variable is included in the arguments of a message, that
variable may be bound by the predicate which is handling the object’s messages. An example of incomplete
messages is this stack implementation:

stack([],) - true | true.

stack([push(X) | R], S) :- true | stack(R, [X | S]).

stack([pop(X) | R], S) :- true | S = [X | S1], stack(R, S1).
stack([top(X) | R], S) :- true | S = [X |], stack(R, S).

In this example, if thgpop message is sent with an uninstantiated variable as its argument, then the
variable will be bound to whatever is on top of the stack.

2.3.3 Don’t Know Nondeterminism and Dependent And-Parallelism

The CCLs described above all rely on don’t care nondeterminism to avoid the sticky problems of distributed
backtracking. Other approaches combine don’t know nondeterminism and DAP.

Ptah Fom87 SRV88 Som89 uses strict mode declarations to identify the producers and consumers of
variable bindings. The strict mode declarations allow a data-flow graph to be built for the computation. If a
part of the computation fails, the source of the original binding that caused the failure is known and which
parts of the computation must be retried and which parts need to be restarted. can be deduced.

Ptah allows the reactive programming of sectith.2 However, the amount of mode information
needed to identify producers and consumers can make for a quite onerous task, removing the attractive
conciseness of logic programming.

Shen’s Dynamic Dependent And-Parallel Scheme (DDAS)eP2 She93 provides transparent ex-
ploitation of and-parallelism. Conceptually, the scheme is a token-passing system similar to the IAP model
discussed in sectioh.2.1 Each variable has a producer token which is initially given to the left-most and-
node that refers to the variable. As and-nodes complete, producer tokens are passed on to the next and-node
that refers to the variable. If an and-node which does not hold the producer token for a variable attempts
to bind the variable, it suspends until an and-node to the left binds the variable, or it acquires the producer
token.

In practise, the DDAS is implemented by using a variety of the CGEs discussed in s22ti®rCGEs
are used to partition goals into independent groups of goals, with the goals within the groups potentially
dependent on each other. Rather than assign producer tokens to each variable, each group has a single
producer token that passes from left to right along the group.

The DDAS can be regarded as an attractive form of IAP; it transparently provides the same behaviour as
Prolog, without some of the restrictions of IAP. The reproduction of Prolog-like behaviour means that the
reactive programming techniques discussed in se@i8r2are not possible, although allowing a flexible
computation rule for the DDAS is an intriguing idea.

2.4 Other Forms of Parallelism

The preceding sections have discussed the major forms of parallelism inherent in logic programs. These
forms of parallelism are those considered throughout the rest of this thesis. However, there are a number

2.4. OTHER FORMS OF PARALLELISM 19

of additional approaches to parallelism in logic programs; a brief summary of these approaches is given
below.

Both or- and independent and- parallelism attempt to transparently extract parallelism from Prolog-
like programs. Dependent and-parallelism, despite the use of CCLs, still attempts to supply an implied
model of parallelism. Process-oriented logic programming languages, such as Delta-Pht8dpdr CS-

Prolog [FF99 use explicit message passing operators to transmit and receive messages between essentially
unconnected Prolog processes.

Data-flow models, such as Kacsuk’s 3DPAKIEc9] or Zhang's DIALOG [£T91], model the and-or
tree by means of tokens passing between the nodes of the tree.

Reform parallelism }1il91] is a form of vector parallelism where recursively defined predicates are
flattened into iterative loops and constructed so as to allow execution on a vector parallel processor.

20

CHAPTER 2. AN OVERVIEW OF PARALLEL LOGIC PROGRAMMING

Chapter 3

The Andorra Model

The basis of the Andorra model can be reduced to a single statefiidmtthe determinate bits first.

This simple statement provides both a way of unifying dependent and- and or-parallelism and an efficient
computation rule for logic programs. The Andorra Kernel Language allows nondeterministic independent
and-parallelism to be also united under the Andorra flag.

Dependent and-parallelism is much simpler to implement when the computation is determinate. The
problems of distributed backtracking over several cooperating computations tends to prevent mixing depen-
dent and- and or-parallelism, with the exceptions of DDAS and Ptah. Independent and-parallelism avoids
the major problems of distributed backtracking by prohibiting and-parallel calls from influencing each other.
As aresult, dependent and-parallel languages tend to be committed choice languages — Concurrent Prolog,
Parlog, GHC — which enforce determinism.

The roots of the Andorra model can be found in Naish'’s theééisgq. Naish proposed that a desirable
computation rule would choose atoms in the following order: tests that were likely to fail, deterministic
calls, non-deterministic calls with a finite number of solutions, non-deterministic calls likely to cause loops
and uninstantiated system predicates (eg. negation). The Andorra model collapses this list into a simple
distinction between deterministic calls and non-deterministic calls. This distinction can be made by simple
run-time tests, making the Andorra model an efficient computation Nd&[J.

Early versions of the Andorra model for dependent and-parallelism go back to Yang’s P-R#e8g,[
where sets of alternate clauses were chosen by means of explicitly grouping them together. Naish’s paral-
lel NU-Prolog [Nai8§ is also implicitly organised about the Andorra model; goals delay until sufficient
information becomes available to commit to a single clause.

3.1 The Basic Andorra Model
The Andorra model was first named by D.H.D. Warren at a Gigalips meeting in 1987, who pointed out that
determinism could be made the basis of transparently exploiting dependent and-parallelism. This model is
theBasic Andorra Modebr BAM. A description of the BAM can be found in Santos Costa’s the3i3J3.
The BAM recognises two basic operations:

e Any literals that can be detected as deterministic are reduced (in parallel, if possible)

(Al,...,Ai,...,An)é(Al,...,Bl,...,Bm,...,An)

e If no literals are detected to be deterministic, then a goal is selected, and forked into a set of alternate
configurations.

(Al,AQ,...,An) = (Bll,...,Blml,...AQ,...,An)\/'"\/(Bll,...,Blml,...AQ,...,An)
As an example of the BAM, consider the program

21

22 CHAPTER 3. THE ANDORRA MODEL

p(b, a, a).
p(a, b, a).
p(a, a, b).

and the query?-p(X, Y, 2), p(Z, W, W) . Initially, p(X, Y, Z) could match any of the
three clauses g/3 . However, this query can be computed determinately, since only one claps& of
matchep(Z, W, W) . The first step of a BAM computation, therefore, is the reduction step
p(X, Y, Z), p(Z, W, W) = p(X, Y, b) . The goal is nowp(Z, Y, b) which now also
matches a single clause®B , and can also be reduced with a final substitutiof @f/a, X/a, Y/a, Z/b}.

The BAM is an idealised description of the Andorra model. To become a practical system, an instance
of the BAM needs to supply such details as how determinism is detected and how extra-logical features
(eg. cut) are handled. There are a number of applications of the BAM: Ando®@w[Y914 is a parallel
version of the BAM which executes Prolog programs. Andorra-l includes a sophisticated pre-processor
that allows Andorra-I programs to act exactly like a Prolog program. Andorra PrblBgq] is an initial
attempt to apply the Andorra model to Prolog. PandBfag9d uses the Andorra model in conjunction with
Parlog. NUA-PrologPN91 is a basic application of the BAM to Prolog, using negations instead of cuts.

3.2 Andorra Prolog

Andorra Prolog HB8§] is an instance of the BAM. Andorra Prolog provides semantics for cut and commit
operators, missing from the BAM, and formalises the execution model in terms of a series of configurations.
While never fully implemented, unlike Andorra-I, Andorra Prolog is of interest as one of the predecessors
of the AKL, discussed in sectiah4. In particular, the configuration-based approach forms a natural bridge
between Andorra Prolog and the AKL.

3.2.1 Execution Model

The execution model presented here is based on that of Haridi and B#&&@][The implicit node-tree
built in [HB88] has been made explicit; the explicit node-tree makes the relationship between Andorra
Prolog and the AKL (sectioB.4) more apparent.

Programs in Andorra Prolog consist of a set of definite clauses in the fdrm: G, B The head,
H, is a single atom. The guard;, and the bodypB, are sequences of atoms, withrestricted to simple
tests, such as=/2 , </2 oratom/1 .

Given a substitutiof, an atomA, and a claus& = H - G, B, S is acandidate clauséor A if
A0 unifies with H, andG is satisfiable in the context 6&, wheresc = mgu(Aéd, H). In an Andorra Prolog
computation, each atom in a goal is associated with a list of candidate clauses.

A goalis a pair(A, C'), whereA is an atom and’ = [C1, ..., C,] is a list of candidate clauses far.
(A, C) is determinatdf C contains a single clause. éonfigurationis (L, 8, N),.q. WhereL is a list of
goals,d is a substitution)V is a list of child configurations andhode is one of And, Or or Failure. An
initial query,?- Ay, ..., Ay, is written as([(A1,C1), ..., (An, Cn)], €, []) ana, Where eactt; is the set of
candidate clauses fot; ande is the empty substitution.

An Andorra Prolog computation then proceeds using the operations of failure, and-reduction, and-
extension and or-extension, in the following order of priority:

1. Failure: If the configurationig L, 8, N) a4 and there is a goal ifi with an empty clause list, then
the configuration is changed (@, 6, N) pairure-

2. And-reduction: If the configurationigL, 6, N) 4,4 and there is a determinate goal,
L, = (A[H - G, B)) in L, then A6 is unified with H to give a new substitutioa. The
configuration is then changed to

Ly,....L, 4,
(Gla CGl)a ey (Gl; CG[); (Bla 031)7 ey (B’m; CBm)) 5907N
L2+1’ R L/n And

3.2. ANDORRA PROLOG 23

n(0, 0). (C1)
n(N, s(R)) - N >0, N1 is N - 1, n(N1, R). (C2)
e(0). (C3)
e(s(s(E))) :- e(E). (C4)

?-n(3, V), e(V).
(I(n@B, V) [C2]), (e(V) ,[C3,C4])] € []) ana
({2, R) ,[C2)), (e(V)l{ (C4)], { VIS(R) }, []) ana
(@@, R1) ,[C2]), (e(R1) >[C§’>{ C4])], { VIs(R), RIs(RL)}, []) ana
([(n(0, R2) ,[C1]), (e(R1) ,[C’4])]E{VIS(R), R/s(R1), R1/s(R2), []) ana

([(e(RY) , DI, { VIs(R), R/s(R1), R1/s(R2), R2/R []) ana

¥
([(e(RL) ,], { VIs(R), RIs(R1), R1/s(R2), R2/R []) raiture

Figure 3.1: An Example And-Parallel Andorra Prolog Execution

whereG = G1,...,G;, B = By,..., By, C4 is the candidate clause list for atamandL;. is L;
with all clauses in the candidate clause list igrwhich are not compatible with removed.

The guard part of the clause needs to be included in the final configuration, since it may include such
atoms asX < 1, whereX is a variable.

3. And-extension: If the configuration igL, 6, N) 4,4 and there are no determinate goald.ithen the
configuration is changed (d., 6, N') ...

4. Or-extension: If the configuration ig[(4, C), Lo, ..., L,],0, N)o, andC = [C1,...,Cy] is non-
empty then the configuration is changed to:

([(A) [025 ey O’m]); L27 s 7LTL]5 9) N - [([(A7 [Cl])7 LQ; o 7LTL]7 97 [])And])O'r
whereNN - M is the concatenation of two lists.

The Andorra Prolog execution model builds a tree of nodes, with and- and failure-nodes at the leaves and
or-nodes at higher levels of the tree. Since or-extension chooses the left-most and first clause for extension,
the Andorra Prolog search rule closely follows the Prolog search rule.

Andorra Prolog computations are implicitly parallel. And-parallelism occurs when several and-reduc-
tions are applied to a single configuration concurrently. Or-parallelism occurs if separate configurations
are reduced or extended concurrently. Example Andorra Prolog computations for and-parallelism and or-
parallelism are shown in figur&2land3.2respectively.

3.2.2 Commit

Commits are permitted in Andorra Prolog immediately after a guard; a clause can be written as
H - G, | ,B. Tests in the guardis, must be completely solved before the commit operator is
applied, although unifications may proceed. When the guard is completely solved, the commit operator
prunes all other candidate clauses from the list of candidate clauses. If several candidate clauses have
solved guards, then a single clause is (hondeterministically) chosen. An example of the commit operator is
shown in figure3.3

At or-extension, unsolved guards and their commit operators are carried with the or-extended con-
figurations. When the guard is solved, the commit operator eliminates all other nodes in the parent or-
configuration. See figurg.4for an example of commit occurring after or-extension.

24 CHAPTER 3. THE ANDORRA MODEL

nondet(a). (Cy)
nondet(b). (C2)

?-nondet(X).

([(nondet(X) ,[C1,C2])],¢,]]) and
4
([((nondet(X) ,[C1,C2))], ¢ [)or
A8
([(nondet(X) ,[C2])], ¢, [([(nondet(X) ,[C1])], €, [])anal)or

4
(I & [([, { X1a}, [I) ana, ([(nondet(X) , [C2])], €, []) ana;])or

4
(I, & [([, { X7a}, [1) ana, ([, { XIb }, []) anal)or

Figure 3.2: An Example Or-Parallel Andorra Prolog Execution

max(X, Y, X) - X >=Y, |. C1
max(X, Y, Y) - X =Y, |. c2
?-max(5, 5, 2).

([(max(5, 51 X)) [Clv CQDL €, [])A"d
|l Both5 >= 5 and5 =< 5 are solved.

([]7 { ZI5 }7 [])And

Figure 3.3: Example of a Andorra Prolog Commit

p(X, a) - X>=0, |. C1
p(X, b) - X =<0, |. Cc2
a(0). C3
qa(2). C4

?-p(Y, 2), q(Y).
([(p(Y, Z)) [017 021)7 (q(Y)) [037 04])], €, [])A"d
I

(Ip(Y, 2) ,[C1,C2]), (aY) ,[C3,C4)], € [)or

I
([] € |: ([{Y >= 07' }7(q(Y) 7[03,04])]7{Z/a}a”)14nd7 :|)
L (Y =<0 L(aY) [e3,04)], {zZb} [Nana | /),
I

([] € |: ([]7{Z/a}7[([{y >=0, | }]>{Y/0}7[])And7([{y >=0, | }]7{Y/2 }7[])And])07”7])
Y (H?{Z/b}v[([{y =<0, | }]7{Y/0 }7[])And7([{y =<0, | }]7{Y/2 }7[])Failure])OT Or
|} Choose one of the possible commits

(0:e [0, £ 22}, Mor (0. { 20}, ([, £ YO 3, [ana; Dor])or

Figure 3.4: Example of a Andorra Prolog Commit after Or-Extension

3.2. ANDORRA PROLOG 25

The commit operator, as defined for Andorra Prolog, does not exactly act in an intuitive manner. For
example, the program

p@ - | .
p) - .

works in a similar manner to the GHC program,

p(xX) :- true, |,

X
p(X) :- true, |, X

rather than the expectt@HC program,

a, |, true.

p(xX) - X
X b, |, true.

p(xX) -

Explicit test predicates are needed to make the Andorra Prolog program act like a GHC program. The
program above can be rewritten as

p(X) = X =1a |.
pX) :- X

The ==/2 predicate only accepts input bindings. The predicate is therefore forced to waiXustil
bound.

3.2.3 Cut

The cut operator (!) is similar to the Prolog cut operator. The use of cut in Prolog assumes a left-to-right
computation rule. For example, given the program:

p(d) :-
p(2).

the query?-p(X), X = 2 would fail in Prolog, but succeed in an Andorra Prolog computation. This
problem occurs whenever cuts which remove solutions from the program occur — red cuts, as opposed to
green cuts which simply eliminate redundant solutions.

The solution suggested in Haridi and Brand’s description of Andorra Prolog is to have a relaxed form
of cut, one which acts as a normal cut during or-extension, but relaxes and acts in a similar manner to a
commit during and-reduction.

The implementation of Andorra-§CWY91H provides a mechanism that enforces the semantics of the
Prolog cut. A preprocessor identifies red cuts, and inserts a sequencing operator (written as) into
the code. All goals to the left of the sequencing operator must complete before any goals to the right are
executed. In the above example, the query would be re-writtéh#X) @ X = 2 , producing
Prolog-like behaviour.

1Expected in the sense that unifications to the left of the commit operator are intuitively part of the guard.

26 CHAPTER 3. THE ANDORRA MODEL

3.3 The Extended Andorra Model

The BAM described in sectioB.1is simple, but it cannot detect deep determinism. For example, it would
be useful to extract determinism from a program such as:

p(X, Y, a) :- member(X, Y).
p(X, Y, b) :- not member(X, Y).

In this case, a sufficiently instantiated calli3 would be deterministic. However the BAM execution
model would not recognise this possibifiyandp/3 would have to wait for forking. Generally, implemen-
tations of the BAM are flat, relying on head arguments and a few test predicates to detect determinism.

The BAM also prevents nondeterministic independent and-parallelism, as a single goal is chosen for
forking.

The Extended Andorra Model (EAM) was designed by Warren to allow the detection of most parallelism
within a logic program. A Description of the EAM can be found in Santos Costa’s the€§i83. EAM
computations are formally defined in terms a set of rewrite rules on trdesxef:

And-box: [3X : 0 A C1 A--- A Cy,] where eaclX is the set of variables local to the and-béxs a set of
constraints on variables external to the and-box and €aéheither an atom or box.

Or-box: {Cy V---V C,} where eaclC; is a box.

Choice-box: {G1 % Cy VvV ---V G, % C,, } where % is a guard operator (either cut or commit), edch
is a list of guard atoms and boxes and eéglis a list of body atoms and boxes.

The EAM computation proceeds by applying the following rewrite rules:
Reduction:
A= {EY1:0, % C]V -3, : 0, % Cul}

Reduction expands an atom into an or-box.

Promotion:
EX:SABYW: Z=0W)ACIANT|=EBX. WV : X=0W)ASAZY :C]AT]

Promotion moves constraints from an inner (determinate) and-box to an outer and-box.

Substitution:
[3X,Z:Z=0W)AC]= [3X :C0]

Substitution imposes a constraint (substitution) on a variable and propagates the consequences of the
substitution throughout the tree.

Forking:
EX:{C;V---VCIANG = {EX:C1 NG|V ---V[EX:C, NG}

Forking distributes a guard across a conjunction. Forking usually implies that the configuration in-
side the or-box has suspended on some variable. Forking is normally immediately followed by a
promotion.

2Unless there was asxtremelysophisticated compiler available.

3.4. ANDORRA KERNEL LANGUAGE 27

The EAM prevents over-eager computation by two control rules. An and-box suspends if it attempts to
constrain a variable external to it. Suspension of an and-box allows dependent and-parallelism. Forking is
always tried last, allowing the Andorra principle to be applied.

If the producer of a variable binding can be identified, then the computation can be allowed to eagerly
fork, with a system ofazy copyingonly copying the configuration of a forking operation when a forked
box suspends. The forking rule then becomes:

BX {CL V- VO IAG] = {BX :CLAGIV[3X : Co AG V-V [3X : Cp A Gy}

where thel7,, are references to the original

To allow lazy copying, variables need to be classified as egihessablgnon-guessabler other. Vari-
ables are marked as guessable if it is certain that the variable will be constrained nondeterministically.
Variables are marked as non-guessable if forking should only be tried as a last resort. Variables can either
be marked by some programmer supplied annotation, or by some pre-processor.

3.4 Andorra Kernel Language

The EAM represents an idealised model of parallelism in logic programming. The EAM is designed to
extract the maximum amount of parallelism from logic programs without much attention being applied to
efficiency or control. An actual implementation of the EAM needs to refine parts of the raw EAM execution
model and provide some means for controlling execution.

The Andorra Kernel Langauge (AKL) is an instance of the EAM which uses guards to provide a simpler
control model. Guarded clauses are used to separate guards and bodies, to allow deep guards and to identify
which variables can be constrained. A number of different guard operators are permitted, describing a
variety of pruning behaviours. The odd behaviour of the Andorra Prolog pruning operators (82tibn
has been replaced by a simple set of well-behaved pruning rules.

The EAM suspends an and-box when a external variable is about to be constrained. Since the AKL
uses guard operators to separate the speculative parts of a clause from the body of the clause, the AKL can
speculatively pre-compute parts of a clause which would be suspended in a pure EAM computation.

The model for AKL presented here is a combination of the original Kernel Andorra Prolog (KAP)
described by Haridi and JansaddJ9(and the later Andorra Kernel Languagi#{91. The model retains
the constraint-based description of the original KAP, but includes such elementdagtil8 predicate
introduced by the AKL. The AKL terminology of usin@ for wait operators,| for commit operators
and -> for conditional operators, instead 9f| and! respectively, has been used.

3.4.1 AKL Programs

Guarded clauses are built using the following grammar (seqg. is an abbreviation of sequence)
< guarded clause- < head> - < guard >< guard operator>< body>

< head> := < program aton>
<guard> = < seq.ofatoms
< body> 1= < seg.ofatoms
<atom> = < program atont>|< constraint atom>|< aggregate>

< aggregate> bagof (< variable>, < body>, < variable >
< guard operator> ?2 > |
Constraint atomare formulas in some constraint system. The choice of the constraint system used is
made by the implementation, but it at least needs to be capable of using the Prolog constraint system of
syntactic equality on terms. The existence of some constraint algorithm is assumed (unification in the case
of equality) that can establish the consistency of conjunctions of constraints, and simplify them as required.

Program atomsare atomic formulas of the form(t4, . .., t,) wherety, ..., t, are terms. In a guard
or body, a formula of the form(¢4,...,t,) can be treated as being equivalentXe = ¢1,...,X,, =
tn,p(X1,...,X,), whereXy, ..., X, are distinct variables. The head atom can be rewritten as

p(le---,Xn) - Xlzf,l,...,Xn:f,n.

28 CHAPTER 3. THE ANDORRA MODEL

A predicate definitioris a finite sequence of guarded clauses, each with the same head atom and guard
operator. Aprogramis a finite sequence of predicate definitions.

The bagof/3 predicate only allows variables as first and third arguments. More complex forms
of bagof/3 are possible, where terms are used instead of variables in these arguments. However, the
more complex forms obagof/3 can be reduced to the simple form by rewritinggof(7y; G;T») as
bagof(V; (G, V =T4);U),U = Ts.

3.4.2 Execution Model

The AKL execution model is described in termscohfigurationsnested expressions built from atoms, and
terms called boxes. Configurations can be built from the following grammar:

< configuration> = < and-box>|< or-box>
< and-box> = and(< seq. of local goals-; < constraint>) _get of vars.
<or-box> = or(< seq. of configurations) | fail

< localgoal> := < atom>|< choice-box>|< bagof-box>

< choice-box> = choice(< seq. of guarded goats) | fail

< bagof-box> = bagof(< variable >; < goal >; < variable >)
< guarded goat> = < configuration>< guard operator>< seq. of atoms-

< goal> 1= < configuration>|< local goal>|< guarded goat>

In the following rules,R and.S are used to denote sequences of configurations or gbalsdo are
used to denote constraint§) to represent a generic guard operat®ro represent guard sequences of
goals,B to represent body sequences of goals ©Hnid’, X andY” to represent sets of variables.

In an and-boyand (R; #),, the constraintd, is quietif it only constrains variables occurring iA.

The execution model starts with a quey,being written asnd (G true), . ;) and proceeds accord-
ing to the following set of transition rules:

Theconstraint imposition rule

and(R,op(0),S;6),, = and(R,S;0 A\ 0),,

is applied wheneverp(o) is a constraint operation producing the constrairando and the environment
of the box are compatible.
Theenvironment synchronisation rule

and(R,op(0),S;6), = fall

occurs whenever and the environment of the box are incompatible.
Thelocal forking rule

A = choice(and(Gy;true)y. % By,...,and(G,;true),, % B,)

converts a program aton which does not occur in the body of a guarded goal into a choice-box.
A - G1 % By,...,A - Gn % B, is the predicate definition ofl, with the arguments ofA
substituted for formal parameters and the local variables oftthelause replaced by the variableslin
The ordering of clauses within the predicate definition is important and must be preserved. The local forking
rule is similar to a call in an ordinary Prolog execution.

Thefailure propagation rule

and (R, choice(), S;0),, = fail

may be used to fail an and-box whenever one of the child choice-boxes has failed.
Thecut rule

choice(R,and(;0), -> B,S) = choice(R,and(;0), -> B)
and thecommit rule

choice(R,and(;0), | B,S) = choice(and(;0),, | B)

3.4. ANDORRA KERNEL LANGUAGE 29

are the pruning rules of AKL and are only appliedriis quiet. The cut rule provides behaviour similar
to the Prolog cut!(), and eliminates solutions after its application. The commit rule provides symmetrical
pruning behaviour similar to the commit of GHC.

The above rules provide a mechanism for building a configuration corresponding to the guards which
match some query. The Andorra model specifies that any guard which is now determinate can be promoted,
and any constraints applied to the immediate environmentd&teminate promotion rule

and (R, choice(and(;0),, % B),S;0),, = and(R,B,S;0 A0),

w

is the Andorra part of AKL. If the guard operator is a conditionab() or commit (|) guard, thery
must be quiet for the determinate promotion rule to take effect.

In addition to the determinate promotion rule, some mechanism is need to allow the controlled execution
of non-determinate branches of the computation, after all other determinate avenues of computation have
been explored. Theon-determinate promotion rule

and (Ry,choice(S1,and(;0), ? B,S:),Ry;0),, =
or (and(Ry, B, Ry;0 A o)y, ,and (Ry, choice(S1,S2), Rz;0),,)

is used to provide controlled don’t-know non-determinism. The non-determinate promotion rule is only
applied to an and-box that stéable An and-box is stable if no other rule can be applied to the and-box, and
no external constraint can affect the and-box.

Theguard distribution rule

choice(R,or (G,S) % B,T) = choice(R,G% B,or(S) %B,T)

is applied to distribute the effects of a non-determinate promotion up to the next choice-box.
Bagof-boxes provide a form of aggregation. Bagof-boxes can be created by encountagay/8
program atom:

bagof(X,B,Y) = bagof(X;and (B;true) x, ;Y)
Bagof-boxes are controlled by tiegof rules

and (R, bagof(X;fail;Y),T:0),, = and(R,T;0 N Y =[]),,

and (Ry,bagof(X;or (Si,and(;0)y,,S2);Y), Re;0), =

and (Ry,bagof(C;or (51,52);Y') Ry 0 AY = [X'[Y'] A UI)WUVU{X/ ¥y
wherec is quiet, ands’ is o with the variables renamed so th#itis replaced byX’. The bagof rules do
not preserve the order of solutions.

Given a goal7, a AKL computation starts with an and-baxd (G;true),,,) and ends with with
either an and-boand (; 6) ., s(c)Uvars(e) OF @N Or-HOX

or (and (7 ol)va'r‘s(G)U’ua'r‘s(Ql) ’and (’ 92)1)@7‘5((})U'Ua7‘s(92) yr)' eacmi is a solution ofG.

3.4.3 Control

The computation rules described above implicitly contain a hierarchy of control. At the most basic level,
rules involving guessing, in this case the nondeterminate promotion rule, should be applied only after all
other guess-free rules have been exhausted. The combination of the determinate promotion rule and delay-
ing the nondeterminate promotion rule produces behaviour similar to Andorra Prolog and the BAM, with
determinate promotion replacing and-reduction and nondeterminate promotion replacing or-extension.

The use of the conditional operator provides an effect similar to the cut operator of Prolog. Completion
of a conditional guard in a clause causes all clauses below that clause to be removed. In addition, any
speculative computation that has occurred in the guard is pruned, and the first answer accepted. As an
example, consider the program in figues which allows two possible choices during nondeterminate

30 CHAPTER 3. THE ANDORRA MODEL

p(X, Z2) - q(X, Y) > Y = Z

gX, ¥Y) - X =a,Y =Db ? true.
gX, Y) - X =a,Y =c¢c ? true
X, ¥Y) - X =b,Y=d ? true.
?- pa, 2)

and(p(X, 2) ;X =a)rx 1

and (choice(and(q(X, Y) i)y > Y =2);X:a)

{X,2}
U
and(X = a, Y = b;)? true
and | choice| and (choice(and(X = a, Y =c;)? true),) >Y =7Z X =a
= = <) ?
and(X = b, Y =d;)? true ! (x,7)
4

_ . and(;Y =b) ? true) _
and <ch0|ce< and (ChOICE(and(:Y =) 2 true) ,> . >Y =12) X = a)
¥} (X2}

U
))
7 ;X =a
{X, 7}

and <choice< or < and(; ¥ = b){Y} =Y
2)e)
7 i X =a
{X,2z}

and(;Y = C){Y} > Y

4
) and(GY =b)gyr > Y
and <ch0|ce< and(;Y = C)}Y{ >y

4
. d;Y =b >Y =Z ;X =
and (chome(and (){Y} >)’X a){X,Z}
I
and(Y = ZX =aAY =b)y vy 7
U

Figure 3.5: AKL Computation with Nondeterminate Promotion and Conditional

promotion. When these two solutions are promoted to the parent choice-box, the conditional guard operator
eliminates the second choice, producing identical behaviour to a Prolog program whete tlias been
replaced by a!

A similar effect occurs if commit operators are used in place of conditional operators, but with symmet-
ric pruning.

The quietness condition, applied to conditional and commit guarded predicates, ensures that over-eager
commitment does not occur. An example of the effect of the quietness condition is:

p(@) :- true ? true.
p(b) :- true ? true.

g(c) :- true | true.
g(@) :- true | true.
?- p(X), a(X)

The configuration produced by the cg(lX) is
choice(and(; X =¢) | true ,and(;X =a) | true). Ifthe quietness condition were not enforced,

3.4. ANDORRA KERNEL LANGUAGE 31

one of these clauses would be chosen by the commit rule. The first clause could be promoted, leading to
the constrainX’ = ¢ being promoted and the failure of the computation. Enforcing the quietness condition
ensures that the configuration produced frp(X) is nondeterministically promoted, and the solution

X = ais computed.

3.4.4 Using the AKL

This section describes some of the uses the AKL can be put to. The examples in this section are largely
derived from JH91].

Dependent And-Parallelism

The determinate promotion rule can be used to provide dependent and-parallelism. 3Hgivews the
execution path of a simple dependent and-parallel program. In the figure, parts of execution that can be
performed in parallel, are. The producp(2, X) and the consumeg(X) quickly settle down to an
alternating pattern, where the consumer is consuming a binding as the producer gets the next binding ready.

Or-Parallelism

Or-parallelism in the AKL is handled by use of nhondeterminate promotion and stability. RBgusaows
an example or-parallel computation. After the initial nondeterminate promotion, the remaining two clauses
are free to be nondeterminately promoted again.

Nondeterministic Independent And-Parallelism

Nondeterministic independent and-parallelism can be produced by delaying output bindings until nondeter-
minate promotion has occurred. Several nondeterminate computations are encapsulated by placing them in
guards.

p@ :- true ? true.
p(b) :- true ? true.
p(c) :- true ? true.
gqb) :- true ? true.
g(c) :- true ? true.
g(d) :- true ? true.
pl(X) = pY) ? X =Y.
gl(X) = qy) ? X =Y.

r(X) - pl(Y), ql(z) ? X =Y, X = Z
?2-r(X)

In the above program the guardspif/1 andqgl/1 have local environments that are not restricted by
the external environment. The callsgl andg/1l are able to independently execute and nondeterminis-
tically promote. A join occurs im/1 after bothp1(Y) andql(Z) have completely nondeterministically
promoted. The join is implicit in the nondeterminate promotion rule, which occurs when part of a config-
uration is copied; and-boxes with inconsistent constraints are eliminated by application of the environment
synchronisation rule.

32 CHAPTER 3. THE ANDORRA MODEL

p(0, X) :- true ? X =]

p(N, X) - N >0 ? X =[N | X1], plus(N1, 1, N) p(N1, X1).
c([)) :- true ? true.

c[- | X)) :- true ? true.

?- p(2, X), c(X)
plus(A, B, C) isdefinedsothatl + B = C.

and(p(L, X), ¢(X) 5)(xy

U
) and(1=0;)? X =]
ch0|ce(and(1>0;) ? X = ..p(N1, X1))7
and | and(X =) ? true |
ch0|ce< and (X = [—|X2]§){X2} ? c(X2) > (X}

<=

(choice(and(;) ? X = ..p(N1, X1)
an

Choice< and(; X =[]) ? true 7> ;)
and(; X = [—|Xj]){x2} 2 c(X2) .

X = .p(N1, X1)

and hoi and(; X =[) ? true :
c 0|ce< and(; X = [_|X2]){X2} ? c(X2) > (X, X1 N1

Choice(and(0=0;) 2 X1 =])
and and(0>0;) ? X1 = ..p(N2, X3) X =X ANT=0
choice(and(;) ? c¢(X1)) {X,X1,N1}
J
and [choice(and(0=0;) 2 X1 = [)’;X:1X1 /\leo)
< c(X1) Xl (X,N1, X1}
U
X1 =1,
and choice and(; X1=1[) ? true ;X =[11X1]AN1I=0
and(; X1 = [‘|X3D{X3} ? c(X3) {X,N1,X1}
4
and (choice(and(;X1=1[)? true);X =[1[X1]AX1= H){X X1}
J

and(; X = [1])rxy

Figure 3.6: Dependent And-Parallelism in the AKL

3.4. ANDORRA KERNEL LANGUAGE

pX, Y) - X=a ? Y=
pX, Y) - X=Db ? Y=
pX, Y) - X=c¢c ? Y =
?-p(X)

and (X =a;true) ? Y
and | choice| and(X =b;true) ? Y
?2Y

and(; X
and | choice[and(; X
X

or . and(; X
and (ch0|ce< I%

=

and(p(X, Y) ; true){X7 Y}

c
b) ;true)
a {x,v}

and (X = ¢;true)

U
=a)? Y =c¢
=b)? Y=0D);true)
I
=b)? Y = -true
and; X =¢)? Y = ’ (X, Y}
I

or and (Y2 =bX2= b){){27 Y2}
and (choice(and(; X =c)? Y = a);true){X v}

or

or

I
and(Y = a; X :C){X v}

and(;X:c/\Yza){X Y}

Figure 3.7: Or-Parallelism in the AKL

33

34

CHAPTER 3. THE ANDORRA MODEL

Chapter 4

The AKL and Logic

Since the AKL is intended to be lagic programming language, an AKL program is intended to have a
logical semantics. This chapter covers the logical structure of the AKL, and introduces a fixpoint semantics
for the language that can be used as the concrete semantics for abstract interpretation (se@ cijster
chapter builds upon the work of Fittingif91] on applying bilattices to logic programming and applies the
bilattice model to committed-choice languages in general and the AKL in particular.

4.1 Logical Aspects of the AKL

Before considering the logical aspects of the AKL, itis necessary to provide an intended interpretation of an
AKL program. The intended interpretation maps a prograonto a set of logical formulagp. The AKL
execution model should be sound in the sense that any answer computed should be a logical consequence
of ¥ p, and complete in the sense that all possible logical consequenkgsare computed.

The basic logical structure of AKL program is given irf94. A constraint theory/7 C, is assumed,
with a constraintg, holding if 7C |= o. Each predicate in the program is given a completed definition:

Definition 4.1.1 Thecompleted definition p of an AKL programP is given by replacing each predicate
p/n :

p(X) - Gl(xvy) %Bl(xay)
p(X) - Gm (X7 Y) % Bm (X, Y)
by:
Iy1(Gi(x,y1) A Bi(x,y1))V
Vxp(x) < SV
3ym(va (X, Ym) A By, (X7 Ym))
if %is? or| .If % is-> ,the predicate is replaced by:

Jy1(G1(x,y1) A Bi(x,y1))V
(—3y1(G1(x,¥1)) A Jy2(Ga(x,y2) A Ba(x,y2))V
BV,
Vxp(x) < —3y1(G1(x,y1))A
e /\
(mIYm-1(G1(X, Yym-1))A
IV m (G (X, Ym) A B (X, Ym)

The boldface, y andz are used to represent vectors of variables.

35

36 CHAPTER 4. THE AKL AND LOGIC

4.1.1 Negation
Negation as failure is introduced into the AKL by using conditional guardp(X) is a predicate, then
not p(X) isgiven by

not _p(X) :- p(X) -> false.
not _p(X) :- true -> true.

or more usefully, since we are only interested in seeing whether one branch succeeds,

not _p(X) :- some _p(X) -> false.
not _p(X) :- true -> true.

some_p(X) - p(X) | true.

4.1.2 Commit Guards

The presence of the commit operatdr () in the AKL tends to produce difficulties with negation. Consider
the standard definition fanerge/3 :

merge([], B, O) : B.
merge(A, [], O) : A.
merge([X | A], B, O) :- | O
merge(A, [X | B], O) - | O

-] 0
-] 0
[X | O1], merge(A, B, O1).
[X | O1], merge(A, B, O1).

A query such aserge([1], [2], [1, 2]) may succeed or fail, depending on the exact path of
the computation. Similarlymerge([1], [2], X), not merge([1], [2], X) may succeed,
breaking the identityd A —A = false.

FranZn [Fra94 avoids the difficulties with commit by examining only those predicates with authorita-
tive guards:

Definition 4.1.2 An AKL program, P, is authoritativeif for every clause of the form
H(x) - Gxy)| Bxy,z).

in P
TCUYp EG(x,y) — (H(x) < JzB(x,y,2))

Authoritative guards guarantee that it does not matter which clause is chosen, in the case of two guards
succeeding, as both bodies produce the same results. An example of a predicate with authoritative guards
is:

min(X, Y, Z) :- X =<Y |
Y

z
min(X, Y, Z) = X >= z

X.
| Y
Authoritative guards restrict the commit operator to simply pruning equivalent solutions to the predicate.

Unfortunatelymerge/3 is not authoritative, excluding a large class of reactive programs from this logical
interpretation of the AKL.

4.2. ABILATTICE INTERPRETATION OF AKL PROGRAMS 37

4.1.3 Conditional Guards

Nondeterminate promotion within a conditional guard can produces cases where the guard prunes alterna-
tives within the guard computation that are implied by the completed definition (defiditiof). As an
example, consider the program:

p:-r(X)->X=a.

rxX) - ?2 X =h.
rxX) - ?2 X = a

In this casep/0 will fail, as the second solution tg§X) is pruned. However, the completed definition
ofr/ll isVXr(X) < (X =bV X = a) and therefore that gi/0 isp < true. The solution adopted by
Franzn is to restrict the set of programs examined to those with indifferent guards:

Definition 4.1.3 An AKL program, P, is indifferentif, for every clause of the form
H(X) - G(va) -> B(X,y,Z).

in P,
TCUYp EG(x,y) NG(x,w) — (FzB(x,y,2) < B(x,w,2z))

Most AKL programs are intended to be indifferent, although an insistence on indifference eliminates
once/l -style predicates written with conditional guards, which are intended to accept the first solution to
a query. Such predicates can be used to accept a single permutation of some set of values, such as a register
allocation. However these predicates can be re-cast as commit-guarded predicates without damaging the
intended behaviour of the predicate.

4.1.4 Recursive Guards

Recursive guards present a problem in the AKL, as it is possible for a program to enter an infinite loop, even
though the logical semantics for the program have a definite value. As an example, consider the predicate
p/l :

p(0).
p(s(X)) - p(X) ? true.

Calling this program witt?-p(s(s(s(0)))) will result in a response dfue . However calling
this program with the query-p(X) will result in an infinite loop, as the recursive guard is tried within a
new environment with each local fork. Since the AKL always expands guards (a deterministic operation)
in preference to nondeterminate promotion, this query will never terminate.

Generally, recursive guards should be avoided in the AKL; they produce infinite loops and make the
program unstratified, since a recursive call within a conditional guard results in a recursive form of negation.
For this reason only guard-stratified programs are used.

Definition 4.1.4 A program P is guard-stratifiedif it can be partitioned into programB,, ..., P, with
P, U---U P, = P such that each guard of each claus&jncontains only primitive constraints, or atoms
defined by clauses ify U---U P

4.2 A Bilattice Interpretation of AKL Programs

The introduction of authoritative AKL programs weakens the number of uses that a logical interpretation of
AKL can be put to. Authoritative guards are intended to eliminate the situations where a query can either
succeed or fail, keeping the logical definition within the bounds of a classical two-valued logic, with success
mapping onto true and failure onto false.

An alternative to insisting on authoritative guards is to move beyond two-valued logic, and introduce a
multi-valued logic which contains a value that maps on to the notion of “sometimes succeeds — sometimes
fails.”

38 CHAPTER 4. THE AKL AND LOGIC

I

false true

<
Figure 4.1: The logi¢OUR

4.2.1 Bilattices

Bilattices were introduced to logic programming by Fittifgtp 1] with the intention of modelling uncertain
and unknown information. The characterisation of bilattices given here is taken][with some
changes in notatidn

Definition 4.2.1 An interlaced bilatticas a set,3, together with two partial orderings, andC, such that:
1. each oK andC gives B the structure of a complete lattice.

2. the lub and glb operations for each partial ordering are monotone with respect to the other partial
ordering.

4.2.2 A logic Based on FOUR

The AKL, needs the simplest form of bilattideDUR[Bel77]. The Hasse diagram fé&tOUR is shown in
figure4.1

For the purposes of the AKL], is interpreted as meaning “both succeeds and fails”lahds a meaning
of undefined, which can be interpreted as either “still being computed,” “infinite loop” or “deadlocked,”
depending on context. The values true and false are interpreted as “always succeeds” and “always fails.”
With these meaning$. can be interpreted as an ordering on the range of possible results a program can
give.

The standard Boolean operations of logical aRy 6r (V) and not () now have a set of dual operations
based on th& ordering: indecisive-andT), indecisive-or (/) and indecisive-not{) 2. Using theFOUR
bilattice, the standard Boolean operators, and their duals, are given idtablde four basic operators are
derived froma A b = glb_(a,b), a vV b = lub<(a,b), a M b = glb-(a,b) anda U b = lub(a, b). Negation
is a reflection about the axis and indecisive negation a reflection aboutthaxis. Implication is defined
bya — b=-—aVbandequivalenceby < b= (a — b) A (a < b).

The quantification operators can be interpreted as conjunction or disjunction over the domain of a vari-
able:3za(z) =V ciom(x) a(y) andvza(z) = A, caome oY) 3,

1n this thesis< is used instead of the; in [Fit91]. Similarly, C is used in place o0&, M in place of® andL in place of@.
2 These names derive from the idea that indecisive-or can't make up its mind abaufeises the initial motivation for introducing

4.2. ABILATTICE INTERPRETATION OF AKL PROGRAMS 39

a b aNb aVb allb alUb -a —a a—b a<b
true true | true true true true false true true true
true T T true true T false true T T

true L 1 true L true false true L 1

true false| false true L T false true false false
T true | T true true T T L true T

T T T T T T T 1 true true

T 1 false true L T T 1 1 false
T false | false T false T T 1 1 il

1 true | L true L true L T T 1

1L T false true L T L T true false
1 1 1 1 1 1 1 T T true

1L false | false L 1L false L T true T
false true | false true L T true false true false
false T false T false T true false true L
false L false L 1L false true false true T
false false| false false false false true false true true

Table 4.1: Boolean operators fBOUR

The combination oFOUR and the operations defined above form an extended Boolean algebra, sat-
isfying the normal identities of a Boolean algebra. These identities are summarised id.R2bh@st are
consequences of the properties of interlaced bilattices [S&H]).

4.2.3 Commit Predicates

Armed with the bilattice described above, it is now possible to describe a logical interpretation of a commit-
guarded predicate. If two guards can potentially succeed and one body succeeds and the other body fails,
then the truth-values of these two clauses can be combined via indecisive-or into a truth-velue of

Intuitively the failure of a guard should give the clause a truth-valu¢.oThis means that the clause
will not appear in the truth-value of the predicate. A guard operator should have the following properties:

allb = { L ifa= L ora=false
b otherwise

This guard operator can be definedids = (—a Ll true) M (a U false) M b.

All predicates in the AKL follow the negation as failure rule; if no clause succeeds, then a truth value
of false is assumed. As a special case, all guard operators failing is also assumed to mean a truth value of
false. With the above definition afi|b, all guards failing will yield a truth value of.. While this truth
value may be aesthetically satisfying it does not match the definition of the language, and an explicit term
for failure needs to be introduced. If a predicate is defined by a set of clauses,

H(X) - Gz(xay)l Bi(x,y,Z),lgign,
then the additional term for failure can be defined as:

) false if allG; are false o™
fail(Gy, ..., Gn) = { 1 otherwise

fail(Gy,...,Gyp) =Gy 111Gy, M false matches this definition.

a multi-valued logic. InfFit91] indecisive-not is called confluence.
3 Similar quantification operators can be defined for the indecisive operators. These operators play no part in the fixpoint semantics
for the AKL and are therefore ignored.

Null

a N false=
alll =1
Identity

a Ntrue=a
allT =a
Idempotent
alNa=a
alla=a
Inverse

-a = a

a N - —a = false
allm—a=_1

false

Commutative

aANb=DbAa avVb=bVa

aflb=>0Ma alb=0bUa

Associative

(anbyhNe=an (bAc) (avbd)Ve=aV (b

(amb)Me=amM(bNec) (aUb)Uec=alU(bU

Distributive

anN(dVe)=(aAnb)V(aNc) AbMNe)=(anb)M

anN(®Uec)=(aAb)U(aNc)

a\/(b/\c) (aVb)A(aVec) V(bMNe)=(aVbd)N
VbUe)=(aVbd)U(aVec)

al‘l(b/\c) (anb) A (ale) NOGVe)=(anb)V

afl(bUe)=(aMb)U (aMc)

ald(®Ac)=(aUb)A(alc) U@dve)=(ald)V

ald(®ne)=(aUb)M(alc)

Absorption

aNh(aVb)=a V(aAb)=a

af(ald) = al(ald)=a

DeMorgan’s

—(aAb)=-aV b —(aVb)=-aA-b

=(amMb) =-aM-b —(aUb) =—-all-b

—(aNb)=—aNA-b —(aVvb)=—aV-b

—(anb)=—al—b —(aUb)=—al-b

CHAPTER 4. THE AKL AND LOGIC

a V true= true
aldT =T

aVfalse=a
aldl =a

aVa=a
alda=a

——a=a
aV - —a=true
ald—-—a=T

Table 4.2: Boolean identities dfOUR

(aNc)
(aVe)
(aMc)

(aUc)

4.3. AFIXPOINT SEMANTICS FOR THE AKL 41

FOUR can now be used to give a logical interpretation of the AKL. The interpretatior¥s ofand
-> guarded predicates are the same as sedtibm set of commit-guarded clauses,

H(X) - Gz(xay)l Bi(x,y,Z),lgz‘gn,
now has the logical interpretation:

Ty1(Gi(x,y1)[Bi(x, y1))U
Uy
El}’m(Gm(Xv ym)”Bm(Xv ym))l—l
(HY1G1(X;Y1) EEERN 3YmCTVm(Xay> I false)

VxH(x) <

4.3 A Fixpoint Semantics for the AKL

A fixpoint semantics for the AKL can now be derived in terms of some suitable immediate consequences
operator. The treatment here follows thatBit91].

Definition 4.3.1 An interpretationis a mapping from a subset of ground atomic formulaegR®UR. The
interpretation isn the constraint theory C provided that for each constraifitif 7C = 6 thenvd = true
and if 7C [~ 6 thenvd = false.Z denotes the domain of interpretations.

It may be possible to extend the constraint theory to handle the full four valk&3WR. However, the
proofs of the soundness and completeness theorems (thedrérhand4.4.2 require constraints to only
have two values.

Throughout this section functional notation is used to reduce the number of parenth@senter-
preted as the application of the mappintp the argumen.

Definition 4.3.2 Thecompositiorof two interpretationsy; andv,, denoted by, - vs, is defined as

v A if Aedom(v)
(1 - v2) A = { vy A otherwise

Definition 4.3.3 Given two interpretations; andvy, v; < wvs if for all closed atomic formulaed €
dom(vy1), v1A < v A. A similar definition holds foC.

Definition 4.3.4 If v is an interpretation and a closed formula, then¢ is constructed by interpreting
in ¢ asA onFOUR, V in ¢ asv on FOUR, etc.

An immediate consequences operator for an AKL program can now be defined. The immediate conse-
guences operator is intended for use on guard stratified program. The operator takes two arguments: the first
argument is the interpretation provided by previous stratifications, the second is the current interpretation.
Definition 4.3.5 Let P be an AKL program®p : Z — Z — 7 is defined as follows:

1. fH(x) - Gi(x,y)? Bi(x,y,z) € Pthen

Jy1,21G1(x,y1) A Bi(%,y1,21)V

PppvH(x)=(p>v) cV
E|},m7 ZmG'rn(X; Ym) /\ B’rrb(x7 Ym7 Zm)

42 CHAPTER 4. THE AKL AND LOGIC

2. IfH(x) :- Gi(x,y)-> Bi(x,y,z) € Pthen

Hyl, ZlGl(X, Y1) A B1 (X7 yl, Zl)\/
AV,
—Iy1G1(%, y1)A
RV
ﬁa}’m—lC:'rrL—l(X7 Ym—l)/\
Iym, ZmGm (X, Ym) A By (X, Ym, Zm)

PppvH(X)=(p>v)

3. IfH((x) - G;(x,y)| Bi(x,y,z) € Pthen

Jy1,21G1(X%,y1))[| B1(X, y1,21)U
|
3}’m7Zme(X7 Ym))HBm(X;Ym;Zm)U
(HY1G1 (X7 Y1) EEEAN 3YmC:m(X; Ym) r false)

ppvH(x) = (p > v)

4. Pppv o = (p > v)¢ otherwise.

Definition 4.3.6 Given P, an indifferent, guard stratified program , withas one of the stratifications, and
an interpretationp, then:
Qop 1 0=np.
DPopla=29p(@gp 1 (a—1)),if ais asuccessor ordinal.
DPopla=lub{Pgp1f:0<al,if aisalimitordinal.

Proposition 4.3.1 SupposeP is an indifferent, guard stratified program, partitioned into sub-programs
{P,..., P,}. Further suppose that there exists an interpretagipmhich is in7C, and has a domain
covering all guards itP; = (). Then®, p is continuous.

Proof The proof is a suitable variation of that ifIp84]. @ p is continuous iflub(®Pop X) =
@ plub(X) for all directed sets X.

Since both< andC are defined in a pointwise fashion on interpretations (defindi@3, it is clear
that luh(X') ¢ = lub(X ¢) for all formulae¢ € |J dom(X) for both orderings.

Poplub(X)H =t, t € FOUR
iff H— ¢ecXgandlufX)¢ =1
iff H— ¢ecXgandlufX ¢)=t¢
ifflub(Pop X H)=1t0O

Corollary 4.3.1 @, p has a least fixpoint and greatest fixpoint, with(ig, p) = @ p 1 w. See [lo84].

Theorem 4.3.1 (Fixpoint characterisation of the AKL)

Suppose P is an indifferent, guard stratified program, partitioned into sub-programs
{P1,...,P,}. Further suppose thatis a model in7C for P, U---UP,_1. Then®p, p | w is a model for
TCUP,U---UP,.

Proof This proof is, again, a variation ohlp84]. To start with,v is a model forP; if ®p, pv C v since
v is a model forP; if, foreachH < ¢ € ¥p,, vH = v¢. Since®p, p T w = Ifp(®p, p) it follows that
q)Plp((I)PlpTw) C (I)P1p T w. O

4.4. THE AKL EXECUTION MODEL 43

4.4 The AKL Execution Model

The fixpoint semantics for the AKL derived in sectidrB provide a suitable model for the intended mean-
ing of an AKL program. However, the AKL itself follows a top-down execution model and it becomes
necessary to derive the relationship between the fixpoint semantics and the execution model.

The AKL execution model consists of a series of transitions over configuratiorsartid B are con-
figurations (as defined in secti@4) thenA =! B is a derivation fromA to B via the execution rule
t. If the execution rule is obvious from the context, thén=- B is a suitable shorthand. Multiple un-
specified transitions, can be written 4s=* B. A configurationA is aterminal configurationif there
exists no admissible transitioh = B. A terminal configuratiom is anend configurationf A has the
form choice(and(; 01)yargg,) ? true ,...,and(;0n)yarge,) ? true). Terminal configurations
that are not end configurations ateadlock configurations

A logical mapping for AKL configurations is also necessary. Following the model of sectidrand
4.2.3each box can be mapped onto a logical interpretation in a manner similar to tHatad#[but
adjusted to the new definition for commit.

Definition 4.4.1 Thelogical interpretationof a configuratiorC, written asC*, is defined recursively as:
1. fail* = false.
2. A* = A, whereA is an atom or primitive constraint. In particulamie * = true.
3. (A, B)* = A* A B*
4. and(R;0);, = 3V(R* A 6).
5. choice(G1? Bi,...,G,? B,) =G{AB{V---VG},AB;.
6. choice(G1-> Bi,...,Gn-> B,) =G{ABiV---V-G{A---AN=Gi_; ANGE A B,
7. choice(Gi| Bi,...,Gn| B,) =Gi|Bfu---UG;|B;U(GiN-- NGy Nfalse).

8.or(Ch,....C,,) =CiV---VCi

Lemma 4.4.1 Given a programP with modelv and an initial goals, and the transition sequenee =
choice(and(G;true), . o) ? true) =* BthenvB* C v3G.

Proof The proof proceeds by induction on the number of transitions. Clearly, for zero transititins;
v3G. Suppose that the proposition holds for=* C and the next transition in the sequenc€is=' B,
then each transition can be examined:

In the cases of constraint imposition, environment synchronisation, failure propagation, determinate
promotion and non-determinate promotion, the transition is a re-arrangement of the expré&skithow-
ing the identity rules oFOUR. ObviouslyvB* = vB*.

In the case of local forking, the transition is
H = choice(and(G1;true),,,) % Bi,...,and(Gn;true),,,.. g, % Bn) for someH. Since
H «— ¢ € ¥.p hase given by definitions irt.1.1and sectiort.2.3 and these are the same as the definition
given in definitiord.4.1, it must be thav C* = vB*.

In the case of an application of the cut rule, there exists a final gatdand (; #),, andvG = true
since7 C |= 6. In this case all subsequent guards hagein them, and must therefore haveG = false.
From the identity rules oFOUR, vC* = vB*.

If a commit rule is applied, then all surroundingparts of the expression iG* are removed. Sincg
is defined in terms of lub on it follows thatC* C B*. O

Lemma4.4.1can be used to provide a soundness theorem for the AKL:

44 CHAPTER 4. THE AKL AND LOGIC

Theorem 4.4.1 (Soundness of AKL) IfP is an indifferent, stratified AKL progrand; a goal and
choice(and(G;true), .) ? true) =* B whereB is an end configuration, thep U 7C =
B*C 3G

Proof By application of lemm&.4.10

In theorem4.4.1, B will be a collection of constraints which are modelledbg. TheC is necessary,
rather than implication, sino@ may have a truth value of and true— T has a truth value of .
Theoremd.4.1also serves as a proof of soundness of failure, since the end configuration fady be
Completeness is a little more difficult for AKL programs. Assuming that the program actually termi-
nates, then it is not possible for completeness to be meaningfully defined for programs that have predicates
with a truth value ofT. However completeness is possible for the subset of authoritative AKL programs
and queries that terminate.

Theorem 4.4.2 (Completeness of AKL) If? is an authoritative, indifferent, guard stratified AKL program,
G a goal andchoice(and(Gstrug),,,.) ? true) =* B whereB is an end configuration then
YpUTC = 3G - B*

Proof If P is authoritative, then using definitighl1.2 it is not possible foiG to have a truth value of .

B consists only of constraints, and constraints must have a truth value of true or falseXginc&C =
B* C 3G, B* is true or false and(is either truefalse or_L thend@ is either true or false and therefore,
from the Hasse diagram 6OUR Xp U7C = G « B*. O

The above theorem also shows the relationship between the logical semantics derived by the fixpoint
construction given here and the semantics givefria94. Provided a program is authoritative, indifferent
and guard stratified, no goal has a truth-valueroand (with the exception of undefined goals — those
having a truth value of) the true and false truth values must match.

Since there is a value aof for undefined truth values, a more accurate model of the truth value of an
AKL configuration can be derived by giving unevaluated atoms a truth value of

Definition 4.4.2 The execution interpretationf a configuration”, written asC™* is the same as that of
the logical interpretation of’, replacing all instances ef by + with the exception of case 2. For case 2
AT = L if Aisan atom or primitive constraint.

Lemma 4.4.2 Given a progran? with modelv and a configuratiot’, thenv(C™) C v(C*).

Proof Both C* andC™ are monotone with respect to their sub-components. This is clearly true in all
cases except case 7 in definitiérd.1, since theA andv operations are monotone @n In case 7, thel
operator builds &ub of its arguments and is therefore also monotoné&on

Since the difference betweér andC™ is thatC™* replaces any ator with L instead ofv(A) and
1 Cw(A) it follows thatC+ C C*. O

4.5 Some Examples

This section gives some examples of the operator acting on programs with various degrees of well-
behavedness. For conveniendg, is used instead 6bp, (Pp, |, T w).

4.5. SOME EXAMPLES

pxX, ¥Y) - X=a ? Y =Db qX Y) = pX Y) -> true.
pX, Y) - X=b ? Y=a qX YY) : pX 2 ->q9ZY).
Py ={p/2 }

®p 10={p(X,Y) < L}
p, T1={p(X,Y) = (X=aAY =b)V(X=bAY =a)}
Op, fw=2p 11

Py ={q/2 }

®p, 10=7p, TwU{g(X,Y) < L}
(X =aAY =b)V(X=bAY =a)V
Bp, 11=3p, TwU ¢(X,Y) (~(X=aAY =b)V(X=bAY =a))A
ANX=avVX=DbAL

(X=aAY =b)V
op 12=0p Toudaxy) o [(F 20T TN

Figure 4.2: A Guard Stratified, Indifferent, Authoritative Program

pX, ¥Y) - X=a |Y =h
pX, ¥Y) - X=a |Y =a
qg - p(a b).

Py ={p/2 ,q/0 }
Pp, 10={p(X,Y) = L,g— L}
(X #alUtrue M (X =alfalse MY = bl
Pp, T1= {p(X,Y)H ((X #aUtruegnN (X =alfalse MY = al >7q<—>J_}
(X = amfalse
(X #aUtrue)N (X =alfalse MYy = bl
Op, 12= {p(X,Y)H ((X #aUtruegnN (X =alifals® MY = al >7q<—>T}
(X = amfalse

Sp Tw=2>p T2

Figure 4.3: A Guard Stratified, Indifferent Program

45

46 CHAPTER 4. THE AKL AND LOGIC

p = P
axX) = p | X = a
gX) :- true | X = b.

Py = {p/0 }

Op, T0={p L}
Pp, Tw=®p, 70

Py ={q/1}

B, 11=®p, 1w U {g(X) © 1}
By 11=®p, 1 wU{g(X) o X = b}
Qp, Tw=2p, T1

Figure 4.4: A Guard Stratified, Indifferent Program with Looping

4.5.1 Well-Behaved Programs

Well-behaved programs are guard stratified and indifferent. An example well-behaved program, which is
also authoritative, is shown in figu#e2. In this prograng/2 computes the transitive closurem® , with
a conditional guard to ensure thg® is used for queries only.

An example non-authoritative, well-behaved program is shown in figrén this case a race condition
exists between the two clausegx2 , which will result in a query t@/0 either succeeding or failing. As
aresultg/0 has a truth value of .

Another example of a well-behaved program is a program with an infinite loop in it. In figdrp/0
has no single truth value and so retains a truth valué.off this truth value is fed into the guard of1
then the other clause completely describes the predicate. Operationally, if the computation rule is fair, the
second guard af/2 will succeed before the first guard and prune the first guard away.

The fixpoint for the semantics does not necessarily perfectly reflect the actual behaviour of an AKL
program. Clearly if the commit rule prunes unfairly then some of the success configurations implied by the
fixpoint semantics will never be reached. The fixpoint semantics take no account of modes, which can lead
to certain unreachable configurations being defined as true. For example, the program

pX, Y) = X=a |Y=h
pX, ¥Y) - X=b |Y=a
aX, Y) - true |Y = a.

gX, YY) - X=a |Y=0b

r(X) - p(X, Y), q(y, X).

has a fixpoint of

p(X,Y) = (X =allY =b)U(X =al|lY =b)U (X =aN X = brifalse
X, Y)Y =al(X =a|Y =0)
r(X) = (X=aUX =0)
This fixpoint forr/1 is correct ifr/1 is called with a fully constrained argument 2-(b) may
fail, depending on whethgx(b, Y) orq(Y, b) isfirstcalled. Howeverif/1 is called with an uncon-
strained argument, then only one solution can be reackied:a.

4.5. SOME EXAMPLES a7

p(X) :- true ? X = a.
p(X) :- true ? X = h.
one p(X) :- pY) > X =Y.

P ={p/l}

Bp, 10 ={p(X) = L}
Bp, 11={p(X) = (X =aV X = b)}
Op, fw=2p, 11

P, = {one_p/1 }

®p, 10=Cp, TwU{onep(X) — L}
Op, 11 =Pp, TwU{onep(X)— (X=aVvX=0>)}
(I)P2 Tw:(I)p2 71

and (one_p(X) ;){X}
o*

and (choice(and (chuice(::ggg : i i g) ;){Y} SX =y) :)
* {x}

4
) and(GY =a)ryy > X =Y
and (cholce(and(; Y = b)éY}% > X =Y) ;)
| {X}

and(chuice(and(;Y:rj,L){Y} > X=Y);){X

*

and (; X = u.){X}

Figure 4.5: A Non-Indifferent Program

4.5.2 Non-Indifferent Programs

Figure4.5shows a program which is not indifferent, along with its fixpoint and the actual AKL computation
which will occur.
The AKL computation implies a fixpoint of

Op, Tw={p(X)—= (X =aVX=>b),omepX)—X=a}

which contains less possible successes than the fixpoint computeddy thygerator. Since non-indifferent
programs contain alternate solutions within their guards, some of which will be pruned away by the condi-
tional guard operator, non-indifferent programs generally succeed less times than the fixpoint would imply.
Non-indifference in conditional guards contains some similarities to red cuts, so this behaviour is not unex-
pected.

4.5.3 Non-Guard Stratified Programs

Figure4.6 shows a non-guard stratified program, along with its fixpoint derived fbgimrand an example
computation. Not being guard stratified does not prevent a program from having its fixpoint calculated.
However non guard-stratified programs contain hidden infinite loops which are caused by new environments
contained in the guards being able to speculatively bind unconstrained arguments and continue. If the query
?-e(s(s(0))) was tried, the program would terminate.

Guard stratification is not strictly needed to make negation monotone, as is the case with stratification
of negation using th&p» operator. Predicates within guards are not assumed to be false, butlrathéf
they are completely computed. As an example,

p - notq.

g :- notp.
simply has a fixpointofp < 1,q < L}.

48 CHAPTER 4. THE AKL AND LOGIC

e(0).
e(s(X)) - oX) ? true.
o(s(X)) - e(X) ? true.

P, ={e/l,0/1}

Op, 10={e(X) < L,0(X) < L}
o Tl_{e(X)<—>(X:0\/(X:s(X1)/\J_)),}
b= o(X) — (X =s(X1)A L)
_) X)X =0v(X () A1),
o 12 { o(X) < (X = 5(0) V (X = s(s(X u)}
@Pm:{ e(X) < (X OvX—s((O)v(= s(s(s(X1))) A L)), }
' 0o(X) « (X =5(0) V(X = s(s(s(0))) v (X ((H)AL)

and (e(X) ;){X}
I

. and(; X = 0) ? true ,
and | choice and (o(x1) X = s(X1)) (x13 ? te ;
{x}

*

and(; X = 0) ? true ,

i . and (; X1 = s(0)) ? true , .
and (cholce(and (chulce(and (0(X2) ; X1 = s(s(XZ))){XZ} 2 tue) ;X = S(Xl)) ? true ,) ’)
{x1} {X}

Figure 4.6: A Non-Guard Stratified Program

4.6 Related Work

The FOUR based logic used above has a strong relationship to the stable model semantics developed by
Gelfond and LifschitzGL88]. The stable model semantics uses two sets: one for succégsesd one for

failures (¢'). An immediate consequences operator is developed that useS bath/” to construct further
atoms;H « Si,...,S,,~F1,...,~F,, results inH being included in the nexg if eachS; € S and each

Fj e F.

The relationship betwedfOUR and the stable model semantics has been examined by Giordano et al
[GMS9G: G —~ LifG ¢ SUF, G~ TifGe SNF,G < trueifG € S — FandG « false if
GeF-S.

Naish [Nai89 uses four different sets to represent potential success and failure in committed choice
programs, splitting success sets into definite and potential success sets and failure into definite and potential
failure sets.

Gabbrielli and Levi 5L92] use an unfolding mechanism to derive a fixpoint semantics for committed
choice programs. The unfolding mechanism is careful to retain the reactive behaviour of the program,
ensuring that spurious successes are not possible and that deadlocks are correctly modelled.

The main advantage to usif@UR for formulating the semantics of a logic program is that the program
retains its original logical flavour.

Chapter 5

The DAM

This chapter presents an abstract machine for use with the AKL: Doug’s Abstract Machine, or the DAM.
The DAM is intended for parallel execution of AKL programs and, therefore, has a number of features
intended to model parallel execution. As a preliminary step, two existing abstract machines are described,
to provide a foundation for the description of the DAM.

5.1 An Overview of Abstract Machines

Most programming languages have a computation model that can be reduced to a handful of basic opera-
tions. For example, Prolog can be reduced, via SLD resolution, to unification, term expansion and branch
choice operations. C can be reduced to arithmetic, control flow and stack operations.

From this perspective, a programming language can be considered to have an ideal machine, which
directly models the computation model of the language. The primitive operations for the language can then
be encoded into a sequence of simple, assembly-like instructions. This “abstract machine” is similar in
conception to an ordinary computer architecture, but may allow instructions that are not directly realisable
on a real architecture; an example is the normal implementation of unification in Prolog, which may not
terminate.

The instruction set, registers, data areas, etc. of an abstract machine can be optimised towards the
computation model of a particular language. The language can then be compiled into these abstract machine
instructions and executed by an emulatdihe advantages of using an abstract machine and compiler rather
than an interpreter are obvious: rather than interpreting a program, the emulator does not need to do a great
deal of work in decoding the program; each instruction tends to be fairly simple and can therefore be
optimised effectively by the emulator; the compiler can be used to statically make optimisation decisions
on the abstract instruction set.

This section briefly describes two abstract machines: the WAM and the JAM. Both these machines have
influenced the design of the DAM and provide a basis for comparison. The JAM is a parallel implementation
of Parlog. The WAM is included as an example of a reasonably efficient abstract machine design for a logic
programming language (Prolog).

5.1.1 The WAM

The WAM, or Warren Abstract Machine, is an abstract machine formalised for use with Prolog. Elements
from the WAM design can be seen in most abstract machines for logic programming languages. A complete
description of the WAM can be found inNfar83. A more approachable description can be found in
[AK914].

The basic WAM architecture consists of three main data areas, a set of registers and an instruction set.
These elements are summarised in téble The original WAM specification drew a distinction between

1 Or an actual physical machine, if such a thing is achievable. An example is the CARMEL series of processors fGFGP |

49

50 CHAPTER 5. THE DAM

Heap Stores permanent structures
Data Areas | Stack Stores temporary structures: environments and chgice-
points
Trail Used to reset some variables that have been bound on
backtracking
Push-Down List A stack for use during unification
P Program pointer
CP Continuation pointer (return address)
E Environment (stack frame)
B Choice-point
Registers | A Top of stack
H Top of heap
TR Top of trall
HB Heap position corresponding to creatiorBof
S Structure pointer into heap
X0, X1, ... Temporary registers
getconstant, ... Get instructions
put.constant, ... Put instructions
unify_constant, ... Unify instructions
Instructions| call, ... Predicate call
allocate, ... Environment allocation
try, ... Choice point creation
switch.on_term, ... Indexing

Table 5.1: Elements of the WAM

the set of temporary registeps], X2, .., and the set of argument registedd,, A2, In actual practise,
no distinction needs to be drawn between them. (However, see sBcli@)

Execution Model

The WAM treats a Prolog program, suitably encoded into WAM instructions in a similar manner to an
ordinary imperative-language program. Each predicate call is treated in a similar manner to an imperative
language procedure call; arguments are loaded into registers rather than the stack (an advantage when
using an abstract machine is that you can use a huge number of registers) and the return address is loaded
into the CP register rather than stacked. Argument values and the return address are only stacked when
necessary. Each clause is treated in a similar manner to a procedure definition, with a stack frame (called
the environment) being used to store local values between calls within the procedure.

The major point of departure from the traditional imperative execution model is the creation of a stack
of choice points and a trail. Choice points record snapshots of the WAM state at the start of a predicate call.
When the computation fails, usually as the result of a unification failure, the WAM state is unwound back
to the first choice point on the stack, a process known as backtracking. This choice point can be used to
recover the machine state and then try the next clause in the series of clauses defining a predicate. Upon
execution of the last clause in a predicate, the choice point corresponding to that predicate is removed from
the stack. A subsequent failure therefore, returns to the previous choice point.

To unwind the state of the WAM, a trail is used to record the changes that have been made since the last
choice-point was created. When a variable is bound to a new value, the variable is added to the trail stack.
Upon failure, the trail is unwound back to the position recorded in the current choice point. Each variable
recorded in the trail is returned to the unbound state.

The WAM provides a primitive form of automatic memory management. New structures are built from
blocks of word-size cells on the heap, the top of which is referenced b ttegister. Upon failure, the
H register is reset to the position given in the current choice point (antlBheegister), recovering any
memory used in speculative computation. The stack reghtand the trail registefR are similarly reset.

5.1. AN OVERVIEW OF ABSTRACT MACHINES 51

Successful computations continuously increase the size of the heap and some form of garbage collection
exists in most fully implemented WAM systems.

Representation

The most common representation of structures in the WAM consists of a series of cells. The cells are usually
a convenient word size for the underlying hardware to implement (eg. 32 or 64 bits).

Prolog terms are represented by words containing a value and a tag. The tags take between 2 and 8 bits
and give the type of the term. The remainder of the word usually contains a reference to another term or
structure or, in the case of a constant, the value of the constant. Since all references in the WAM are word-
aligned and the value of a term is often a reference to another term, the lower bits of the word are usually
used to record the tag for references. The tags usually represent variables, constants, integers, references to
structures and references to lists.

Bound and unbound variables share the same tag. Bound variables are represented by containing a
reference to the term to which the variable is bound or, in the case of a constant, the actual value of the
term representation. Unbound variables are represented by a reference to themselves. Since variables are
words, they can be conveniently manipulated by placing them in registers; taking a copy of the value of an
unbound variable turns it into a reference to that variable. A variable is bound to another term by placing
the term representation into the variable’s cell.

Complex structures with an arity greater than O are constructed on the heap. The structure consists of
a header cell, containing the structure and its arity, followed: lnells containing the arguments of the
structure. The entire structure is represented by a tagged word containing a reference to the structure. Since
lists are used a great deal in Prolog, lists are simply represented by two cells. A reference to a list is given
a different tag to that of a normal structure.

Instructions

Instructions in the WAM are represented by a series of byte codes, followed by arguments and possible
immediate operands. The instructions can be divided into a number of families.

Getinstructions test a register against some term, and if the register is an unbound variable, binds the
variable to that term. If the register fails the test, then the computation fails and backtracking occurs.

Putinstructions construct new terms. Put instructions are used to construct the terms used in a predicate
call.

Unify instructions are used to test or construct the arguments of structures. A unify instruction is pre-
ceded by a get or put instruction, which puts the WAM into two possible modes: read or write. In read
mode, the unify instructions act in a similar manner to get instructions. In write mode the unify instructions
act like put instructions. When a gstructure instruction is executed, the WAM is placed in read mode if
the argument being examined is bound to a structure, or write mode if the argument is an unbound variable.

Call instructions invoke predicates. Before calling a predieatee /n, the firstn X registers are loaded
with the arguments to the predicate. TOR register is set to point to the instruction immediately following
the call instruction ané is set to the address of the code for the predicate being called. At the end of each
clause, a proceed instruction returns by settingthegister back to the value of tl@&P register.

Environmentare allocated by use of @hllocateinstruction, and deallocated bylaallocatenstruction.
Environments save the curreDP register and provide a stack frame with a number of permanent registers,
for use if terms need to be stored between predicate calls. The permanent registers take the place of the
local variables of an imperative language and are referred Yoragisters.

Choice pointinstructions control the creation of choice-points. The set of clauses in a predicate is
encoded into a try—retry—trust sequence. Try instructions create and initialise a choice point, and try the first
clause in the sequence of possibly matching clauses. Retry instructions follow try instructions and use and
update the choice point created by the first try instruction. Trust instructions remove the choice point and
commit the computation to the last clause (since all previous clauses have been tried).

Indexinginstructions allow the WAM to restrict the number of clauses tried. An argument to the pred-
icate is tested, and if it is bound to a non-variable term, the set of clauses tried can usually be restricted.
The switchon_term instruction divides the predicate into four classes of clauses, based on the term in the

52 CHAPTER 5. THE DAM

p()-
p(fa(X) | Rest]) :- q(f(X), X), p(Rest).

switch_on_term Lv,Lc,LI,Ls

Ls: fall % No non-list structures

Lv: try_me_else Lv1 % Try first clause

Lc: get_nil X1 % Test against []
proceed % Return if OK

Lvl: trust_me % Remove choice-point

LI allocate 2 % Create environment
get list X1 % Test for list
unify_variable X3 % Get a(X) part for later
unify_variable Y1 % Save Rest
get_structure X3,a/1 % Test for a(X)
unify_variable Y2 % Save X
put_structure f/1,X1 % Construct arguments to q
unify_value Y2 % Make f(X)
put_value Y2,X2
call g/2,1 % Make the call
put_value Y1,X1 % Get Rest back again
deallocate % Recover environment
execute p/l % Tail recursive call

Figure 5.1: Sample WAM Code

argument: a variable, a constant, a list or a structure. There are similar instructions for testing the actual
values of arguments.
A sample piece of Prolog code and equivalent WAM instructions is shown in figtire

Optimisation

There are several simple optimisations that are usually performed on WAM code:

e The last call in any clause can usually have the clause environment removed before it is invoked and
the continuation point for the clause used for the call. This optimisation is a generalisation of the
tail-recursion optimisation.

o If a predicate has only one applicable clause, either via indexing or from only having one clause, then
no choice point needs to be created.

e Variables are always bound so that the younger variable points to the older variable. The stack is
always placed so that stack variables always refer to the heap. With this assumption, only those
variables on the heap outside the range betweerBrandH registers need to be trailed.

e New variables could be created on the heap. However many variables are created as return arguments
to calls within a clause. These variables can be created as unsafe variables within the environment of
the clause. If an unsafe variable is still unbound upon its last use, the variable is moved to the heap.

5.1.2 The JAM

The JAM, or Jim’s Abstract Machine, was developed by Crammond to provide an abstract machine for the
parallel execution of Parlog. A complete description of the JAM can be fourdrez8g. The JAM shares

several common points with the WAM, but has been designed to accommodate the attributes of Parlog:
parallelism, suspension and guard computations. The instruction set and unification primitives are almost

5.1. AN OVERVIEW OF ABSTRACT MACHINES 53

identical to the WAM and will not be discussed unless some significant difference occurs. Seeséction
for a discussion of the WAM.

The JAM, like Parlog, is similar to Conery’s And/Or process mo@aii83. Each conjunction of goals
is represented by an And-process. Each uncommitted predicate call is represented by an Or-Process. A tree
of And- and Or-processes is used to represent the computation. Most of these processes will not actually
be running at a given time. They will either be suspended and waiting for a variable to be bound, or queued
and waiting for a processor.

Each actual processor in the JAM represents an independent element, capable of executing any of the
processes in the And/Or tree.

Execution Model

The execution model of the JAM is that of a set of processors, each with a work queue containing runnable
processes. A processor with no work on its queue can search other processors for work and request work
from another processor’s queue. Each process represents a node in the And/Or tree.

The memory architecture of the JAM is more complex than that of the WAM, although no trail is
necessary as backtracking does not occur. The following data areas are used by the JAM (running from
high memory to low memory addresses):

Run Queue The list of runnable processes.

Process StackTemporary environment space for each process.
Temporary Heap A heap for use while executing a guard.
Permanent Heap The heap for constructing terms.

Argument Stack Sets of arguments for each process.

Program Program area.

The temporary and permanent heaps may be merged. Data areas from each processor are interleaved,
so that all stacks, heaps and queues are grouped together; the JAM uses a similar system to the WAM in
binding high address variables to low address variables.

An attempted unification in the JAM can result in three possible states: success, failure or suspension.
Suspension occurs when a variable external to a guard is tested against a term and that variable is unbound.
At this point, the process is added to the variable’s suspension list and the process is suspended. When that
variable is bound the process is woken, and the test re-applied.

A callin the JAM can either proceed sequentially or in parallel. Sequential calls can be executed directly
by the processor making the call. Parallel calls are queued, to be executed when the processor has no more
work to do. In both cases, an area of the argument stack is allocated and arguments pushed onto the stack.
A suitable Or-process is created to execute the resulting call.

Clauses in the JAM can also be tried either in sequence or in parallel, using a modification of the try—
retry—trust sequence of the WAM.

Representation

Terms in the JAM are represented by a similar tagged format to those of the WAM. Unbound variables
are represented by a separate tag to references, since an unbound variable may have a list of suspended
processes attached to it.

Processes are represented by a process structure, which is built on the heap for each process created,
and recovered or garbage collected at the end of the process. Each process contains a reference to its
parent process, a program pointer, a count of the number of child processes, a flag word, a pointer to the
root process, a pointer to the process arguments, a pointer to the process environment and a link for the
process’s attachment to either a suspension list or processor queue.

There is no need for a separate choice point structure for the JAM, since an or-process structure serves
a similar purpose.

54 CHAPTER 5. THE DAM

mode p(?).

().

pP(X | R]) < : a(X), p(R).
try L1 % Parallel clause try
try _one L2 % Final clause

L1 wait_nil,Al % Wait on first argument for []
commit % Commit to this clause
proceed % End of clause

L2: wait_list,Al % Wait on first argument
allocate 2 % Keep X and R
unify_y variable Y1 % Get X
unify_y variable Y2 % Get R
commit % Commit to this clause
push_y value Y1 % Set up q(X)
call_promoted g/1,1 % Call q(X) in parallel
put_y value Y2,A1 % Call p(X)

call_promoted last p/1,1 % Tail recursive call
Figure 5.2: Sample JAM Code

Instructions

The instruction format for the JAM is similar to that of the WAM. Get, put, unify and indexing instructions
play an almost identical role to those of the WAM. The JAM adds instructions to allow guarded computa-
tions, wait instructions and sequential or parallel call and try instructions.

Thecommitinstruction forces all other branches of an or-process to be killed, leading to a single clause
being available for promotion.

Wait or suspension instructions force a suspension of a process if the variable that they are testing is
unbound. Otherwise, wait instructions behave in a similar manner to get instructions.

An example piece of Parlog code and equivalent JAM instructions are shown in%i@ure

5.2 Underlying Architecture

The machine architecture underlying an abstract machine has a significant effect on the design of an abstract
machine. In theory, an abstract machine can be implemented on any architecture, but for efficiency reasons
it is best to take advantage of the strengths of a given machine and avoid its weaknesses.

There is no unifying paradigm for parallel architectures similar to the familiar von-Neumann architec-
ture for sequential machines. Machines are usually classified by their approach towards processor commu-
nication, synchronisation, memory locality and the expected number of processors running in parallel. All
of these four factors affect each other, so some combinations are more likely than others.

All parallel systems necessarily involve a set of processors executing instructions semi-independently.
Parallel machines are usually categorised by the Flynn taxonBly§q]. The first rough division between
parallel machines is between single instruction, multiple data (SIMD) machines and multiple instruction,
multiple data (MIMD) machines. The processors of SIMD machines all execute a single program in lock-
step. SIMD machines are well suited to problems that exhibit a high degree of data parallelism, such as
database queries or matrix calculations. SIMD machines lend themselves well to massive parallelism, since
there are few control problems associated with them. In MIMD machines, each processor can execute an
individual program. MIMD machines are suited to most general forms of parallelism.

Architectures can be roughly divided into scalable architectures (where the performance of the system
is roughly proportional to the number of processors present) and non-scalable architectures (where per-
formance of the system tends to tail off as new processors are added). Another way of looking at these

5.2. UNDERLYING ARCHITECTURE 55

architectures is by describing them as massively or modestly parallel. While not a hard and fast distinction,
massively parallel architectures tend to have over 100 processors, modestly parallel architectures below
that.

Parallel systems can be divided into fragmented memory and unfragmented memory architectures. Sys-
tems with unfragmented memory share a common memory pool. Contention tends to limit unfragmented
memory systems to a modest level of parallelism. Each processor can access any area of unfragmented
memory by address. Fragmented memory systems break the memory space into independent units, asso-
ciated with some controller, such as a processor or a dedicated memory controller. Access to fragmented
memory is mediated by the controller.

Usually processors need to communicate with other processors. Shared memory communication sys-
tems allocate an area of memory common to both processors. Information can be deposited and retrieved
from an agreed rendezvous point in memory. Shared memory communication systems usually require a
system of locks to prevent contention. Message passing communication systems associate a message buffer
with each processor. Any communication can be represented by sending and processing messages.

Some real-world examples of this taxonomy are: the first Connection Machine (scalable, SIMD, frag-
mented memory, message passing), the SGI (hon-scalable, MIMD, unfragmented memory, shared memory)
and the Transputer (scalable, MIMD, fragmented memory, message passing).

Each type of choice described above represents a trade-off between competing sets of requirements.
Contention tends to force massively parallel systems to use fragmented memories. Fragmented memories
tend to enforce a message passing communication system. Some hybrid systems impose a hierarchy of or-
ganisation to support the efficiency of shared-memory communication between small groups of processors
while retaining the massive parallelism possible through local memory and message passing. An exam-
ple is the Parallel Inference Machin@$t87, where small clusters of processors share local memory but
messages are exchanged between clusters. The KERIOF maintains a logically unfragmented address
space, with each processor maintaining a cache and no processor “owning” an address. The Data Diffusion
Machine (DDM) WH8§] allows shared memory access to a system with local memory by providing a
hierarchy of data directories. In both the KSR1 and DDM, a memory request can be referred to another
processor and data copied to the requesting processor; a memory address does not correspond to a fixed
memory location and multiple copies of data for the same memory address may exist.

5.2.1 Target Architecture

In designing an abstract machine for the AKL, a target architecture needs to be chosen. The underlying
architecture of the system will have a great influence on the final design of the abstract machine.

The choice of target architecture for the DAM has been partially influenced by the availability of hard-
ware: no SIMD, scalability or massive parallelism. The machines available all use global, shared memory
for parallelism. However local or global memory can easily be simulated on different architectures, as can
shared memory or message passing. The choice of a target architecture in these cases rests more with the
nature of the task.

Logic programs tend to share structures a great deal. Large structures such as lists can be referenced
by a single pointer to the start of the list. A strictly distributed structure would require copies of terms
to be made when a non-local processor needs to refer to those terms. A variety of incremental copying
schemes have been designed for use with distributed architecia&8g Foo94. The existence of the
DDM suggests that shared memory could be used for reading terms, leaving the actual location of the term
to the underlying systenRDC97.

The issue of using shared memory with locks or message passing for updating shared structures is more
problematic. In an implementation of AKL, most data structures will be updated by a single processor
most of the time. If it could be arranged that the structure representing data is located on the processor
that “owns” it, then a message passing system would allow that processor to update the state of the box
without the need to lock the data structure each time. The message passing approach also encourages an
object-oriented view of the AKL system, with each piece of data acting as an object. That advantage may be
offset by the data structure now having a preferred processor, leading to a granularity problem. In particular,
stream and-parallelism in the AKL tends to result in several processes sharing an and-box; each non-owning
worker would need to request changes from the owning worker, leading to a bottleneck. An initial design

56 CHAPTER 5. THE DAM

did take the message passing approach, with disappointing results. LeBlanc and Markatos report that the
advantages to message passing are often outweighed by the effects of load imhalaije |
The assumed target architecture for the abstract machine can therefore be summarised as:

e Multiple Instruction, Multiple DataEach processor can execute a separate thread of the computation.

e Modestly Parallel.Only a few (possibly less than 10) processors. Since logic programs can readily
create parallel nodes for both and- and or- nodes, it can be assumed that the processors rapidly become
saturated with work and that a great deal of code is going to be called sequentially.

e Shared MemoryAll terms and structures are readily available by reference, with no copying needed
between processors.

e Locking. Access to shared structures is via explicit locking, rather than message passing. Each
structure has no preferred processor.

5.2.2 Locking

Each structure in an AKL computation may need to be locked, and may stay locked for an indeterminate
amount of time (e.g. while localising a variable, sect®B.]). In systems with hardware locks, only a
limited number are available. In systems which provide operating system based software locks, the locks
tend to be fairly large (eg. 20 bytes for a Solaris 2.3 lock) and their use needs to be limited.

An alternative is to directly use a native atomic update instruction. Use of such hardware specifics,
however, tends to destroy the portability of the system.

The approach taken here, and usedGngB4, is to use a limited number of hardware/software locks,
in conjunction with hashing. Each structure that needs to be locked has an associated status bit assigned
to it. Since each structure can be identified by a reference to it, the structure is locked by first locking a
hardware/software lock, based on a hash-value derived from the reference. When the lock is acquired, the
locking bit in the structure can be set and the hardware/software lock unlocked. A structure can be unlocked
simply by clearing the locking bit in the structure.

A test of the hashing technique, run over a million operations and 12K words of memory on an SGI
system with 6 processors produces the results summarised ibtabldree tests were run: using hardware
locks only, using mixed hardware/memory locks, with each processor ranging over all memory and using
mixed hardware/memory locks, with each processor restricted to a separate area of memory. The times
represent a lock followed by an immediate unlock.

In general the use of hardware/memory or software/memory locks imposes a 30% — 40% performance
penalty over simply using hardware or software locks. With the exception of 4 locks, performance is
relatively insensitive to the number of locks available for all tests. An increase in the number of processors
increases the probability of contention, leading to a consistent increase in times, especially in the case of 4
locks, where contention is greatest. Memory locking over separate areas shows a consistent performance
improvement over the shared memory tests. This improvement cannot be due to a lack of contention, since
the hardware locks are still shared between the memory areas. The costs of ensuring cache coherence seems
to be a likely explanation.

An alternative to using hardware locks is to use a software locking scheme such as that of Michael
and Scott MS93. Software locks can show significant performance improvement over hardware locks.
However special requirements, such as speed bounds, makes implementation of software locks unattractive.

The locking model chosen for the DAM is a mixed hardware and memory or software and memory
locking scheme, depending on hardware and operating system support, with more locks than processors.

5.2.3 Memory Allocation

Since the expected target architecture for the DAM follows a global memory model, it is possible to allocate
allmemory requirements for each processor from a common pool. While this is memory efficient, it requires
locking for each request for memory. An alternative is to allow each processor access to a private heap,
eliminating the need for locking.

5.2. UNDERLYING ARCHITECTURE

Locks
Processors Model 4 8 16 32 64
Lock 30(31|30|29|33
1 Memory | 40| 39| 39| 38|45
Separatel 3.8 | 3.8 39| 3.9| 45
Lock 3.7131(39|38]|39
2 Memory | 5.1 | 53| 48| 49| 54
Separatel 4.1 | 45| 39| 48| 4.7
Lock 38(39|37|40/| 35
3 Memory | 54| 5.1 | 56| 54| 4.8
Separatel 5.3| 45| 5.0| 5.0 4.6
Lock 41|139]41|40| 3.8
4 Memory | 6.0 | 58| 53| 55| 5.5
Separate 55| 50| 5.0| 54| 5.2
Lock 451441 42)|41|4.0
5 Memory | 6.1 | 59| 6.0| 5.8 | 5.6
Separate 55| 54| 5.7| 53| 5.1
Lock 5145434242
6 Memory | 6.4 | 6.1 | 6.0| 5.7 | 5.8
Separatel 5.8 | 5.7 56| 56| 54
All results in s,420%

Lock: Hardware locking only

Memory: Hware./memory locking, shared memory
Separate: Hware./memory locking, separate memory

Table 5.2: Comparison of Direct Hardware Locking and Hardware/Memory Locking

Processors
1 2 3 4 5 6
Overhead| 0.2| 0.2| 0.2| 02| 0.2| 0.2
Separate| 1.0 10| 1.1| 11| 11| 1.1
Locking | 6.3 | 18.8| 29.1| 35.9| 43.6 | 44.9
All resultin s,+10%.
Overhead: test overhead with no allocation
Locking: single heap with locking
Separate: independent heaps

Table 5.3: Comparison of Heap Allocation Strategies

58 CHAPTER 5. THE DAM

FreeList

J\/
J\/
FreelList
\/\/ \/\/
J\/ \/_\/

Figure 5.3: Memory Deallocation Across Processors

Intuitively, a single heap allocation strategy represents a bottleneck. As a test, a million allocation/de-
allocation pairs of randomly generated block sizes were run on a simple top-of-heap allocation strategy
for 1-6 processors, performing either with a single heap and locking, or each with a private heap. The
results are summarised in taldle3. Using locking results in a massive overhead on what should be a simple
operation. Each processor therefore should be given a private heap to manipulate.

Heap allocation follows a “fast fit” allocation stratedyth80. The heap consists of a top of heap pointer
and a set of free lists, grouped into blocks of size ranging from 1 word to 64 words (the maximum structure
size). A request to the heap for memory first checks to see if an appropriate block is already available in
the free list. Otherwise, a block is allocated from the top of the heap. Deallocated blocks are added to the
appropriate free block list.

A block of memory that has been allocated by one processor can be deallocated by another processor.
If the block is returned to the allocating processor’s heap, then there will be a need for locking as the block
is deallocated — something to be avoided. Since the block to be deallocated is under the control of the
processor deallocating the block, it makes sense to simply add the memory block to the free list in the heap
of the deallocating processor (see figarg).

A comparison of a simple top-of-heap allocation and the fast fit method was run using ten million
randomly generated block sizes between 1 and 64 words. The results, correcting for overhead, were 4.3s
for the top-of-heap allocation method, and 6.4s for the fast fit method. This represents an overhead of 48%,
which is acceptable in exchange for greatly reduced memory usage.

5.3 Execution Model

The DAM builds an And-Or tree of and-, choice- and bagof-boxes (fi§ufe Or-boxes have been elimi-
nated by combining the nondeterminate promotion and guard distribution rules into a single operation.
Activeboxes are boxes that have further work to dgaiting boxes are boxes that are waiting for an
external event (such as a child box to complete, a variable to be bound,kétied. boxes are boxes that
have either failed or been killed by a parent box.
Each box contains two program pointers. Tgregram pointerof a box contains the next abstract in-
struction that the box will perform if the box becomes active. Each processor is assigned a machine capable
of executing the work waiting to be done in a box. This machine is calledr&er. The continuation

5.3. EXECUTION MODEL 59

Continuation

ﬂi Choice-Box
‘ Wait Child q Program
. |:HAnd-BOX

——— Name
[Variable

Constraint

Active 1
\ Local variables

Wait Child) Wait Child
@ @

Wait Commit Active ®

Figure 5.4: The DAM And-/Choice-Box Tree

pointerof a box contains the next abstract instruction that the parent box will perform if the current box
suspends, fails or completes.

And-boxes contain links to a number of other objects. The local variable list is a linked list of all those
variables local to the and-box. The localised variable list contains local copies of variables obtained from
a parent and-box (see sectibrB.]). An and-box isquietif there are no localised variables within the box
that have not been constrained by their parent variables.

Each box also contains a count of the number of workers currently active within it, the number of child
boxes that it has, and the number of suspended child boxes. A lsospended it is in a waiting state,
there are no workers active within it, and the number of child boxes equals the number of suspended child
boxes. An and-box istableif the box is suspended and quiet.

5.3.1 Constraints

The constraint system used in the DAM is the familiar constraint system of equality over Herbrand terms
[Llo84]. Terms are built from constants, function symbols with a fixed number of arguments, and variables.

Variable Localisation

The AKL computation model allows a hierarchy of constraints, with both variables and constraints being
local to a specific and-box. A child and-box inherits the constraints and variables of its parents, but may
add additional variables and constraints itself. The scope of a variable or constraint, therefore, encompasses
the and-box that it is local to, and any child boxes from that and-box. If an and-box adds a constraint to a
variable local to some parent and-box, some mechanism is needed to ensure that the scope of the constraint
is respected.

One solution to this problem is to use hash-tables to record the local constraints on a variable. This
approach has been taken by Moolenaar and Demoen for the ParAKL syg@®3]. Another approach is
taken by Montelius and Ali in the Penny parallel abstract machine, where each variable that is constrained
further down the and-box hierarchy maintains a list of suspensiMA9§]. Both these approaches have a
non-constant access time for determining bindings.

60 CHAPTER 5. THE DAM

Initial Tree L ocalisation Promotion Consistency

Fail

Figure 5.5: Variable Localisation in the DAM

The approach taken by the DAM is to treat each variable as a parent variable and a hierarchy of localised
copies. When a variable not local to an and-box is constrained, a chain of localised variables is created
between the parent and-box of the variable and the and-box which constrains the variable. In effect a new
variable (with binding) is created that is valid for the constraining and-box. In most cases further references
to the variable will use this localised copy, leading to a constant access time. This localised variable can
then be used within the scope of the and-box as if it was the original variable referred to. Upon promotion,
the immediate parent of the localised variable can be given the constraint contained in the localised variable.

If a parent variable is constrained the tree of localised variables below the parent can be tested, failing
any and-boxes that contain incompatible constraints.

The operations of localisation, promotion and parent constraint testing are shown irbfigure

Localised variables allow constant access time. However, creating a localised variable is a hon-constant
time operation, as each level of and-box needs to be searched for an existing localised variable and, if
absent, a new localised variable created. Creating a localised variable also requires a variable to be allocated
to each level as opposed to a single hash-window cell in ParAKL or suspension in Penny. In practise, AKL
programs tend to have a fairly shallow nesting of and-bok&sP7, reducing the cost of long chains of
localised variables.

Adding Local Variables

As local variables are created, they need to be added to the list of local variables maintained by the and-box
that owns them. This list is maintained so that the variables in a promoted and-box can have their and-box
entries adjusted to be that of the new and-box. The simplest way to avoid contention when adding to an
and-box is to lock the and-box as each new variable is created.

There are two reasons for wanting to avoid locking the and-box on variable creation: variable creation is
extremely common and having to lock every time a variable is created will lead to a loss of performance and
producer-consumer type programs tend to have producers and consumers sharing an and-box, as and-boxes

5.3. EXECUTION MODEL 61

Figure 5.6: Adding a New Local Variable

are promoted, and the shared and-box becomes a bottleneck.

It is possible to avoid the expense of locking, in most cases, if each worker uses a local variable to act
as the head of the local variable list. Since each worker is holding a unique local variable as the head of the
local list, there will be no contention when adding a new variable. The new variable can then be inserted
into the local variable list without locking. FiguBe6 shows an example of two workers adding variables.

An alternative to maintaining a list of local variables is to mark a promoted and-box as promoted and to
allow the locality checks to follow the chain of promoted and-boxes up to the actual ant4B&%]. This
method is superior to the method in the DAM, as it both saves on the memory used by the list and the time
taken to promote the variables. The cost of following the and-box chain is relatively trivial.

5.3.2 Indexing

The standard WAM implementation allows indexing on the some argument to a call, usually the first al-
though some implementations (eg. NU-Prolog) allow indexing on any argument. Three instructions allow
different code branches to be selected, based on the overall type of the argument (variable, constant, list or
structure) and the exact value of the constant or structure. In most cases this level of indexing is sufficient;
an initial split between the sets of possible clauses is created, and each clause from the set tried in turn.
Singleton clause sets can executed immediately without creating a choice-point.

In the DAM, the creation of choice- and and-boxes is a more expensive operation than the creation of
a choice-point in the WAM, and it makes sense to pay more attention to indexing issues. If a single clause
can be found, then a choice-box and and-box may not need to be created. Instead of simply indexing on an
argument, a more thorough indexing on all arguments should uncover more cases of simple determinism.

62 CHAPTER 5. THE DAM

Naively, it should be simple to generate a decision tree covering all possible combinations of bound
and unbound arguments. However, the size of the decision tree rapidly grows and, in general, creating a
decision tree is NP-Hard®’N91. An example of a predicate that generates an exponential decision tree is
p/6 :

p(©, 1, O, ~, ., ho).
p0, . _ 1, 0, no).
pd, 0, _ 0, _ no).
p(-, 1, 0, _ O, no).
p(it At Bt B B yeS).

p/6 is a disguised form of the 3-satisfiability proble@J79 for the formulaF = (z1 V —z2 V 23) A
(1 V=g Vas) A (mxy Vas Vag) A (- Vas Vas). Any path in the decision tree that commits to the
last clause can be read as a solution to the problem.

There are several ways of avoiding exponential decision trees. If the expected input modes are known
(e.g. from a moded logic programming language such as Concurrent Prolog or Pandora) then the decision
tree can be generated directlg$88 KT91]. Alternately, partial indexing is possible, abandoning the
indexing when the decision tree becomes too complex and simply trying cl&aG#gY{914.

The approach taken in the DAM is to use ttlause seapproach developed for NUA-PrologIN91].

The set of possible clauses is represented by a bit-vector, with each set bit representing a candidate clause.
Arguments can then be examined and the set of candidate clauses intersected with the current clause set. If
the clause set reduces to a single bit, then the corresponding clause can be committed to. If the clause set
reduces to more than one bit, the clause set can be used as a filter to select clauses.

The clause set approach avoids NP-Hardness by never maintaining a complete path from argument
bindings to clauses. Any attempt to find a solutionfowvould require intersecting all combinations of
clause sets to see which reduce to the singleton last clause. The tradeoff is the run-time intersection of
bit-vectors — reasonably fast on any halfway decent computer.

5.3.3 Waiting on Variables

Creating and destroying boxes for speculative computation can be extremely wasteful. In many cases, much
speculative computation can be avoided if the full expansion of the box is left until some variables become
bound. As an example, consider the predictsek/2

stack([], J) - true ? true.
stack([push(X) | R], S) :- true ?
stack(R, [X | S)).
stack([pop(X) | R], S) :- true ?
S = [X | S1],
stack(R, S1).
stack([top(X) | R], S) :- true ?
S=X1 1
stack(R, S).

If the first argument of a call to this predicate is sufficiently bound, the abstract machine can immediately
choose a suitable clause without creating any speculative and-boxes. If the wait-gustedkia are
replaced by conditional or commit guards, the first argument must be bound to ensure quietness.

In these cases it is sensible to delay the execution of a choice-box until the arguments to the choice-
box are sufficiently instantiated. The DAM therefore allows boxes to be added to the dependents list of a
variable and the box then waits on the variable. When a variable is bound and the dependents list checked,
the box can be made active again.

Boxes with wait guards can benefit from waiting on some variables. However these boxes must even-
tually be made available for nondeterminate promotion. Two forms of waiting on variables are required.
Strong waitingmeans that the variable must be instantiated before the choice-box will proceed. Strong
waiting is suitable for conditional and commit guariféeak waitingallows the box to béorced A forced
box ignores any further weak waiting on variables and proceeds to expand the choice box.

5.3. EXECUTION MODEL 63

Active Suspended Suspended
i

Figure 5.7: Nondeterminate Promotion in the DAM

5.3.4 Nondeterminate Promotion

Nondeterminate promotion is achieved in the DAM by copying part of the box tree generated by the pro-
gram’s execution. Copying is also used in Montelius and Ali's implementation of P&mA9H].

When an and-box becomes stable, the tree below the and-box is searched for a choice-box which has as
its first and-box an and-box which has completed its guard and is waiting for commitment. This choice-box
can then be used as the basis for a single nondeterminate promotion. Only the first child box in a choice-
box is examined; completed candidates further down the list of and-boxes are ignored to ensure correct
behaviour within a box guarded by conditional guards.

Choice-boxes that are weakly waiting on a variable may also be used for nondeterminate promotion.
A weakly waiting choice-box may be forced, leading to a complete expansion of the box and a possible
further nondeterminate promotion.

The search for a suitable candidate for nondeterminate promotion proceeds depth-first, left-to-right.
There is no particular reason for this choice, beyond the desire to emulate the Prolog search rule and the
simplicity of the search. A more intelligent search rule would examine other alternatives and choose those
with the minimum number of alternatives and the minimum number of constraints. Moolenaar and Demoen
have found that an intelligent search rule can improve search performance by 2—-3\iib@4.[Another
approach would be to provide a programmable search system, similar to PaiBdio®d] |

When a choice-box is selected for copying, a duplicate of the parent and-box and all child-boxes is
created and added to the parent choice box. The and-box selected for promotion is moved to the choice-box
and made active. In addition the choice-box from which the and-box was taken may become active, due to
having only one child left and being eligible for determinate promotion.

When a duplicate of a configuration is made, any unbound local variables also need to be copied, as do
any structures that are not ground.

An example copying operation is shown is fighr& During nondeterminate promotion, once a choice-
box has been selected for nondeterminate promotion, the and-box above it and the and-box’s children, along
any with variables and bindings within the scope of the tree, is duplicated. The duplicated box tree contains

64 CHAPTER 5. THE DAM
Message Description
Active The box has become active.
ActiveChild A child box has become active.
AddcChild Add a new child box.
Collect Collect a term for a bagof-box.
Commit Commit to determinate promotion.
Copy Make a copy of the box and children.
CopyChild Add a copied child.
DoneChild A child box has been promoted.
Enter A worker has entered this box
Exit A worker has left this box
Fail The box has failed.
FailChild A child box has failed.
Force The weakly waiting box has become active.
Kill Kill the box.
NonDetCandidate =~ Request a candidate for nondeterminate promotion.
NonDetPromote Nondeterminately promote this box.
Promote Promote the variables local to this box.
Recover Recover this box for the heap.
RecoverChild A child box can be recovered.
RequestConditional Request a conditional pruning.
RequestCommit Request a commit pruning.
Suspend The box has suspended.
SuspendChild A child box has suspended.
TakeContinuation Acquire the continuation pointer.

Table 5.4: Box Messages in the DAM

all boxes except for the child of the choice-box selected for nondeterminate promotion. As a result, there
are now two configurations, with at least one configuration ready for determinate promotion.

5.3.5 Box Operations

Boxes communicate with each other by (conceptually) passing messages. Most messages work upwards
from child boxes to parent boxes, however a parent box may kill a child box, or cause it to commit or
promote. The messages that may be passed between boxes are shown 5mtabtethe senders and
receivers are summarised in figuse8. Boxes, usually via abstract machine instructions, may also send
messages to themselves. In practise, messages sends are simply direct procedure calls. Multiple messages
are handled by locking the box, ensuring that only one message is processed at a time.

Bagof-boxes use similar messages to choice-boxes, although bagof boxes cannot cause an and-box to
commit. Bagof-boxes may also be sent the Collect message, adding a new element to the list generated by
the bagof-box. Variables may also send Fail or Active messages to boxes.

When a box is created, it is added to the parent box by means of an AddChild message. If the box is to
be run immediately, it also takes a worker from the parent box.

The box then continues until it either suspends, fails or promotes. Upon suspension, the box sends a
SuspendChild message to its immediate parent, which can in turn suspend and send further SuspendChild
messages. Suspended boxes can be woken by Active or NonDetPromote messages, whereupon they send
ActiveChild messages to their parents. If the box fails, it sends a FailChild message to the parent. If the
parent box is a choice-box, the choice-box records the failure and waits until only one child box remains,
in which case the remaining child box is sent a Commit message.

When an and-box promotes, it sends a Promote message to the grandparent and-box to pass all local
variables upwards. It also sends a TakeContinuation message to the parent choice-box, to acquire the stored
continuation pointin the choice-box, if any exists. Finally the and-box sends a DoneChild message upwards

5.4. ABSTRACT ARCHITECTURE 65

ActiveChild Copy
AddChild Kill
CopyChild NonDetCandidate ™~
DoneChild Recover
FalChild ([| L
RecoverChild
SuspendChild Promote)
Active
NonDetPromote
Active Exit Suspend Commit
Copy Fail NonDetPromote
Enter Force
ActiveChild
) Copy
AddChild)
X Kill
CopyChild)
. NonDetCandidate
DoneChild
- Recover
FailChild
. Commit
RecoverChild
SuspendChild
RequestConditional
RequestCommit
TakeCondinuation é Active Exit Suspend
Copy Fail
Enter Force

Figure 5.8: Box Messages Senders and Receivers

to detach the and-box and parent choice-box and deallocate them. All further processing is performed by
the grandparent and-box, which also inherits the worker which performed the promotion.

If an and-box becomes stable, the and-box recursively sends NonDetCandidate messages to its children,
searching for a suitable candidate choice-box with a first child available for nondeterminate promotion. The
candidate is sent a NonDetPromote message, which in turn sends a NonDetPromote message to its parent
and-box. The and-box then makes a copy of itself and all child-boxes via Copy messages. As boxes copy,
they attach themselves to the appropriate parent box by means of CopyChild messages.

A box may be killed if a parent box has failed, or a pruning operation has eliminated the box. When a
box receives a Kill message, it terminates, and sends further Kill messages to all its children.

When a box terminates, either through failure, promotion or being killed, it may be recovered for reuse
by the heap. Promoted boxes may be recovered immediately. Failed and Killed boxes may still have
workers active within them. As a result, they may not be immediately recoverable. When a worker finds
itself in a dead box, it exits the box, and sends a RecoverChild message to its parent. The top-level dead
box accumulates all RecoverChild messages until all workers have left that part of the tree, and then sends
Recover messages to each child box. A box receiving a Recover message is deallocated.

5.4 Abstract Architecture

The abstract architecture of the DAM is based around a set of workers, with each worker assigned to a
separate processor. Each worker maintains a heap, from which it can allocate memory for terms, variables,
box structures, environments and other objects. Each worker also maintains a trail for use during copying.
All workers share a lock table of hardware locks, program and symbol table stores, a common work queue
and a global status register. Figir® shows the an outline of the DAM abstract architecture.

66 CHAPTER 5. THE DAM

Worker 1 Worker 2 Worker 3

Program Store Registers Registers Registers

P,CP P.CP P,CP

B.E B.E B.E

XO0,...,X255 X0,...,.X255 XO0,..., X255

CS,CT, VP CS, CT, VP CS,CT, VP
Symbol Table

Hesp Heap Hesp

Top FreeList Top FreeList Top FreeList
Work Queue

Lock Table

Global Status /\/\ /\/\

Trail Trail Trail

Top Top Top

S

Figure 5.9: DAM Abstract Architecture

5.4.1 Registers

Each worker also maintains a register set, which is used to execute the program. The DAM registers consist
of:

P The program counter: a pointer into the program store giving the next abstract instruction to execute.

CP The continuation pointer: a program address to continue with after the current box has suspended or
ended.

B The current box: a pointer to the box environment that the program is executing in.
E The environment pointer: a pointer to an array of permanent registers, for use by the current box.

VP The local variable pointer: a pointer to the local variable to use when adding new local variables to the
current and-box.

CS The clause set register: a 32-bit set for computing clause sets.
CT The clause table register: a pointer to a clause table corresponding to the bits in the clause set.

X0,...,X255 Temporary registers: A set of temporary registers, each holding a single term.

In addition to these registers, the permanent registers provided by the environment are deia@ed by
Y1, ...

5.4.2 Instruction Format

The instruction format for the DAM is a sequence of 4-byte words, the first byte containing the instruction
code and the following three bytes containing simple arguments. Any immediate arguments, such as con-
stant values or program addresses to jump to, follow the initial instruction word. All immediate arguments
are word-sized.

Sample instructions and their layout are shown in figuld The actual instructions will be introduced
in the sections describing the operations of the DAM.

5.4. ABSTRACT ARCHITECTURE 67

PUValuexY 2.1 [8]2 [o |
GetConstant 55 &Label [+ [s Jo Jo | [Temrepresenting'a | [Labe
P E T T) [ormamms)

Figure 5.10: Instruction Formats for the DAM

Terms Heap Structures
Reference ‘ 0‘ Reference ‘ 00‘ Variable L‘ Dependents ‘ o1
And-Box
Constant ‘ l‘ 00‘ OODOO‘ Constant ‘ 10‘ .
Next Variable
Integer ‘ l‘ 01‘ Signed Integer ‘ 10‘ X
Localised L‘ Dependents ‘ o1
Variable
Float ‘ 1‘ 10‘ Reference ‘ 10‘ And-Box
Next Variable
List ‘ G‘ 00‘ Reference ‘ 11‘ Parent
Next Variable
Structure ‘ G‘ 01‘ Reference ‘ 11‘
. Cons Term
Relocation | 0| 10 Reference 11
Term
Structure G‘ 00| Arity Constant ‘ 10
G = Groundness bit Term
L = Variablelock bit
Term
Float Double Precision
Floating Point Number

Figure 5.11: DAM Term Representation

5.4.3 Terms

Most terms in the DAM are represented in a similar manner to the WAM. Each term is represented as a
32 bit, tagged word which either contains a reference to another term, an actual value or a reference to a
structure on the heap. A summary of the various term structures is shown in3igudre

The lowest two bits of each term supplies a tag value. This tag value allows the references to be
represented by the reference address, as references are word-aligned and the low tag bits of a reference are
two Os.

The highest bit indicates whether the term is ground or not. Initially the groundness bit of a term is set
to 0, unless it is known from compilation that the term represented is indeed a ground term. If the term is
later tested for groundness and found to be ground, then the groundness bit can be set, eliminating the need
to re-test for groundness. This approach is similar to that used by DeGroot for restricted and-parallelism
[DeG84.

Variables have a lower tag value of 1. It is no longer possible to represent a variable as a reference to
itself, as the variable may have a number of dependent localised variables and delayed boxes attached to it.
Rather than use an extra word of memory, the reference part of the variable is set to point to the first piece
of the dependency list.

68 CHAPTER 5. THE DAM

Instruction Description

PutValueXY n,m Copy the contents ofnto Ym

PutValueYX n,m Copy the contents ofnto Xm

PutValueXX n,m Copy the contents ofnto Xm

PutConstant n,$'c’ Put the constantinto Xn.

PutList n Construct a cons structure on the heap, and put a refer-
ence to this structure intgn.

PutStructure n,$'f'/a Construct a structure with functdrand aritya on the
heap, and put a reference to this structure Xrto

PutVariableX n Construct a new variable, local to the current box on [the

heap and put a reference to the variable o Add this
variable to the list of local variables in the box.

PutLiteral n,literal Put a reference to the ground structure giverLhgral
into Xn.

PutListArgument n,a,m Copy the contents oXn into theath argument (ie. 1 ig
the head of the list, 2 is the tail) of the list referenced|by
Xm

PutStructureArgument n,a,m Copy the contents oKn into the ath argument of the
structure referenced bym

Table 5.5: Put Instructions for the DAM

A non-localised variable is represented on the heap by a structure of three words. While the variable
is unbound, the first word contains a variable tag and a reference to the dependency list. When a variable
becomes bound, this word is set to the term that the variable is bound to. The second word contains a
reference to the and-box that contains the variable in its environment. The following word contains a
reference to the next variable in the list of variables local to the and-box.

A localised variable is represented on the heap by a structure containing five words. The first three
words are identical to those of a parent variable. Word 4 contains a reference to the immediate parent of the
localised variable. The fifth word contains a reference to the next word in the parent dependency list.

Constants in the form of symbolic constants, integers and floats have a lower tag value of 2. The high
bit of the term is the groundness bit, which can always be set to 1. The next two bits identify the type of
constant: 0 for a symbolic constant, 1 for an integer and 2 for a floating point number. Symbolic constants
are represented by an arity (which must be 0) and an index into the symbol table. Integers are represented
by signed 27 bit integers. Floating point numbers are represented by a reference to a two-word entry on the
heap, containing a double-precision floating point number.

References to lists and other structures have a lower tag value of 3. The groundness bit is set to reflect
the known groundness state of the structure referenced. The next two high bits contain the type of reference,
either to a list (cons cell) or a structure.

Cons cells are represented on the heap by a pair of terms; the head and tail of the list. Structures
are constructed on the heap as a header word, containing the structure name and arity, and a number of
following words containing terms.

An additional term is the relocation term, identified by a lower tag of 3 and an upper tag of 2. Relocation
terms are used to mark already copied terms on the heap when copying for nondeterminate promotion (see
section5.4.9.

Term Instructions

Term instructions are mostly concerned with performing the unification operations of the constraint system
and moving terms between temporary and permanent registers.

Terms are constructed by a sequence of put instructions, similar to the WAM. The DAM avoids read/wr-
ite unify instructions for reasons given below. Complex structures are built by a sequence of put and put-
argument instructions, where sub terms are built and then placed in the appropriate term position. The put

5.4. ABSTRACT ARCHITECTURE 69

DAM Code WAM Code
PutList 0
PutStructure 1,$'f'/2 put _structure $'f/2,X1
PutVariable 2 unify _variable X2
PutStructureArgument 2,1,1 unify _value X2
PutStructureArgument 2,2,1 put _list X0
PutListArgument 1,1,0 unify _value X1
PutConstant 1,$7]’ unify _nil

PutListArgument 1,2,0

Figure 5.12: Sample DAM Code for Constructifig, X)]

instructions supported by the DAM are summarised in takbe

Sample code for constructing the teff(X, X)] is shown in figure5.12 along with equivalent
WAM code for comparison.

Unification is somewhat more complex in the DAM than in the WAM, as variable locking and local-
isation needs to be taken into consideration. The approach taken by the DAM is to divide the operations
of the get-type instructions into two groups: testing and binding instructions. Testing instructions simply
test a term to see if it is bound to a particular term, failing the and-box if the test fails or continuing if the
box succeeds. If the term being tested is a variable, then the term that the variable will bind to is to be
constructed and the variable is bound to the term. Before construction and binding the variable needs to be
locked, to ensure no other worker can bind the variable, and localised.

Unification is decomposed in this manner for two reasons: Firstly, in a parallel system, if there are two
workers examining a variable then one may be a reader and one a writer. If the reader worker outruns the
writer worker while performing a sequence of unify instructions, the reader worker may read garbage. By
separating test and bind operations, the DAM can lock a variable, completely construct the term the variable
will be bound to and then bind and unlock it in one operation. Secondly, a suitably optimising compiler
should be able to detect when locking, localisation and binding operations are not needed. Making these
operations separate instructions allows them to be compiled out of the code.

The instructions for unification are summarised in tablé Sample code for the unificatiori =
[f(X, X)] is shown for both the DAM and WAM in figur®.13 As can be seen, the WAM code
is considerably more compact. DAM code for all but the most simple unifications tends to suffer from
“code sprawl,” as each individual combination of input modes is individually handled. However the DAM
code constructs terms efficiently, using put instructions, and avoids the creation of temporary variables, an
expensive operation in the DAM.

The DAM also supports some simple arithmetic and term operations as primitives, summarised in table
5.7. These primitives can be combined with various mode-testing instructions (see $edtnget and
put instructions to provide implementations of predicates sugtus$3 or functor/3

5.4.4 Boxes

Box structures in the DAM are built on the heap and have the formats given in igldeEach box has

a header word that identifies the box as a box using the same tag bits as constants and structure headers.
These tags can be used while copying to avoid relocation clashes. The header word also contains the type
of box and a locking bit to allow the box to be locked while changing it.

All DAM boxes have the same basic structure: a header word, a set of flag and state bits, pointers
to other boxes in the structure and the current program and continuation pointers. The box also contains
a reference to the environment for the box and to a vector of arguments. Each box also keeps a count
of the number of active workers in the box, the number of children and suspended children. If a box is
suspended until a variable becomes bound, the box is linked into the dependents list of that variable. The
box also carries a reference to the variable that the box is suspended on; only one variable can be used for
suspension at present, more complex suspensions can be built by using predicates with commit guards.

70

CHAPTER 5. THE DAM

Instruction

Description

GetConstant n,$’c’,&label
GetlList n,&label

GetStructure n,$'f'/a,&label

GetVariable n,m

GetListArgument n,a,m
GetStructureArgument n,a,m
Lock n,&label

Localise n,&label

Test the contents ofn. If a variable, then continue. If
the constant given by jump tolabel. Otherwise fail.
Test the contents ofn. If a variable, then continue. If &
list reference jump téabel. Otherwise fail.
Test the contents ofn. If a variable, then continue. If &
structure reference to a structure with fundtand arity
a, jump tolabel Otherwise fail.

Unify the terms inXn and Xm, locking and localising
variables as appropriate. This instruction implements a
general unification algorithm.

Get the contents of theth argument of the list reference
by Xnand put it intoXm

Get the contents of thath argument of the structure ref
erenced byXnand put it intoXm

Lock the variable referenced ¥n. If the variable has
become bound, then jump kabel, otherwise continue.
Localise the variable referenced Ky. If Xnis localised

o

BindConstant n,$'c’
BindValue n,m

to a variable, then continue, otherwise jumgabel.
Bind the variable referenced §nto the constant.

Bind the variable referenced b§mto the term inXn.

Table 5.6: Get Instructions for the DAM

Equal n,m,&label

Less n,m,&label
LessEq n,m,&label
GetArg I,n,m

PutArg I,n,m

GetFunctor I,n,m

PutFunctor I,n,m

Instruction Description

Plus I,n,m Xl andXncontain numbers or ground terms that are ar
metic expressionsXm := X1+ Xn.

Times I,n,m Similar to Plus, exceptthatm := X1 x Xn.

Subtract I,n,m Similar to Plus, except thatm := X1 — Xn.

Divide I,n,m Similar to Plus, except thatm = XIdivXn.

Eval n,m Evaluate the ground arithmetic expressionXn and

place the result iKm

XnandXmcontain numbers. IXn = Xm then jump to
label, otherwise continue. Floats are tested to an accu
of 1076.

Similar to Equal, but jump ifXn < Xm.

Similar to Equal, but jump ifXn < Xm.

Xncontains a numbekK]| a structure reference. Copy th
contents of thXnth argument of the structure referenc
by Xl to Xm

Xn contains a numbed{m a structure reference. Cop
the contents oKl into theXnth argument of the structur
referenced byxm

Take the structure referenced By and put the constan
functor name intaXn and the integer arity intém

XI contains a constant ath contains a number. Con
struct a structure on the heap with the functband arity
Xn. Put a reference to the structure in registet

Table 5.7: Arithmetic and Term Construction Instructions for the DAM

racy

5.4. ABSTRACT ARCHITECTURE

L1:

L2:
L3:

L4:

L5:
L6:

L7:

DAM Code
GetlList 0,&L2
Lock 0,&L1
Localise 0,&L1
PutList 1
PutStructure 2,$'f'/2
PutVariable 3
PutStructureArgument 3,1,2
PutStructureArgument 3,2,2
PutStructureArgument 2,1,1
PutConstant 2,$[]’
PutStructureArgument 2,2,1
BindVvalue 1,0
Jump &L7
GetListArgument 0,1,1
GetStructure 1,$'f/2,&L4
Lock 1,&L3
Localise 1,&L3
PutStructure 2,$'f/2
PutVariable 3
PutStructureArgument 3,1,2
PutStructureArgument 3,2,2
BindValue 2,1
Jump &L5
GetStructureArgument 1,1,3
GetStructureArgument 1,2,2
GetVariable 2,3
GetStructureArgument 0,2,1
GetConstant 1,$'[]',&L7
Lock 1,&L6
Localise 1,&L6
BindConstant 1,$[]’

71

WAM Code

get _list X0

unify _variable X1
unify _variable X2
get _structure $'f/2,X1
unify _variable X3
unify _value X3

get _nil X2

Figure 5.13: Sample DAM Code for Unifying Terms

72 CHAPTER 5. THE DAM

Box Environment
0‘ 11‘ Typ4 Lock‘ ‘ 10 And-Box o‘ 11‘ No. of Registers | 10
Flags Local Variables Continuation
Parent Box Localised Variables Previous environment
Left Sibling Box No. of Localised Variables P Register
Right Sibling Box | Regiger !
Child Box .
) Choice-Box
Last Child Box
Clause Set
No. of Processors
. Clause Table
No. of Children
No. of Suspensions
Bagof-Box

Program
Continuation _OLﬂPUl Variable

Environment

Argument Vector

Suspension Link

Suspended Variable

Figure 5.14: DAM Box Representation

And-boxes contain the heads of two lists of variables: those variables local to the and-box and those
localised to the and-box. The and-box also maintains a count of the number of localised variables that have
not been constrained by a parent variable. Choice-boxes contain the current clause set word and clause table
for indexing purposes (see sectibrl.5. Bagof-boxes contain a reference to the list to which completed
bagof-calls are added.

The state of the box is represented by a set of flag bits, summarised ibi8blde Active, WaitChil-
dren, WaitQuiet, WaitGuard, WaitVar and New bits are mutually exclusive. When a box is killed by some
external event, the box may be marked dead or failed, but still be active or queued. This state is used to
ensure that the box is not deallocated until all processing has completed.

The WaitVar state indicates that the box has been suspended on a variable. The suspension can come
in two forms: a strong suspension indicates that the box is committed to waiting for the variable to become
bound, a weak suspension indicates that the box can be woken by the The StrongWait bit indicates a box
not available for nondeterminate promotion.

The messages described in sectod.5are implemented by directly modifying the box structure, with
locking to ensure mutual exclusion. Messages sent to boxes that have been flagged as dead are abandoned.

An argument vector is used to load tKeregisters with values when a box is taken from the work
gueue. The argument vector is simply a structure built on the heap, with a suitable arity and functor of
$arg . Bagof-boxes have an argument vector equal in size to the arguments of the second argument in the
bagof call. If the call has no arguments, or the arguments are all stored in an environment, then the pointer
to the argument vector is set to a null value.

An environment contains a vector of permanent registers, along with the size of the vector. A reference
to the immediate parent environment is also maintained, to allow a return to the parent at the end of the
clause. The environment also contains the continuation point for the call. The continuation point is initially
set to a null value, and is initialised with the continuation point taken from the parent choice-box upon
promotion.

Box Instructions

Box instructions are largely concerned with the creation and removal of boxes and environments. Box
instructions are also associated with the flow of control within the computation. The box instructions are
summarised in tables.9and5.10

A predicate call within the DAM consists of loading the lowest X registers with the arguments to the

5.4. ABSTRACT ARCHITECTURE 73

Flag Description

Active The box is currently active on a processor.

WaitChildren The box is waiting for all children to complete.

WaitQuiet The box is waiting until it becomes quiet.

WaitCommit The box has completed its guard and is waiting to be pro-
moted.

WaitVar The box is waiting on a variable.

New The box is a new box, being constructed.

Fail The box has failed.

Killed The box has failed or been killed.

Commit The box has committed to a single clause.

StrongWait The box is waiting on a variable, with no nondeterminate
promotion possible.

Force The box should ignore any weak waits on variables.

Copy The box is to be copied

NonDet The box is for nondeterminate promotion.

Table 5.8: Box Flags for the DAM

DAM Code WAM Code
PutConstant 0,$'a’
PutVariable 1
PutValueYX 1,1
Call 1,p'/2

put _constant $'a’,X0
put _variable Y1,X1
Call 'p'/2,2

Figure 5.15: DAM Code for Calling(a, X)

call and transferring control to the predicate code. The predicate code makes a choice-box if there is local
nondeterminism, or if the predicate is going to wait for a variable to be bound. If the predicate call is
deterministic, no choice or and-box needs to be constructed. If a predicate is to be spawned to execute on a
different worker, the choice-box can be created immediately by the calling box, and queued.

A choice-box creates child and-boxes by executing a series of try instructions. Again an and-box is only
created by the and-box code if this proves to be necessary. Alternatively an and-box can be created by a
choice-box wishing to queue a choice for parallel execution.

Call and Try instructions may attempt to perform parallel calls or tries, producing and- and or-paral-
lelism. Even if a parallel call or try is requested by the instruction, a parallel call is only executed if there
is a idle worker on the work queue waiting for something to be queued. Otherwise the call or try acts as
a sequential instruction. A sequential call or try is more efficient than a parallel call, as the box need not
necessarily be created, and the box does not have to be queued and the arguments reloaded. Rather than
building the parallel call directly, the DAM design assumes that most calls will be sequential calls, and
builds the choice-box and argument vector as a special case.

The sequences of abstract instructions for the DAM and WAM for making th@all X) is shown
in figure5.15 These sequences are almost identical, the major differences being that the DAM will make
the call a parallel call if possible and the WAM reduces the size of the environment where possible.

The code for executing a sequence of choices in both the DAM and WAM is shown in fiduerhe
major differences between the two sequences is that the DAM separates the operations more directly. The
DAM uses a choice-box to perform the same function as a WAM choice-point. However a choice-box can
be created remotely, so the creation operation is separated from the try and retry operations.

74 CHAPTER 5. THE DAM

Instruction Description

AndBox If the current box is not an and-box, make a new and-pox
on the heap and make it the current box.

Allocate n Make a new environment with permanent variables on
the heap, sav€P, and make it the current environment.

Deallocate Recover the ol€P andE registers and deallocate the old
environment.

Call p,pr/a If pis 1, attempt to make a parallel callpo/a by con-
structing and queueing a choice-box.plis 0, call the
predicate directly by setting to the start of the predicate
code andCP to the next instruction.

Execute 'pr'/a SetP to the start of the predicafa/a , allowing a se-
quential call at the end of the clause.

Proceed Return to the calling predicate at the instruction given|by
CP.

Fail Fail the current box.

WaitChildren If the current box has child boxes, wait for all child-boxes
to complete.

WaitQuiet If the current box is not quiet, wait for the box to become
quiet.

WaitCommit If the Commit flag is not set for the current box, wait for
the parent choice-box to commit to this box.

RequestConditional Requestthe parent choice-box to the current box to pfune
any following sibling boxes.

RequestCommit Request the parent choice-box to prune any sibling boxes
and commit to this box.

Promote Promote the local variables and localised variables ¢on-
tained in the current and-box to the grandparent and-box.

Raise Exit the current and-box and make the grandparent and-
box the current box.

Collectn,m Bind the output variable of a bagof-box ¥amand make
Xmthe new output variable.

Halt Similar to a Proceed instruction but intended for the top-

level and-boxes in the computation.

Table 5.9: And-Box Instructions for the DAM

DAM Code WAM Code
ChoiceBox 2

Try 1,1,&L1 try 2,L1
Try 2,1,&L2 retry L2
Try 3,0,&L3 trust L3
Defer

Figure 5.16: DAM Code for Trying a Sequence of Choices

5.4. ABSTRACT ARCHITECTURE 75

Instruction Description
ChoiceBox n If the current box is not a choice-box, make a new [ar-
gument structure and copy the finsttemporary regis-
ters into the argument structure. Make a new choice-pbox
structure on the heap and make it the current box.

BagofBox Make a new bagof-box on the heap and make it the ¢cur-
rent box.

Try c,p,&label Try a clause starting dabelif cis 0, orc is contained
in the current clause set. |ifis 1, try to make a paralle|
call by constructing and queueing an and-box. If this
a non-parallel call, set th€P register to the following
instruction and jump téabel.

TryOne If the current box is a choice-box, remove the choice hox
and make the current box the parent and-box.

Defer If only one child and-box remains for this choice-bax,
then commit to that and-box and make the and-box active.
Otherwise, take the continuation point from the current
choice-box and jump to that continuation point.

S

Quit Terminate the program.
Slave Enter the work queue and wait for a piece of que\red
work.

Table 5.10: Choice-Box Instructions for the DAM

5.4.5 Indexing and Modes

The implementation of NUA-Prolog?N91] constructed clause sets on the heap. The clause sets could be
of any size, and could therefore be adapted to any predicate, no matter how large. This generality carried a
considerable cost, both in memory usage and the time taken to search for a singleton bit. A simpler solution
is to restrict the clause set to 32 bits and have the clause set contained in the regis8sr CRR92.

Since theCSregister is limited to 32 bits it can only handle up to 32 clauses. Most predicates are less
than 32 clauses in size so this is rarely a problem. In the case of predicates with more than 32 clauses,
a decision tree can be used to perform an initial split on some suitably chosen argument, until the set of
possible clauses reduces to 32 or below. If the set of possible clauses stubbornly remains above 32, the
initial clauses can be tried until only 32 clauses remain, in which case clause set indexing can be used.

Associated with the clause set is a clause table, pointed to b@Theegister. The clause table simply
consists of a vector of program addresses, corresponding to each clause in the clause set. If the clause set
reduces to a single element at any time, the clause table is consulted to see which clause to commit to.

Strong and weak delays are achieved by suspending on a variable. The box is added to the list of
dependents and the box then waits. As well as being added to the list of dependents, the box also records
the variable that the box has suspended upon. In the case of a box being forced, the box has to be removed
from the dependents list of the variable. If the box is copied, the copied box must be added to the dependents
list of the copied variable.

Weak waits are forced by setting the Force flag in the box and queueing the box. The box is removed
from the variable’s dependents list. A box with the Force flag set ignores any weak suspension instructions;
strong suspensions are still obeyed, however.

Indexing Instructions

The DAM provides a rich set of instructions for indexing and testing modes, summarised irbtahle
Sample DAM and WAM code for indexing on a simple program is shown in figut& The DAM en-
courages use of specialised forms of clauses for single clause commitment. If the clauses are wait guarded
(or conditional or commit guarded and suitably quiet) it is possible to ignore the process of creating an

76

p(a, b) :- true ? true.
p(b, b) :- true ? true.
p(b, ¢) :- true ? true.

L1:
L2:
L3:
L4:
L5:
L6:
T2:

T3:

O1:

C1.

02:

C2:

03:

C3:

DAM Code
ClauseTable 7,(&01,&02,&03)
SwitchOnTerm 0,&L3,&L1,Fail,Fail
SwitchOnValue 2,($a:&01, $b:&L2),Fail
ClauseSet 6
SwitchOnTerm 1,&L6,&L4,Fail,Fail
SwitchOnValue 2,($b:&L5, $c:&03),Fail
ClauseSet 3
ChoiceBox 2
Try 1,0,&C1,&T2
GetArguments 2
Try 2,0,&C2,&T3
GetArguments 2
TryLast 3,&C3,&03
Defer

TryOne
TryOne

TryOne

L1:

L2:
L3:

L4:

C1:

C2:

C3:

Figure 5.17: DAM Code for Indexing

CHAPTER 5. THE DAM

WAM Code

switch _on_term 0,L1,L2,L4,L4
try 2,C1
retry C2
trust C3
switch _on_const 0,(a:C1,b:L3)
try 2,C2
trust C3

fail

5.4. ABSTRACT ARCHITECTURE 77

Instruction Description

SwitchOnTerm n,&v,&c,&,&s Examine the contents ofn and jump tov if a variable,
c if a constant, integer or floating point valueif a list
reference andif a structure reference.

SwitchOnValue n,&table,&faill Examine the contents &n which is a constant or strug
ture reference. Use the value of the constant or fungtor
and arity of the structure as a key to the hash tatale,
ble. If the value is found in the hash table, jump to the
corresponding program address, otherwise junfpito

ClauseTable set,&table Make the current clause sg¢t(an integer) and the cur-
rent clause tableable
ClauseSet set Intersect the current clause set wgét (an integer). If

the resulting clause set is empty, fail the current box| If
the resulting clause set has a single element, jump ta the
corresponding entry in the clause table.

JumpVar n,&label If Xncontains a reference to a variable, jumpetioel.

JumpGround n,m,&label If Xn contains a ground structure, then jumplabel.
Otherwise, place a reference the first unbound variable
in the structure intXm

Suspend n,w,&label Strongly suspend on the variable referenced Xy
restarting atabel when the variable becomes bound. | If
w is 1, then weakly suspend or skip this instruction if the
current box has the Force flag bit set. 1

Table 5.11: Indexing and Mode Instructions for the DAM

and-box, localising variables and promoting, since all of this is going to happen unconditionally.

5.4.6 Nondeterminate Promotion and Copying

Nondeterminate promotion is handled in the DAM by queueing the choice-box that is to be promoted with
the NonDet flag bit set. The essential approach of the AKL is to be “or-phobic,” wherever possible, so
nondeterminate promotions are never executed immediately.

When a worker takes a box with the NonDet flag from the queue, it performs a nondeterminate pro-
motion on the box rather than executing the box immediately. Eventually the worker will execute the child
and-box that has been chosen for promotion.

Stream and-parallelism tends to create scattered blocks of related data, as the various and-computations
interleave. The binding array and copying models of or-parallelism (see se2tb2and2.1.4 rely on
bindings being available as a contiguous block for efficiency while copying.

The multi-sequential machine model (see sec®idn3 relies on workers shadowing the initial branches
of an or-parallel computation. These workers would be more profitably employed performing any and-
parallelism that was available. The Delphi model requires special pre-processing and worker re-synchron-
isation appears to be potentially expensive.

The hash window model (see sectd.]) has been used successfully in the ParAKL machihie$3].
However, use of localised variables in the DAM means that there are no readily available hash windows for
maintaining multiple bindings.

The DAM copies box-trees in a manner similar to copying garbage collection. This approach is also
used in the AGENTS abstract machidaip94 and the Penny systenvA96]. Each object that is part of the
structure being copied is allocated a new block of memory and copied across. As each structure is copied
its first word is replaced by a relocation term, giving the address of the copied object. Further attempts to
copy an already relocated object simply use this relocation term. Each relocation term is trailed and the trail
unwound at the end of copying.

78 CHAPTER 5. THE DAM

nrev(1000) | Naive reverse with 1000 elements
gsort(2500) | Quicksort with 2500 elements

fib(25) Fibonacci number of 25

tree(17) Generate a balanced binary tree of depth 17
subset(15) | Generate all subsets of a set of 15 elements
encap(7) Generate a cross product of two subsets of 7 elements.
filter(1000) | Filter a list of 1000 elements by selecting the elements
contained in another list.
and(50000) | Test the and boolean operator with various combinatjons
of modes.

Table 5.12: Benchmarks

Starting at the head of the sub-tree, a duplicate of each box is constructed, copying the flags, program
and continuation pointers. And-boxes make copies of their environments, and local and localised variable
lists. Or-boxes make copies of their arguments.

Local variable lists need only have those local variables that are still unbound copied; bound variables
have their bindings copied when the and-boxes environmentis copied. Localised variable lists are copied in
two passes, ignoring any localised variables that have been entailed by their parents. Initially copies of each
localised variable are made and the original variables given relocation pointers. After all localised variables
have been copied, each new localised variable has the term that it is bound to copied.

Terms are copied recursively, with each term being checked for groundness before a copy is made.
Ground terms do not need to be copied. The use of groundness bits means that a ground term is only ever
checked once for groundness, making the copying of ground terms a great deal more efficient.

Child boxes are only copied after the environment and variables of the parent box has been copied,
meaning that all references to variables outside the scope of child boxes have been relocated before-hand.

Child boxes can be copied in parallel since no child box can have bindings referring to a sibling box.
Boxes for parallel copying are queued with the Copy flag-bit set, and the copy is made on the heap of the
worker which acquires the box from the queue. The copying worker can also trail relocation references on
its own trial, and unwind the trail at the end of the copy, since the copying of a child box cannot have an
effect on the environment of the parent box. To avoid queueing marginal prospects for copying, only those
child-boxes with at least one child-box themselves are considered for parallel copying.

5.5 Performance

This section presents some performance results for the DAM. The benchmarks are summarised in table
5.12and code for the benchmarks can be found in appefdinev(1000)andgsort(2500)test dependent
and-parallelism.fib(25) andtree(17) test determinate independent and-parallelismbset(15)tests or-
parallelism. encap(7)tests nondeterminate independent and-paralleli§itter(1000) tests deep guard
performanceand(50000)ests clause set indexing.

Running more standard nondeterminate benchmarks on the DAM, such as the SEND + MORE =
MONEY problem reveals a peculiarity with the scheduling of nondeterminism on the DAM. The work
gueue on the DAM tends to produce behaviour similar to breadth-first search, as both a nondeterminate
promotion and the remainder of the promoted choice-box are scheduled for execution. As a result, the
DAM takes almost as long to compute 1 solution to the SEND + MORE = MONEY problem as it takes to
compute all solutions.

For purposes of comparison, the benchmarks were run on the following implementations:

NU-Prolog [2T86] An example of a sequential Prolog system built around the WAM. Version 1.6.5 was
used.

AGENTS [Jan94 The SICS sequential AGENTS abstract machine, version 1.0.

5.5. PERFORMANCE

79

Benchmark| NU-Prolog | AGENTS | Penny| DAM | DAM (no locks)
nrev(1000) 2100 6800| 8300| 8400 6500
gsort(2500) 1300 3000| 5200| 4800 3400
fib(25) 4300 4800 | 5800| 4900 4200
tree(17) 2900 3900| 5000| 5300 4400
filter(1000) 830 2300 | 5000 | 18000 17000
subset(15) 430 13000| 7600 | 13000 12000
encap(7) 300 5000| 2500| 3100 3000
and(50000) 2600 6000 | 8500| 7800 5900
All results in ms+10%

Table 5.13: Single Processor Performance of the DAM

Penny[MA96] The experimental SICS parallel AKL abstract machine.
DAM Doug’s Abstract Machine.

All systems were compiled using gcc or g++ version 2.7.2.1 using the -O2 optimisation level for gcc
and the -O3 optimisation level for g++The benchmarks were run on a Sun SparcServer 1000 with four
50MHz processors on a 40MHz bus running the Solaris 2.3 (SunOS 5.3) operating system. All benchmarks
were run using the RT (real time) scheduling class, to ensure the highest CPU availability possible.

Both parallel systems tended to produce variable times for most benchmarks, with the variability be-
coming more pronounced as the number of processors increased. The times quoted are the mean of three
consistent trials, with there being approximately 10% variation between most trials.

Single processor performance for the DAM for a set of benchmarks is shown irbtdBldn addition
to the normal DAM, a sequential version of the DAM where all locking was removed was also tested.

As might be expected, the sequential NU-Prolog system outperforms all the AKL systems. In most
cases, the performance of NU-Prolog is 3-4 times that of the best AKL system. The additional overhead
caused by the manipulation of boxes and handling of local/non-local variables would reasonably cost that
much.

When considerable non-determinismis present, isthiset(15Randencap(7)benchmarks, NU-Prolog
outperforms the AKL systems by anywhere from 7 to 40 times. Since NU-Prolog uses backtracking, as
opposed to the copying mechanisms used the AKL systems, the massive improvement in performance in
a nondeterminate program can be attributed to the superiority of backtracking to copying; when copying,
the DAM needs to trail anything that it is relocating as well as copying it — clearly trailing, copying and
unwinding must take longer than simply trailing and unwinding.

Thefib(25) benchmark results are the results where the AKL most closely match the performance of
NU-Prolog. This benchmark involves a large number of arithmetic operations; operations that are not
usually part of the core abstract machine. In this case, all implementations are more likely to be equal.
Since thetree(17) benchmark is very similar téb(25), but involves less arithmetic and shows a similar
performance difference between the Prolog and AKL implementations, the arithmetic operations are likely
to be the prime cause of this anomaly.

In general, the DAM tends to outperform Penny on the simpler benchmarks, where box construction
can be avoided. On the simpler benchmarks, the DAM with no locks is roughly equal to AGENTS in
performance. In thélter(1000) benchmark, where deep guards and a great deal of box creation occurs, the
DAM is much more inefficient than the AGENTS and Penny systems.

Theand(50000)benchmark shows similar performance to the AGENTS system when the overhead of
locks is removed. Thand(50000)lso shows the expense of box creation; profiling of the program showed
that 12% of time was spent creating and removing choice-boxes.

In the nondeterminate benchmarksipset(15)andfib(7), the DAM and AGENTS implementations
tend to show similar performance; an expected result, since nondeterminate promotion tends to use a lot of

20Optimisation levels were left as set by the authors of the programs. -O3 level inclines functions declared as such, a practise usually
ignored in C, whergtdefine s are used instead, but encouraged in C++

80 CHAPTER 5. THE DAM

Processors
Benchmark| System 1 2 3 4
nrev(1000) | DAM 8400 5600| 3800| 3600
Penny 8300 | 5300 | 4400| 3700
gsort(2500)| DAM 4800 3800| 3600| 3700
Penny 5200 2900| 1600| 1500
fib(25) DAM 4900 | 3200| 2500| 2400
Penny 5900| 3600| 2500| 1700
tree(17) DAM 5300| 4200| 3100| 3600
Penny 5000 2600| 1900| 1600
subset(15) | DAM 13000| 11000| 9200 | 9200
Penny 7600 | 5500(| 4900, 4600
encap(7) DAM 3100| 2400| 2100| 2300
Penny 2500| 1900| 1700| 1700
filter(1000) | DAM 19000| 18000| 19000| 20000
Penny 5000| 5300| 5200| 5200
and(50000)| DAM 7800 | 14000 24000 26000
Penny 8500 | 16000 | 19000 20000
All results in ms,£10%

Table 5.14: Parallel Performance of the DAM

time copying. Penny outperforms the DAM and AGENTS on non-determinate benchmarks. Since Penny
uses a similar copying algorithm to the other AKL systems, this difference is more likely to be a result of a
more highly optimised implementation than some underlying architectural difference.

For programs that contain little nondeterminism, there is approximately 20% performance cost, largely
traceable to the costs of locking. Nondeterminate promotion is designed to avoid most locking and so does
not suffer so much from the performance penalty. With locking removed, the DAM performs comparably
to the AGENTS machine and Penny; the extra speed of the DAM in some cases can be explained by the
inlined arithmetic functions available on the DAM.

Parallel processor performance for the DAM is summarised in taldlé Performance results for 4
processors should be regarded with some caution, as the system used for the benchmarks has 4 processors,
and contention with the operating system is possible when all processors are being used.

The DAM and Penny tend to show roughly the same 1 processor performance for the simpler deter-
minate programs, but a more linear speed-up as more processors are added. In most cases, the parallel
speed-up for the is nowhere near linear, a disappointing result. There seem to be two reasons for this result:

Profiling the DAM shows that the ChoiceBox instruction is very expensive, taking over 100 times the
amount of time that the simpler instructions take. The dependent and-parallel programs tend to use choice-
boxes to synchronise and so pay the penalty.

The work queue can become saturated with tiny pieces of work, leading to a granularity problem. This
is the case with the fib(25) test, since many tiny Fibonacci numbers are computed towards the end of the
computation, and many of these will be queued in parallel. 8i{50000)benchmark contains a great
deal of fragmentary parallelism. Most callsand/3 are simple and incur little overhead if performed se-
guentially. The subset(15) and encap(7) programs tend to perform many small nondeterminate promotions,
leading to contention at the work queue.

Thefilter(1000) benchmark has little inherent parallelism, and so little or no parallel speed-up should
be expected. In fact, the parallel overhead tends to cause both systems to perform worse on essentially
sequential programs when more processors are added.

No memory benchmarks have been included. Memory benchmarks are difficult to come by, as they
are generally not published, and measurement in systems that do not supply statistics is very difficult.
NU-Prolog can be expected to be generally most memory conservative, since it does not need box and sus-
pension structures for the benchmarks described here. The DAM can be expected to use the most memory.

5.6. RELATED WORK 81

The need for large variables (over one cell in size) and the size of box structures tends to make the DAM
memory-wasteful. Thy middle ground between NU-Prolog and the DAM can be expected to be occupied
by AGENTS and Penny.

5.6 Related Work

The closest relation to the DAM is the Penny parallel machine and its sequential predecessor, the AGENTs
abstract machineMA96, Jan94. Both these machines use a system of configuration-stacks to control the
computation, rather than the box-based approach of the DAM. In the Penny architecture, workers move
from box to box in a localised fashion, taking work from an immediate parent or child box; in contrast,
the DAM uses a queue and activates a box by placing it on the queue. Scheduling involves other workers
acquiring outstanding tasks from an owning worker, rather than the DAM'’s approach of workers picking up
any outstanding work from a common queue. The tendency of the DAM to perform breadth-first search, and
the granularity problems that it experiences suggests that the DAM should use a stacking-based scheduler
for at least some of its work.

The ParAKL systemNID93] uses hash tables to maintain multiple binding environments.

The Andorra-1 system3§CWY913 is intended for use with the basic Andorra model and therefore
does not need the complications of multiple binding environments. Similarly, Parigiin@] is based on
Parlog and the JAM and does not need to consider such complications.

82

CHAPTER 5. THE DAM

Chapter 6

An AKL Compiler

This chapter covers the compiler for the DAM. The DAM contains several expensive operations: the cre-
ation and destruction of boxes, locking and localising variables, and copying parts of the box-tree during
non-determinate promotion. A useful compiler for the DAM needs to be able to minimise the number of
times these operations are performed.

A compiler is essentially a program that translates a program in one language, the source language, into
a program in another language, the target language, with the same semantics. The target language is usually
a lower-level language than the source language. An optimising compiler does this translation in such a
way as to minimise some characteristic of the output program, such as the time the program will take to run
or the memory space that the program takes.

A block diagram for the DAM compiler for the is shown in figuéel This compiler follows the
typical structure of a logic programming compiler. Individual clauses are compiled into streams of abstract
instructions. All clauses for a predicate are then analysed ameladeconstructed: a set of instructions
controlling indexing and nondeterminism. The instruction stream is passed through a peephole optimiser
and the resulting stream is then written to a file. The abstract interpretation step is not part of a normal
compiler, but is part of the DAM compiler. The abstract interpretation step allows the program to be
analysed and information about the nature of predicates passed to the clause compilation and indexing parts
of the compiler, with the aim of producing a more efficient compilation.

An optimising compiler gathers information about the expected behaviour of a program. This informa-
tion is then used to tailor the product of the compiler so that it executes in a more efficient manner. Usually
compilers ardocal; the compiler works on one unit — a clause or predicate — at a time, and does not use
information gathered from the compilation of other units. Alternatively a compiler catolbalto varying
degrees. Global compilers gather information about all parts of a program that are available, and use that
information to optimise the compiler output. Possible global optimisations are:

Goal Ordering: Computations are most efficient when the goals in a clause are ordered so that data
flows from producers to consumers. Although the AKL execution model is largely insensitive to goal
ordering issues, the DAM is most efficient when predicates are called with suitably bound variables; creating
a choice-box and delaying a call are expensive operations and should be avoided.

Determinacy: If a call to a predicate is determinate, it may not be necessary to create a choice-box
and and-box for a local environment. Determinacy can be achieved in two ways. Firstly if the predicate is
known to be dependent on some arguments being bound to be determinate, the call can be delayed until the
appropriate arguments are bound. Secondly, complete indexing of clauses can also help detect determinate
goals.

This chapter concentrates on the more interesting aspects of the compiler; those parts where the com-
piler deviates from simply converting goals into lists of unification and call instructions. The compiler is
intended to optimise the DAM instructions produced, eliminating the most costly operations where possi-
ble. Optimisation is achieved at two levels: an abstract interpretation which gathers the types and modes of
each predicate, and in-line optimisations produced by gathering requirements from the future stages of the
meta-interpretation.

83

84 CHAPTER 6. AN AKL COMPILER

p(X,Y):-qX)->Y =a
p(X,Y):-true->Y =h.

q(X) :- X = a|true.
aX) - X =f(Y)|Y =a

,,,,,,,, Voo
)
Abstract a-
Interpretation
pC. {a b}).
afaf@)
q(X) :- X =a| true. . .
qX):-X=f(Y)|[Y=a Lo gX) - X =altrue. qX):-X=f(Y)|Y=a
¢ ¥ A\ ¢ o \L
Prelude Clause Clause
Compilation Compilation Compilation
SwitchOnTerm 0,&0,& 1,Fail &2 : , o re0,$f/1,&21
0: Suspend
Optimisation

Compiled
Code

Figure 6.1: Compiler Architecture

6.1. ABSTRACT INTERPRETATION 85

6.1 Abstract Interpretation

Abstract interpretation was introduced by Cousot and CouS6{/[] as a method of formally deriving
program properties. Using an abstract interpretation involves an approximate execution of the program,
which is guaranteed both to halt and work with a superset of the possible values of the actual program. The
information derived from the approximate execution can then be used to annotate the program in several
ways, giving a compiler clues as to the most efficient way to compile pieces of program.

The simple semantics of logic programming languages make them ideal for abstract interpretation,
and abstract interpretation models have been used for several purposes, such as variable dependence tests
for independent and-parallelistviH92], specialising versions of predicated/in92] and compile-time
garbage collectionfWB90Q].

An abstract interpretation involves two posetssancrete domaindenoted by< E, <>, that is an
accurate representation of the computation andtestract domain< D, C> that represents some useful
abstraction of the concrete domain. The two domains are related by means of a concretisation function
~: D — FE and an abstraction function: £ — D. Each operatior in the concrete domain, is mapped
onto an abstract operatighin the abstract domain.

To be a safe abstract interpretation, the domains muatjoéned/ MS97].

Definition 6.1.1 Let D and E be complete lattices. The monotonic functionsD — F anda : E — D
areadjoinediff Vd € D,d = a(y(d)) andVe € E,e < y(a(e)).

In most logic programming languages, abstract interpretations can be built to model either top-down or
bottom-up execution (eg. SLD-resolution and hefixpoint semantics respectively in the case of Prolog).

An example of top-down abstract interpretations is the general framework described by Bruynooghe et
al. [BJ8Y, Another example is multiple specialisatiodL{V9(, which allows the creation of multiple,
specialised versions of a predicate, selected by run-time tests. Most specific logic pragféind8] can

be used to generate more efficient versions of programs; an example of bottom up abstract interpretation is
the generation of most specific prograrnvwg97].

Abstract interpretations may also be based on a parallel or sequential model of interpretation. Bottom-
up execution is implicitly parallel, as each new fact can be computed independently of all other possible
facts. Bottom-up abstract interpretations therefore, are also implicitly parallel. Top-down execution models,
especially committed-choice languages, may be sensitive to deadlock and race conditions. As a result,
the abstract interpretation must take account of these possibilities. An example of a top-down abstract
interpretation that handles parallelism is Codish’s suspension analys=i®]l.

The main existing form of abstract interpretation for the AKL is that @i&jd and SahlingS93 which
uses top down interpretation to derive a set of pre- and post- call domain equations which can be solved.
A variety of methods for solving the equations are examined bp®S{Bch9g. An alternative to directly
using top-down abstract interpretation for top-down, parallel execution models is to build an equivalent
bottom-up execution model and use that model to derive the abstract interpretation. This technique has the
advantage that it side-steps the inherent complexities of explicitly modelling parallelism, while producing
the same results in some areas. An example of this technique is the abstract interpretation developed by
Foster and Winsborough for StrarfeMy/91], used to avoid copying of modified data structures.

The compiler described here uses abstract interpretation to provide more accurate indexing of clauses
throughout the program, and to provide accurate mode information for determining call orders and call
delaying. The bottom-up abstract interpretation used in this compiler uses the fixpoint semantics developed
in chapter, extended to allow explicit mode information as a concrete domain.

6.1.1 Partitioning the Program

The fixpoint semantics in chaptérely on a program being guard stratified. Before being able to perform
any abstract interpretation the program must be partitioned into guard-stratified layers. Stratifications can
be built by building a call graph between all the predicates in the program. The program is then partitioned
in the following manner:

If p andq are two predicates, than< ¢ is defined recursively byp < ¢ if any clause of; contains a
direct reference tp, and ifp < g andq < r thenp < r. The partition of a progran® consists of the set

86 CHAPTER 6. AN AKL COMPILER

of equivalence classes of the predicate®iwith respect to<. A programP is guard stratified if, for all
clauses inP, the predicates in the guard of all clauseggf havep < q.
As an example, the program

pl(X) - true ? paX)

p1(X) - p2(X, Y) 7 pA(Y)
p2(f(X), Y) - true -> X =Y.
p2(g(X), Y) - p3(X) -> X =Y.
p3(a) :- true ? true.

p3(b) :- true ? true.

p4(X) :- p3(X) ? true.

p4(c) :- true ? pl(a).

has the partitiod {p1, p4}, {p2}, {p3}}. The programis clearly guard stratified.

The partition of a progrank can be built by constructing a directed graph of all calls in the program
and then computing the transitive closure. All arcs on the graph where(pathand(q, p) exist are part
of the same equivalence class.

In the above example program, the directed graph consists of the edges

{(p1,p2), (p1,p4), (p2,p3), (p4,p1), (p4,p3)}
with a transitive closure of

{(p1,p2), (p1,p3), (p1,p4), (92, p3), (P4, p1), (P4, p2), (P4, p3)}
Clearly, the only pair of arcs here i®l1,p4), (p4,pl), making the equivalence class¢$pl, pd},

{2}, {p3}}

Checking that the program is guard stratified essentially means ensuring that all predicates in each
equivalence class do not call each other in their guards. If a program is not guard-stratified, a warning is
issued, and those predicates which are not guard stratified are excluded from the abstract interpretation —
they are assumed to have the most general type and mode.

6.1.2 Determining Types

A major aim of applying abstract interpretation to the AKL is to determine the types of terms that variables
may be bound to. Type determination leads to more efficient indexing of clauses and earlier detection of
determinacy. For example in the program

p(X) = g1(X) -> r(X).
p(xX) - g2(X) -> s(X).

q1(f(a)).
q1(f(b))-

q2(f(b)).
q2(g(b)).

the predicat@/1l needs its argument to be bound to be determinate. A simple indexing algorithm would
not be able to deduce that this is possible. However an indexing algorithm that has the expected success
patterns ofql/1 andq2/1 will be able to more efficiently indep/1 , eliminating useless speculative
computation.

The concrete domain for types is the domain of constraints over Herbrand equality. In order to aid
analysis a normal form is chosen. The approach taken throughout the abstractions developed below is to
group terms together by their position in a term tr@eacesprovide a consistent way of referring to the
position of sub-terms within terms.

6.1. ABSTRACT INTERPRETATION 87

Definition 6.1.2 A traceis a sequence, recursively defined as follows: the empty teaisea trace and.z,
wherei € N andt is a trace, is a tracéN is the domain of natural numbers.
The domain of traces is denoted BYyR.
Traces are ordered by
e<t
sp.sp < tpty if s <tp
Sh.St S th.tt if Sp = th andSt S tt

The concatenation of two tracesandt is denoted by - t. By an abuse of notation the concatenation
of s andi.c is also written as - 4.
The application of a traceto a termy, written asr o ¢ is defined as:

r ift=c¢
rot=< rioty ift=dity,r=[f(r,...,rp)andl <i<n
€L otherwise

Definition 6.1.3 A constraint is intrace conjunctive fornif it consists of a set of constraint@; A --- A6,
where eacld; is of the formV; = ¢, Vs = f(Vs1, ..., Vo) OF Vs = V; wheret < s.

A constraintconstrainsV if there is somé),; V, = corVy, = f(Vs1,..., Vsm), Or Vi = V;, where the
constraint constraing;.

The domain of constraints in trace conjunctive form is denoted.Bby

A set of constraints is itrace disjunctive fornif it is in the formoy V - - - V 0; where eacly; is in trace
conjunctive form.

Lemma 6.1.1 Any constraint consisting of equalities of terms can be put in trace disjunctive form.

Proof Any constraint can be put into disjunctive normal form. We begin by renaming all variables to be
of the formV; .. Any equalities of the formy(Ss,...,5,) = f(T1,...,T,) can be replaced by, =

Ty N--- NS, = T,. Any equalities of the forml, = f(Ty,...,T,) can then be replaced by, =
FMVeay oo o s Vi) AVin = Th A -+ A Vi, = T, Any equalities of the fornV, = V; can be rewritten as
Vi=V,if s <t. O

Trace form provides a convenient canonical form for the analysis of types. Using trace form we can
define a type system that is specialised towards the instantiation patterns of variables.

Definition 6.1.4 A broad typeis one of the following elements:

1. A lattice of base types such atom the set of all atomgerm the set of all non-atomic terms or
integerthe set of all integers. Two base types that must existfathe universal type indicating all
terms, andl, the empty type. Base types have a functiodefined to be the set of functor/arity
pairs that can be represented by that base typey¢igteger) = {0/0,1/0,—-1/0,2/0,-2/0, ...},
where integers, as constants, have an arity of 0)

2. F(Ty,...,T,), whereF = {f1/n1,..., fm/nm} is a set of functor/arity pairs; = max(nq,...,
ny,) and eacl;, 1 < i < nis abroad type.

The symbolB is used to represent the set of all broad types.
Broad types have a similar trace application operator to terms (see defthitiéh
The functor set for a broad type is defined as

[F fT=FTT,....T,)
¥(T) = { Y(T) if T'is a base type

88 CHAPTER 6. AN AKL COMPILER

Broad types represent a set of terms, with all possible terms that can be built from the type
tree. As an example, the broad typé¢/1,g/2}({a/0,b/0},{a/0,¢/0}) represents the set of terms

{£(a), F(b), g(a,a), g(a,c), g(b,a), g(b, c)}.

The broad type {[]/0,./2}(T,{[]]/0,./2}(T,T)) represents the set of terms
{{, (= [])s-(= -(=, =) } or the first three possible lists.

Broad types are both less flexible and less precise than the regular types used by (for example) Zobel
[Zob9d. It is not possible to represent a general recursive type, suttas {[],.(T, list)} using broad
types. Itis also not possible to separate arguments in broad types, fd{a:,b}), g({c,d})}. However
broad types are well suited to the role they play in the AKL; broad types provide a suitable abstraction for
the purposes of clause set indexing.

Definition 6.1.5 Theunificationof two broad type§” and.S, written asI’ A S is given by
1. If T'=T thenS.
2. If T andS are base types g5, T').
3. T =F(11,...,T,) andS is a base type, thefyf /n : f/n € Frandf/n € ¢¥(S)}.
4

LET = F‘(T’l7 - ,T,LT) andS = G(Sl, .. .,Sns) then (F N G)(Tl NSy, Th A Sn) where
n = min(nr,ng). Ifany of T; A S; =1 or F NG = () then this is equivalent ta .

Theunionof two broad typed§” andS, written asT’ v S is given by

1. If T'= 1 thenS.

2. If T'andS are base types @b, T').

3. T =F(1T1,...,T,) andS is a base type, theR whereR is a base type arfl < R andS < R.
4

.MT = F(Th,...,T,,) andS = G(Si,...,S,,) then(F U G)(Ty V S1,...,T, vV S,) where
n = max(ny,ng), andT; =L if ¢ > np, similarly for S.

Both unification and union are commutative operators.

Examples of unification and union of broad types are:

{f/1,9/2}(T integer) N{f/1}(atom) = {f/1}(atom)

and
{f/1,9/2}(T,integer) vV {f/1}(atom) = {f/1,9/2}(T,integer)

Definition 6.1.6 Thedepthof a broad type is a function deptls — N, defined as follows:

(1 if T'is a base type
depth(T') = { 1+ max(1,deptT})) if T = F(T1,...,Ty).

The concrete domairty, for this type abstraction is the set of constraints in trace disjunctive form. For
two elementg, e; € E, we have an ordering defined as< e, if e; — e2. Our abstract domain is over
the set of mapping® = p(V — B) where a variable is mapped onto a broad type. Only base variables (ie.
variables with a single element trace) need to be included in the mapping.

We can define the concretisation functions and abstraction functions for moving between broad types
and constraints in trace normal form in the following way:

Definition 6.1.7 Theconcretisation functiory : V x B — F is defined, fory(V;, d), as:

1. The constrainisBase(V;), if d = B where B is some base type. The base tygesind L are
mapped onto the constraints true and false respectively.

6.1. ABSTRACT INTERPRETATION 89

2. The constraint

Vi = fiVers s Vi)
VIRV AYVia,di) A+ ANY Vi, dim)
(‘/t == fn(%lv '7‘/t~mn>

|f d = {fl/ml, ey fn/mn}(dl, ey d,,L).
The concretisation function: D — E is defined asy(d) = Ay ¢ goma) 7(V, d(V)).

Definition 6.1.8 The abstraction functioa : V x £ — B is defined as

a(Vi,er) Ve Va(Vi,en) ife=e; V---Ve,
a(Vs,e) fe=etA--AV,=VoA---Aep,

)b ife=e; A---AisBase(Vi) A---Ney
o(Ve:e) =\ (/000 fe—e A AVimcA---Aey,

{f/m}a(Via,e),...,a(Vim,e)) fe=e A---A
Vi=f(Ver,o. ', Vi) Ao Nep

b is the base type correspondingitBase(V).
The abstraction function : E — D is defined asv(e)(V) = a(V, e) for all V' of the formV ..

Lemma 6.1.2 The functionsy and~ as defined in definition8.1.8and6.1.7are adjoined.

Proof The proof consists of an induction on the depth of the abstract domain element for each variable.
Since the definition ofe decouples variables, only individual variables need to be considered.

If depthT) = 1 then T is a base type. In such a casgV,T) = isBase(V) and
a(V,isBase(V)) = T. Similarly v(V, «(V, isBase(V))) = isBase(V).

Suppose the proposition holds for all types of depth less than n, tHEndf F/(T1, ..., T,,) where
depthT;) < n,1 <i <m.

YV T) = (Vg pmer V= FVits oo, Vi)) A9(Via, To) A+ A5(Vipn) from the definition of.
This function can be distributed across the disjunctions to give a normal form. From the definiianeof
have
a(‘/tv 7(‘/}7 T)) = \/f/mEF {f/m}(a(‘/tlv V(W'la Tl))v ceey O‘(Vvtma ’Y(Vvtlv Tm)) which since the propo-
sition holds for eachTy,...,T,, and from the definition of union of broad types we have
a(Vi,/(Vi, 7)) = F(T, ..., Ty) = T.

To prove thaty(a(e)) < e we use the constraint property tiat Aca) V (c3Aca) < (c1Ves)A(caVes).
For a constraint, the set of constraints for a variafecan be written agV; = f;(Vi1,. .., Vi,) : 1 <i <1}
and we have(V;,e) = {fi/ma,..., fi/mu}(T1,...,) wherem = max(ma, ..., m;) from the defini-
tion of broad type union. Applying to this function produces

(Vi = fi(Vit, s Vi)
(VY /\’y(‘/;gl,Tl)/\/\/\’}/(‘/tm;Tm>
(Vvt = fl(‘/t'lﬂ"'7‘/t'ml)

’Y(Vzv a(‘/ta e)) =

and using the above properties of constraiats, vy(a(e)). O

With a type system we are only concerned with the type of constraints that may allow a query to succeed.
The abstract interpretation for types collapses the four truth values discussed in dhafiewo states:
possibly true and definitely false. The types describe the situations under which a predicate is possibly true.

Definition 6.1.9 A type abstractiorwith depthk is a mapping of predicates onto terms
p/n — p(Ty,...,T,), where deptfil;) < k,1 < i < n. The domain of type abstractions is denoted by
TA.

90 CHAPTER 6. AN AKL COMPILER

Assuming that the progrank, can be guard-stratified into a set of sub-prograf#y, ..., P, }, the
® p operator is replaced by an abstrdgt operator. This abstract operator takes a set of definitions and
proceeds to successively approximate the workings obth®perator:

Definition 6.1.10 The variable projection functiodl : 7 x B x V — B is defined adl(¢,T7,V) =
Nios—y T o s if T containsl/, and T otherwise.

Given a goals = G, . ..,G,, where eacl?; = p;(ti1,...,tim,;) @ type abstractionl and a variable
V, the type model of V, written as A(G,A,V) is defined as A(G,A,V) =
/\1§i§n (G, A(pi/m;), V)

o, : TAxTA — TA s defined asd’s(A, B)(p/n) = A(p/n) if p/n € dom(A), and
(A, B)(p/n) = p(Th,...,T,) if p/n € dom(B), where eacH; is given by
\/p(Vl,m,Vn) - G, % Bj A((GjaBj)vAUBaV;)

Example 6.1.1 An example of the operation of thg, for the program:

p(l, As, Bs) :- true ? As =0, Bs = 0.

p(Ja | R], As, Bs) :- true ? p(R, Asl, Bs), plus(Asl, 1, As).
p(lb | R], As, Bs) :- true ? p(R, As, Bsl), plus(Bsl, 1, Bs).
gL, T) :- p(L, As, Bs) -> plus(As, Bs, T).

qlL, T) - true -> T = 0.

This program is guard stratified into two leve{{p/3 },{q/2 }}. For the purposes of this example the
base type lattice has a base typd &dr the set of integers, arus/3 has an initial type oplus(I, I, I).
The depth of the type abstraction is set to 2.

The first stratification has the fixpoint calculation:

q)/Pl 10= {p/3 — p(T, T, T)}
p, 11={pB — p({[l/0,./2}({a/0,6/0}(), T),LI)}.

op, 12={p3 — p({[1/0,./2}({a/0,6/0}(),{[1/0,./2}({a/0,b/0}, T)), L, 1)}.
p Jw=0p 12

The second stratification has the fixpoint calculation:

Op, 10={a/2 —¢(T,T)}.
p, T1={a/2 — q(T,D)}.
p Jw=0p 11

Indexing Predicates

The information gathered by the fixpoint calculations can be used to provide accurate indexing of clauses
using the clause set indexing from chapierBroad types are particularly useful for clause set indexing

as they reflect the way functors are gathered together at each point. For indexing purposes, each clause is
numbered, and the types for each variable in the guard are computed. These types can then be used to build
an indexing tree for each argument.

Definition 6.1.11 Suppose we have a suitable type abstraction for a progrand a predicatp/n defined
by a series of clausegVi,...,V,) :- G; % B;,1 < i < m. Each clause generates imaexing
expression(T;1, . .., Tin) — @ Where eaclt}; is given byT;; = A(G;, A, V)

Theexplicit argument sefor a tracet and set of indexing expressiofi® — i} is defined as

J{w(Pot): Potisnotabase type

Given a trace and explicit argument sdt for a set of indexing expressiof$ — i}, the candidate
clause sefor some functor/arity paif /i € E'is{i: f/l € ¥(Pot)}.

Thealternate clause sdbr a tracet and set of indexing expressiofi® — i} with explicit argument
setFE is definedaqi: V(P ot) — E # 0}

6.1. ABSTRACT INTERPRETATION 91

The candidate clause set gives the set of clauses that can be explicitly indexed by functor/arity pairs.
The alternate clause set gives the set of clauses that can be successful, but cannot be explicitly indexed. The
candidate clause sets for the interesting tracggfin example6.1.1are:

L A{l/0—A{1},./2 = {2,3}}
1.1 {a/0— {2},b/0 — {3}}

The candidate clause sets for the trada# /2 in examplet.1.1is
{[]/0 — {1,2},./2 — {1,2}}. The alternate clause set for same tracg2is

6.1.3 Determining Modes

Modes carry information about the degree of constraint needed to ensure that a predicate becomes de-
terminate, or at least not deadlock. The system of mode inferencing described here is designed to allow
the compiler to order atoms within a goal and to delay calls until the arguments to the call have become
sufficiently instantiated.

Mode inferencing is somewhat more subtle than type inferencing. In the case of some wait-guarded

and conditional-guarded predicates it is possible to use the failure of other clauses to deduce the necessary
modes for a clause.

p(a, Y) :- true ? Y = b.
p(b, Y) :- true ? Y = c.
p(X, Y) - true ? Y = a.
g@, Y) - true ->Y = h.
g, Y) :- true > Y = c.
aX, Y) - true ->Y = a

The last clause gb/2 can only be determinately promoted if both preceding clauses have failed. To
fail the preceding clauses pf2 must have had the first argument bound to some variable, and therefore
the last clause implicitly assumes a bound first variable in the case of determinism. In a conditional guarded
predicate, such ag2 , each clause is dependent on the failure of the preceding clauses and therefore carries
implicit mode information. The last clause @2 is dependent on the failure of the previous two clauses,
and must have X bound in order to proceed.

The AKL is only implicitly moded. To allow abstract interpretation of an AKL program’s modes we
need to introduce a suitable concrete domain.

Definition 6.1.12 Themodingof a predicate(V, ..., V,,) is a set of triples of constraints
u={<¥0;,0,,0, >} such that if there is a computation

and (p(Vi, - V)i O) v, v, yovarsay = Choice(--.and(:o)vargy) -)

the computation will complete with no nondeterminate promotions andith,, A0, < o if 6 — 6;\0,,.
The computation will complete with one or more nondeterminate promotions andwith,, A 6, < o if
0 — 6;, but notd — 6; A 0,,. Otherwise, the computation will deadlock.

0; represents an input mode, such as a constraint in the guard of a commit- or conditional-guarded
predicate.f,, represents a writable mode, such as a constraint in the guard of a wait-guarded predicate.
Writable modes indicate constraints that can be promoted during nondeterminate promotion but could in
preference be externally satisfiel, represents an output mode, the constraints that are imposed by the
body of a clause.

Modings are ordered, with two modingsh , v andv havingu < v if forall < 6;,0,,,0, >€ uthere
exists some< o;, 0,0, >€ v suchthat;, — o;,0; A0, — o; Aoy, andf; A, ANO, — o; N\ oW N 0p.
Intuitively v < v if u is a stricter moding than.

The domain of modings is denoted ¥ .

92 CHAPTER 6. AN AKL COMPILER

mAmN mVn mb>n
n n n
i w o v i w o0 Vv i w o Vv
i i w o i i i w o0 Vv i i i i i
Wi w w 0 w W|lw W 0 V W|lw w w w
m o|0O O O O m o]0 O 0 V m o]0 O O O
V| ii w o v V| iV V VvV V v ii w o Vv

Table 6.1: Abstract Mode Operators

An example mode fog/2 , defined above, i$§< X = a,trueY =b >, < X = b,trueY = ¢ >, <
X #aNnX #btrugY = a >} Theinitial constrainfX’ = z will cause the computation to complete with
the final constraint ok = 2AY = a. However an initial constraint of true will deadlock, as trgeX = a,
true X =bandtrues X £a A X #b.

The abstract domain is intended to model these mode partitions, allowing the construction of strong or
weak delays in the abstract machine.

Definition 6.1.13 An mode symbdk one of MS = {i,w,0,v}, withi < w < o < v.

A mode treas either the mode or m (M, ..., M,) wherem is one ofi,w oro andMj, ..., M, are
mode trees.

Mode trees have a similar definition of the depth function to broad types (see defiiligh and

can be decomposed by the application of traces (see defiitlhd. The mode function is defined as
modév) = v and modém (M, ..., M,)) = m.

Mode trees are partially ordered by C v or m(My,...,M,) C I(Ly,...,L,), wherem < [and
eachM; C L;,1 <i<n.

A mode abstractiotis a mapping from predicategVi, ..., V;,) to mode tree definitions of the form
p(Ml, ey Mn>

The domain of mode trees is denoted.by7 and that of mode abstractions is denoted\yA.

Informally,i stands for inputw for writable,o for output andv for unconstrained variable. The abstrac-
tion is intended to model variables which are constrained;byy i, 6., by w andé, by o. Unconstrained
variables are modelled hy

To allow the modelling of operations on modes, mode trees have the following join and union operators.
Generally input modes are overwritten by any output modes that have been produced.

Definition 6.1.14 Thejoin of two mode symbols» andn, written asm A n, theunion written asm V n,
and thetie, written asm > n, are defined in tablé.1

Thejoin of two mode treed/ and N, written asM A N is defined as

M if N=wv

N if M =v

(m/\n)(]\/fl/\Nl,...,Ml/\Nl,Nl+1,...,Nk) ifM:m(Ml,...,]\/fl),
Nzn(Nl,...,Nk)
andl < k

(m/\n)(M1/\Nl,...,Mk/\Nk,MkH,...,Ml) ifM:m(Ml,...,Ml),
N =n(Ni,...,Ny)
andl > k

The union of two mode trees\/ and N, written asM Vv N is defined in a similar manner to the join,

replacing the join of the mode symbols with the union. Similarlyttbef two mode trees, written ag/ > NV
is defined by using the tie operator instead of the join operator.

The above mode tree representation does not allow the direct representation of negation. Mode trees
implicitly represent a conjunction of constraints, and the negation operation converts a conjunction into a

6.1. ABSTRACT INTERPRETATION 93

disjunction, eg~X = f(a) < X # f(1) V(X = f(Y) AY # a). Similarly negations of constraints with
multiple variables tends to separate the variables during negation(&g= aA\Y =b) < X # aVY #b.

However it would be useful to be able to represent some of the effects of negation on modes. In these cases,
the representation of negated modes must be reduced to an inaccurate approximation of the negation.

Definition 6.1.15 Theinversionof a mode treé\/, written as— 1/ is defined as

v if M =v
m(v,...,v) if M =m(My,...,M,)

We are now in a position to define suitable abstraction and concretisation functions for moving between
predicate mode trees and modings.

Definition 6.1.16 Theconcretisation functiony : M.A — M is defined as
WPy = Qi Pot)
mode Pot)#v

where< 0;,0,,0, > ® < 04, 04,0, >=< 0; N0oj,04u N0y, 0, No, >andy : V x MT — M is defined
as

< true trug true > if mode(M) =v
(V. M) = < nonvar(V),true true> if mode(M) =1
R) <true nonvar(V),true> if mode(M) = w
< true trug nonvar(V) > if modeg(M) = o
wherenonvar(V;) is a shorthand fok/ V; = ¢(V;.1,. .., Vi) for all functor/arity pairs and constants in

the constraint domain; iewonvar(V;) requires; to be constrained to be some non-variable term.
As an exampley(p(i(v, w())) =< nonvar(Vy), nonvar(Vy o), true >.

Definition 6.1.17 Theabstraction functiorx : M — M A is defined by

a@pWi,. V) ot= \/ a(V,0)
ocu(p(Vi,...,Vy,)

wherea : V x M — MS is defined as

if #; constraing”
if 6,, constraing/
if 6, constraingd”
otherwise

Oé(V, < 91’7910790 >) =

@QS@.

An example abstraction gf(V1,V5) — {< V4 = a,trueg Vo = b >, < V3 = b,itrue Vo = a >} is
p(i,0).

Lemma 6.1.3 The functionsy and« as defined in definition8.1.16and6.1.17are adjoined.

Proof The proofis an induction on the depth of the mode tree in a similar manner to the proof of lemma
6.1.2 Since variables are separated during abstraction, we need only consider individual predicate argu-
ments and predicates of one variable.
If we have a mode tre®f with depti{ M) = 1thenM = v. In this casey(v) =< true true true > and
a(< trugtrugtrue>) = v, soa(y(M)) = M, andy(a(< true true true >)) =< true trug true >.
Suppose that the proposition holds for mode trees of depth. In such a case, we have =
m(My, ..., M,). If m =itheny(p(M)) =< nonvar(Vy), true true > @v(Vi1, M1)®- - @5(Vin, My,).
Since v(Vi1, My),...,v(Vi,, M,) do not constrainl;, the final constraints will all be of the form
< nonvar(Vy) A 0;,0.,,0, > anda(Vy, < nonvatVi) A 0;,6,,6, >) = i. By the induction hypothe-
sis, this relationship holds true fdi/y, ..., M,, and thereforex(~(p(M)) = p(M). A similar argument
holds for the mode symbots ando.

94 CHAPTER 6. AN AKL COMPILER

Suppose all modings of a predicate 0;,6,,,0, > havef; constrainingV;,. Then eachn(V;, <
0;, 0,0, >) =i and the union of all the mode symbolsisn such a casey(p(V1)) = p(i(M, ..., M,))
andy(p(M)) =< nonvar(V1),trug true> @y(Vi1, M1) @ - - - @ v(Vin, M,,). Since each
0; — nonvar(Vy) we haveu(p(Vy) < ~(a(u)p(Vy)), since the induction hypothesis holds for each
My, ..., M,. A similar argument holds for the mode symbeisando. O

With a pair of suitably adjoined domains, it is now possible to define an approximatenction for
modes. Thig’, function must be able to approximate the effects of guards on the modes that are produced.
In particular thed’, operator must preserve the effects of guards. For example in the program

pX) - X=a ->X=a.

p/1 should have the mod€:), despite the implicit mode afin the body. The tie operator can be used
to preserve guard modes. We also need to be able to make modes more restrictive.

Definition 6.1.18 Themode restriction operatdior a mode treé// and mode symbot, written asM 1 n
is defined as

M o if M=o
Tn= (min(n,m))(My Tn,...,M; T n) if M =m(M,..., M)

We can now define a suitable approximation todheoperator.

Definition 6.1.19 Thevariable projection functiodl : 7 x MT xV — MT is defined adl(t, M, V) =
Nios—y M ¢ sif ¢ containsl” andv otherwise.

Givenagoalid = G4,..., G, where eaclts; = p;(¢:1,. .., t:m,), @ mode abstractiomand a variable
V, the mode of V, written as A(G,A,V) is defined to be A(G,A V) =
/\1§z‘§n H(G7 A(pi/m’i)7 V)

% MAx MA — MA s defined as

1 (A, B)(p(Va,..., Vo) = Ap(Vi, ..., Vi) if p(Va, ..., Vi) € dom(A).

2. 34(A, B)(p(Vh,..., V) = p(Mi, ..., M) if p(Va,..., V) € dom(B) and

p(Vi,..., Vo) - G;? B; € P,1 < i < m, where eachM; = \/,_,.,,(A(G;, B,V;) A
—A(G1, B,Vj)A- - A=A(Gi—1, B,Vj))A=A(Giz1, B,V;)A- - A=A(Gpo, B, V;)) 1 w>A(B;, B, Vj).
EachGy,...,Gi—1,Gi41, ... G, may only restrict one head variable.

3. L(A,B)(p(Vr,..., Va)) =p(My, ..., M,)if p(Vi,...,V,) € dom(B) and
p(Vi,..., V) == Gi-> B; € P,1 < i < m, where eachM; = \/,_,.,.(A(G;, B,V}) A
—A(G1,B,V;) A--- AN=AN(Gi-1,B,V;)) 1 i>A(B;, B, V;). EachGy, ..., G;—1 may only restrict
one head variable.

4. % (A, B)(p(Vi,..., Vo)) = p(My, ..., M,) if p(V4,...,V,) € dom(B) and
p(Vi,..., Vo) - Gi % B; € P,1 < i < m, where eachM; = \/,_,,.(A(G;,B,V})) 1
i>A(Bi, B, Vj). T

Example 6.1.2 This example of the mod&’, operator is on the program

p(ll, X) - true | X = 0.
p(- | Rl, X) - true | p(R, X1), plus(X1, 1, X).
qlL, X) - pL, X1) ? X

X1.

gL, X) :- L = infinite ? X = -1.

6.2. COMPILATION ON PARTIAL INFORMATION 95

This program is guard-stratified in{dp/2 },{q/2 }}. Assuming a depth limit of 3 and thptus/3
has the modelus(o, o, 0), the fixpoint calculation for the first stratification is:

Pp, 10 ={p(V1,V2) — p(v,v)}
q)/Pl T 1= {p(vla ‘/2) - p(i(v,v),o)}
(I)IPl 12= {p(V1,V2) Hp(i(v,i(v,v)),o)}
CI)/Pl Tw= CI)/Pl T2

The fixpoint calculation for the second stratification is:

(I)iDz 10= {q(VhVQ) - p(’U,’U)}
@’132 T 1= {Q(‘/M ‘/2> - q(w(v,i(v,v)),o)}
(I)ipz Tw= (I)ipz T1

Generating Delays

Mode abstraction has two uses. The first and most obvious use is to provide information so that suit-
able delay instructions can be constructed during the indexing of the predicate. If, for some, trace
modédp(My,...,M,) ot) = i, a strict delay can be added for thargument to the indexing code for

p/n . If mode(p(My, ..., M,)ot) = wthen a weak delay can be used for trwgument.

Ordering Goals

The second use of mode information is to allow the compiler to order goals within clauses to provide an
optimal flow of bindings. The AKL assumes no particular order of execution in a list of atoms, beyond that
of guards completing before bodies are executed. The compiler is therefore free to re-order atoms within
goals to maximise execution efficiency. Efficiency is improved whenever moded predicates are called with
bindings already in place, allowing an immediate commit to some clause.

The DAM is designed for use on parallel systems with a small number of processors, and these proces-
sors will rapidly be given work. After all processors have been assigned work, each processor will execute
any goals sequentially. In general the normal mode of execution for any list of goals is a sequential first
to last pattern. The modes available to the compiler from the abstract interpretation allow the goals of the
sequence to be simply ordered.

To allow ordering, we assume an initial sequence of géals G,...,G, and that there is a mode
abstractiond for the program. For each pair of godls, G; we defineGG; < G; if there exists a variable,

V € vardG) and traces in G; ands in G; where modéA(G;) ¢ t) < moddA(G,) ¢ s) forall V e

vardG;) NvardG;) whereG; ot = G; o s = V. If there is a cycle then, by the above definitich, < G,

andG; < G;. In the case of a cycle, the original order of the goals is maintained, on the assumption that
the programmer has some reason for ordering the goals in that way. Goal ordering is then a simple matter
of topologically sorting the goals into descending order.

As an example, consider the gggX, Y), q(Y, X), r(X) where the mode abstractionds=
{p(Vi, Va) — p(i(), 00)), q(Va, Va) — q(i(),i()), (Vi) — r(0()), }

In this case we have(X,Y) < r(X) as bothp(X,Y) ¢ 1 andr(X) ¢ 1is X, and modeA(p(X,Y)) ¢
1) = i,moddA(r(X)) o 1) = o. We also have(X,Y) < r(X). For the above examplg(X,Y) <
p(Y, X), since modeA(p(X,Y)) ¢ 2) = o,moddA(p(Y, X))o 1) =1i.

Sorting the goals gives the sequen@d, p(X, Y), a(Y, X)

6.2 Compilation on Partial Information

The advantages of logic programming languages for compilers have been recognisedsange Most
compilation can be viewed as a meta-interpretation of the source code, evaluating it to the point that it
can be transformed into another target language. Since the source and target languages are unlikely to
have an exact mapping between statements, this approach tends to become muddied by collecting forward
information about the interpretation.

96 CHAPTER 6. AN AKL COMPILER

Logic programming languages allow a more direct approach to compiler writing by using logical vari-
ables and difference lists. The use of logical variables means that exact decisions about some elements,
such as register allocations, can be deferred until enough information is available. At that point it is possi-
ble to “fill in” the elements associated with the logical variables before continuing. The use of difference
lists allows compilation to proceed as an interpretation of the code, with the various parts of the code being
assembled at the end.

The AKLs determinacy condition can be used to make a compiler even closer to the ideal of a linear
code interpretér Decisions can be deferred until enough data becomes available by allowing each point
in the compilation to combine data from the “past” — pre-built terms, permanent register allocations, etc
— with data from the “future” — specific register positions, modes, etc. Provided that the compiler can
continue with the meta-interpretation, the deferrable parts of the compilation can be spawned, to await
sufficient information. This view of AKL compilation is also used in the AGENTs compiler supplied by
SICS.

6.2.1 Temporary Register Allocation

Since the DAM is a register-based abstract machine, each term in the computation will need to be allocated
a register for its lifetime within the computation. An optimal register allocation minimises the amount
of moves between pairs of registers and between registers and memory; the optimal allocation eliminates
unnecessary “register shuffling”.

Since the DAM has 256 temporary registers it is unlikely that temporary terms will have to be moved
from and to temporary storage between calls. The DAM uses a register passing convention for passing
arguments to calls; an ideal register allocation would ensure that terms which are used as arguments to calls
are always pre-placed.

Generating an optimal register allocation is known to be an NP-hard probéme[l]. However regis-
ter allocation for the DAM essentially needs to satisfy only two criteria: a term remains in a register while
it is in use and a term is placed in a calling register if it is to be used in the next call.

Register allocation in the DAM compiler consists of two streams. The forward stream consists of
register allocations made in the computation’s past, where terms are matched against logical variables. The
backward stream consists of allocation requests from the future, where a register is requested as having
‘any’ register, or a specific register number. When a term stops being requested by the future, the term can
be discarded from the set of register allocations, allowing the register to be re-allocated. The two stream
approach combines both optimal register placement and liveness analysis.

Following Matyska et al. J1JT91], we use the following terminology. Amline call is a call to a
primitive inline predicate, eg. unification or arithmetic operations.ofihof linecall is a call to any other
predicate. Achunkis a sequence of zero or more inline calls, terminated by the end of the clause, a guard
operator or an out of line call.

The domain of registers is denoted By= {0...m}, wherem is the maximum register number —

255 in the case of the DAM.

Definition 6.2.1 A register assignmeris a functionA : 7 — R which maps any term onto a set of
temporary registers; the registers that currently hold a reference to the terepresents the domain of
register assignments.

Theused register sdbr a register assignmeri is defined as

Used(A) = U{A(t) : t € dom(A)}

Definition 6.2.2 A liveness ses a functionL : 7 — R U{_L, T} which maps any term onto the registers
that could best be used to hold the term; or td the term is no longer live, or ontd to indicate a “don’t
care” assignment. For the purposes of set union and intersettien{} and T = R. L represents the
domain of liveness sets.

Theunavailable register sdbr a liveness set and termt is defined as

Unavail(L,t) = U{L(s) : s € dom(L) ands # t}

1At least in concept; actual execution is liable to become very intricate.

6.2. COMPILATION ON PARTIAL INFORMATION 97

Definition 6.2.3 Theclash sebetween an assignmeatand liveness sdt is the functionClash : Ax L —
o7 where

Clash(A, L) = {t: L(t) # L andA(t) N L(t) = 0}

Definition 6.2.4 An assignment functiois a functiondss : P x A x £ — A x L.

Given a chunke with predicates, . .., p, and some assignment function, we have a corresponding
sequence of register assignments and livenesg detd), ..., (A,+1, Ln4+1) Where A; is some initial
register assignment,,, .1 = {t — L :t € 7} and Ass(p;, A;, L;) = (Aiy1, Lit1). Assuming that all
register transfers, both permanent and temporary, take up a similar amount éttienegst of a particular
assignment functiorss for the chunke is given by

Cost(Ass,c) = 211 |Clash(A;, Ly)|

An optimal assignment function ferminimisesCost(Ass, c).

Given a predicat®; (t;1, . . ., tim) and lettingT = {t,1, ..., t:m }, the register assignment function for
the DAM uses the following elements:

If p; is an inline predicate then

{t — L,H_l(t) t e T}U
L; = {t — L,H_l(t) : Li+1(t) 75 L}U
{t% T: Li+1(t> = J_/\tET}

If p; is an out of line predicate then

{t — Li+1(t) it g T}U
Li = {t — {j = tij} : Li+1(t) = T}U
{t = Liga()) U{j:t =tij}: Liga(t) # T}

The register assignment for the DAM is computed as follows:
If p; is aninline predicate, theA; ; = A" where

o = AITH(E) = {Ra(ti;, AT Li} ot # £ }U
T {t— Ay(t) U{Ral(tij, ATV L)Y ot =t}

Ra(t, A, L) is defined to be the lowest element of the first non-empty set in the sequdnde(t) —
Unavail(L,t), R — Unavail(L,t) or R andA) = A;.
If p; is an out of line predicate, thefy; = A" where

A {t—=A;(t)—1,... . m:t&T}U
Tt (A — Rt At 1< B <m}) U{G} =t}

As an example, consider the chuAk= f(X), p(A, A) whered; = {X — {1}} (all terms not
included in the set are assumed totbe- (). The sequence of liveness setdis = {},L: = {A —
{1,2}}, L1 = {A — {1,2}, X — T}. The sequence of register assignmentd;is= {X — {1}}, A; =
{X = {1},A— {2}}, 45 = {4 - {1,2}}.

Once aregister has been assigned, appropriate instructions can be inserted into the instruction stream to
allow the construction of the term in the register.

2In the DAM, temporary and permanent registers are stored as vectors in memory, so this assumption is justified. More complex
machines, with different transfer costs, need a more complex weighting

98 CHAPTER 6. AN AKL COMPILER

Processors

Benchmark Compiler 1 2 2 4
nrev(500) Full 1900 | 1300 900 900

No Modes 2000| 1500| 1000| 1100

No Indexing 15000| 13000 13000| 24000
bad-gsort(1000) Full 1700| 1300| 1200| 1200

No Goal-Orderingl 3500| 3000| 2800| 2900
and(10000) Full 1600| 2700| 4700| 7000

No Clause Sets 5300| 6300| 7800| 8700

No Indexing 6200| 7300| 8400| 8800
All results in ms,+10%.

Table 6.2: Performance of Selectively Compiled Code

6.2.2 Permanent Register Allocation

Permanent register assignment can follow the same pattern as temporary register assignment. Requests for
terms needed in the future can be passed back to the origin of the term and a permanent register assigned
to the term on the construction of the term. Register assignment occurs during the last use of the term in
the permanent register, allowing re-use of permanent registers. A permanent register assignment is needed
wherever a term is used in two chunks.

Following sectior6.2.1 we use the previous definitions of register assignment, liveness set and register
assignment function (definitior&2.1, 6.2.2and6.2.4. The register assignment function for permanent
register assignment, is given for a predicata , . . ., t,),T = {t1,...,t,} by:

Li={Lit1(t): t €T} U{t — {min(R — Unavail(Li+1,t))} : t € T}

If pis an in-line predicate, theA; ; = A4;
If pis an out of line predicate, then

(=0 Lo(t) = L}U
{f, — Ra(t, Ai7 Lz) teT andLl(ﬁ) 75 L}

As an example, the permanent register assignment for the cPaygx) :- a1, vY), r(X), s(Y))
would have the liveness set sequedge= {Y — {1}, X — {2}}, L, = {Y — {1},X — {2}},
Ls = {Y — {1}} andL, =) and the register assignment sequeAge= {X — {2}}, 42 = {X —
{2hY = {1}}, As = {Y = {1}}, A, = 0.

6.3 Performance

The effects on performance that the abstract interpretations and optimisations have can be measured by
selectively crippling the compiler and seeing what effect that has on the speed of compiled programs.

Three benchmarks were run with parts of the compiler remowel,(500)is the naive reverse bench-
mark described in sectiob.5. bad-gsort(1000)is the quicksort benchmark described in sectas but
with the goals in the clauses reversed, to create an inefficient goal ordenithd.0000)is the and operator
benchmark described in sectidrb. Only those benchmarks where the compiler can introduce additional
efficiency have been included in the compiler results. Smaller versions of these benchmarks were used, as
the DAM tended to run into memory problems while executing the crippled versions of the full benchmarks.
The results are summarised in tabl&

On the naive reverse benchmark, the removal of moding code does not affect the performance of the
benchmark appreciably; although consistent, most improvements are within the bounds of error. This result
is unsurprising, as the calls to the reverse and append predicates are likely to have fully instantiated argu-
ments when called. When run in parallel, the suspensions still create choice-boxes, the most expensive part

6.3. PERFORMANCE 99

of the computation, leading to only a minor improvement in performance. Removal of indexing produces a
spectacular drop in performance, as numerous choice- and and-boxes are created and speculative bindings
made. With 4 processors, the performance is almost double the sequential performance; if a call with bound
variables is made, then the call can quickly commit to the correct clause, if a call with unbound variables is
made, then the call must suspend and then be re-woken when a constraint fails.

Goal-ordering improves the performance of the bad quicksort program so that it runs as well as a sen-
sibly ordered program (which is what has been produced by the goal ordering). The overhead associated
with the non-goal ordered program is largely the creation of choice-boxes (again).

Using clause sets provides a very clear performance improvement. Without clause sets, most calls to
and/3 will create at least two and-boxes. With clause sets, a determinate call can be detected and a clause
committed to before any and box is created.

100 CHAPTER 6. AN AKL COMPILER

Chapter 7

Conclusions

The benchmarks taken for the DAM show that, sequentially at least, the DAM is an efficient abstract ma-
chine for use with the AKL. However the expense of some operations and granularity problems make its
parallel performance less than optimal. In addition, the selection rule of the DAM tends to encourage broad
exploration for solutions, rather than a narrow, focused search for an initial solution.

In hindsight, there are a large number of implementation decisions that | would change if | were to
re-implement the DAM. Clause sets are an obvious success, and | think that localised variables are a nice
way of looking at the problem of multiple constraints on a variable, albeit more memory expensive than
suspensions or hash windows. Other than these two elements, the DAM could do with a re-design:

e To be truly useful, the nondeterministic behaviour of the DAM will need to be modified. The DAM
essentially schedules on a first-come, first-served basis, with work being added to the work queue
as it appears. To control nondeterminism, a scheduler will need to both restrict nondeterministic
promotion until all determinate work has been processed and ensure that the remaining choices in a
nondeterministically promoted choice-box are left until the branch that has been promoted has been
fully explored. The DAM should still be able to explore branches in or-parallel if the workers are
available.

A possible solution to this problem is a scheduling algorithm which maintains a queue of and-parallel

work, a stack of available nondeterminate promotions and a stack of branches split from nondeter-
minate promotions. Work can be preferentially allocated from the and-parallel queue, the nonde-
terminate promotion stack and the branch stack in that order. By preferentially exploring a single

branch during nondeterminate promotion, the search is narrowed. However idle workers will still be

able to acquire work from the nondeterminate promotion and branch stacks if no and-parallel work is
available.

e Granularity remains a significant problem. Ideally, idle workers should only acquire box with a
suitable amount of further work to be done. However it is not easy to pre-estimate the amount of
work that a box contains when deciding whether to queue the work. It is possible that work can
be divided into two classes: light-weight work, such as woken and committed boxes, and small
nondeterminate promotions and heavy-weight work, such as parallel calls and large nondeterministic
promotions. Light work can be performed in-line by the worker that detects the work. Heavy work
can be queued.

Abstract interpretation may be able to detect likely cases of large or small amounts of work, and suit-
ably annotate clauses with simple conditional statements in a manner similar to CGEs. An example
of this approach would be an expression that limits parallel calls on the Fibonacci benchmark to those
with input arguments of (eg.) 4 or more, preventing work fragmentafiaid0].

e The copying approach to nondeterminism seems to be the simplest approach to implementing the
AKL. Some way of introducing backtracking would improve nondeterminate performance, however.

101

102 CHAPTER 7. CONCLUSIONS

e When | started to design the DAM, | was influenced by the RISC approach to architecture, hence the
splitting of the get and unification instructions into separate testing, locking and binding instructions.
Since these instructions tend to be simple and not take very much time to execute, the overhead
associated with decoding them tends to dominate. For example, most variables are local, so the
Localise instruction normally does nothing. The splitting of testing and structure creation tends to
create a code explosion whenever complex terms are unified. A re-implementation of the DAM would
return to the traditional WAM-style get and unify instructions, although | am still concerned about the
possibility of two processors, one reading and one writing the same term getting into a race condition.

e Variables, particularly unconstrained variables are too big. The Penny approach, where unconstrained
variables can be represented by a single cell is very much superior.

e Box creation is too expensive. Part of the expense of box creation is the linking of boxes together
and the locking overheads that this entails. If only a single processor can access a box, some way
of avoiding locking is needed. A scheme of shallow backtracking, where and- and choice- boxes are
lazily created would also help.

e The DAM uses a unified heap. Separating the heap into a heap, a box stack and an environment stack
would allow easier memory reclamation.

The most interesting aspect of this work on the AKL is probably the fixpoint semantics developed in
chapter. This semantics was originally developed to allow a suitable semantics for the bottom-up abstract
interpretation of the AKL, a language with elements of committed-choice, and the logical difficulties that
that introduces. By extending Boolean logic to the bilattice model and providing semantics in this logic for
commit operators, a coherent logical semantics can be built for the AKL and for other, simpler committed-
choice languages.

A missing feature in the fixpoint semantics for the AKL is that it has no concept of deadlock. Extending
the semantics by including the moded forms given in chapweould provide a more accurate semantics.

Appendix A

Benchmark Code

This appendix contains the code for the various benchmarks used to test the system.

A.1 nrev(1000)

generate(0, L) :- true -> L = [].
generate(N, L) :- true -=> L = [N | L1], N1 is N - 1, generate(N1, L1).

nrev([], L) :- true ? L =[]
nrev([X | Rest], Rev) :- true ? nrev(Rest, Revl), append(Revl, [X], Rev).

append(], I, O) :- true ? | = O.
append([X | Rest], I, O) :- true ? O = [X | ORest], append(Rest, I, ORest).

?- generate(1000, L), nrev(L, _L2).

A.2 gsort(2500)

generate(0, S, L) :- true -> L =[]
generate(N, S, L) :-
true
->
L =[S | L1]
S1 is ((S * 2311) + 25637) mod 4081,
N1 is N - 1,

generate(N1, S1, L1).

gsort(f], T, S) :- true ? T = S.
gsort([P | U], T, S) :-
true
?
partition(P, U, UL, UR),
gsort(UL, T, SL),
gsort(UR, [P | SL], 9).

partition(P, [, L, R) :-
true
?

L =1

103

104 APPENDIX A. BENCHMARK CODE

R =1l
partition(P, [X | U], L, R) :-
X >= P
2
L = [X | L1],

partition(P, U, L1, R).
partition(P, [X | U], L, R) :-

X <P

?

R = [X | R1],

partition(P, U, L, R1).
?- generate(2500, 10, L), gsort(L,], L2)
A.3 fib(25)
fib(0, FN) :- true -> FN = 1.
fib(1, FN) :- true -> FN = 1.
fib(N, FN) :-

true

->

N1 is N - 1,

fib(N1, FN1),

N2 is N - 2,

fib(N2, FN2),

add(FN1, FN2, FN).
% ?- mode explicitly adds mode information to a predicate
?- mode add(i, i, 0).
add(A, B, C) :- Cis A + B.

?- fib(25,).

A4 tree(l7)

tree(0, T) :- true -> T = nil.

tree(N, T) :-
true
->
T = t(N, T1, T2),
N1 is N - 1,

tree(N1, T1),
tree(N1, T2).

?- tree(17,).

A.5 subset(15)

% Style used by NU-Prolog and DAM
sstest(X) :- subset(X, _S) ? fail.
sstest(_X) :- true ? true.

A.6. ENCAP(7)

% Style used by AGENTS and Penny
sstest(X) :- unordered _bagof(R, subset(X, R), _L).

subset([], S) :- true ? S = .
subset([X | X1], [X | S1]) :- true ? subset(X1, S1).
subset(] X | X1], S) :- true ? subset(X1, S).

?- sstest([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15])

A.6 encap(7)

% Style used by NU-Prolog and DAM
encap :- xprod([1, 2, 3, 4, 5, 6, 7], R) ? fail.
encap.

% Style used by AGENTS and Penny
encap :- unordered _bagof(R, xprod([1, 2, 3, 4, 5, 6, 7], R),

xprod(X, S1-S2) :- xprodl(X, S1), xprodl(X, S2).
xprod1l(X, S) :- subset(X, S1) ? S = S1.

subset([], S) :- true ? S =[]
subset([X | X1], [X | S1]) :- true ? subset(X1, S1).
subset(X | X1], S) :- true ? subset(X1, S).

A.7 filter(1000)

filter :-
allowed(1000, A),
generate(1000, L),
filter(L, A, _L1).

allowed(N, L) :- N =<0 -> L = [].
allowed(N, L) :- true ->

L =[N | L1],

N1 is N - 10,

allowed(N1, L1).

generate(0, L) :- true -> L = [].
generate(N, L) :- true ->
L = [N | L1],
N1 is N - 1,
generate(N1, L1).

filter([], A, F) - true -> F = [].
filter(L | LR], A, F) :-

memberchk(L, A)

->

F =1L | FR],

filter(LR, A, FR).

L).

105

106

filter([

L1 | LR], A, F) :- true ->
filter(LR, A, F).

memberchk(A, [A |

memberchk(A, [A | R]) :- true -> memberchk(A, R).

A.8 and(50000)

_R]) :- true -> true.

andtest :- andtest1(50000).

andtest1(0).

andtestl(N) - N > 0 ?
and(1, 0, X),
and(1, Y, X),
and(-, 1, Y),

N1 is N - 1,
andtest1(N1).
and(0, 0, Q) :- true ? true.
and(0, 1, 0) :- true ? true.
and(1, 0, 0) :- true ? true.
and(1, 1, 1) :- true ? true.

APPENDIX A. BENCHMARK CODE

Appendix B

Sample DAM Code

This appendix contains the compiled codegartition/4

A.2.
PRED

0: SwitchOnTerm
1 ChoiceBox
Suspend
2: SwitchOnTerm
3: ChoiceBox
Suspend
4. GetListArgument
SwitchOnTerm
5: ChoiceBox
Suspend
6: ChoiceBox
Try
Try
Defer

11: TryOne

12: GetConstant

13: GetConstant
Lock
Localise
BindConstant

14: GetConstant
Lock
Localise
BindConstant

15: Proceed

21: AndBox
Allocate
GetListArgument
LessEq
PutValueXY
PutValueXyY
PutValueXyY

‘partition’/4

0,&1,&2,Fail,Fail
4

0,1,&0
1,&3,&11,&4,Fail
4

1,1,&2

1,1,5

5,&5,&6,4&6,&6
4
51,&4
4
0,0,&21
0,0,&31

1,$7,&13
2,570,814
2,&13
2,&13
2,8
3,$7,&15
3,&14
3,&14
38T

4
1,14

4,0,Falil
0,0
1,1
2,2

107

in the quicksort benchmark given in section

108

22:

23:

25:

31:

32:

33:

PutValueXyY
WaitCommit
Promote
Raise
PutValueYX
GetList
Lock
Localise
PutList
PutValueYX
GetListArgument
PutListArgument
PutVariableX
PutListArgument
BindVariable
Jump
GetListArgument
PutValueYX
GetListArgument
GetVariable
PutValueYX
PutValueYX
GetListArgument
PutValueYX
GetListArgument
PutValueYX
Deallocate
Execute

AndBox
Allocate
GetListArgument
Less
PutValueXY
PutValueXY
PutValueXY
PutValueXY
WaitCommit
Promote
Raise
PutValueYX
GetList
Lock
Localise
PutList
PutValueYX
GetListArgument
PutListArgument
PutVariableX
PutListArgument
BindVariable
Jump
GetListArgument
PutValueYX

3,3

2,2
2,&23
2,822
2,822
3
1,1
1,14
4,1,3
4
4,2,3
3,2
&25
2,13
1,1
1,1,4
4,3
0,0
1,1
12,1
2,2
2,2,2
3,3
4
'partition’/4

4
1,1,4

0,4,Fail
0,0
1,1
2,2
3,3

3,3
3,&33
3,&32
3,&32
4
1,1
1,15
51,4
5
52,4
4,3
&35
3,14
1,1

APPENDIX B. SAMPLE DAM CODE

109

GetListArgument 1,1,5

GetVariable 54

35: PutValueYX 0,0
PutValueYX 1,1
GetListArgument 1,2,1
PutValueYX 2,2
PutValueYX 3,3
GetListArgument 3,2,3
Deallocate 4
Execute 'partition’/4

LAST

110 APPENDIX B. SAMPLE DAM CODE

Appendix C

Abbreviations

AKL Andorra Kernel Language or Agents Kernel Language
BAM Basic Andorra Model

CCL Committed-Choice Language

CGE Conditional Graph Expression

DAP Dependent And-Parallelism

DAM Doug’s Abstract Machine

DDAS Dynamic Dependent And-Parallel Scheme
DDM Data Diffusion Machine

GHC Guarded Horn Clauses

IAP Independent And-Parallelism

JAM Jim’s Abstract Machine

KAP Kernel Andorra Prolog

KL1 Kernel Language 1

MIMD Multiple Instruction Multiple Data

SIMD Single Instruction Multiple Data

WAM Warren Abstract Machine

111

112 APPENDIX C. ABBREVIATIONS

Bibliography

[AK90]

[AK91a]
[AK91b]

[Alig6]

[AM8S]

[Bah91]

[BDL+88]

[Bel77]

[BG89]

[BJS8]

[Bors4]

[CC77]

Khayri A. M. Ali and Roland Karlsson. The Muse Or-Parallel Prolog model and its per-
formance. In Saumya Debray and Manuel Hermenegildo, ediwegeedings of the 1990
North American Conference on Logic Programmipgges 757—-776, Austin, 1990. ALP, MIT
Press.

Hassan A-Kaci. Warren’s Abstract Machine: A Tutorial ReconstructiovI T Press, 1991.

Khayri A. M. Ali and Roland Karlsson. Scheduling Or-parallelism in Muse. In Koichi Fu-
rukawa, editorProceedings of the Eighth International Conference on Logic Programming
pages 807-821, Paris, France, 1991. The MIT Press.

Khayri A. M. Ali. Or-parallel execution of prolog on a mutli-sequential machineterna-
tional Journal of Parallel Programmingl5(3):189-214, June 1986.

H. Alshawi and D. B. Moran. The delphi model and some preliminary experiments. In
Robert A. Kowalski and Kenneth A. Bowen, editoPypceedings of the Fifth International
Conference and Symposium on Logic Programmpages 1578-1589, Seatle, 1988. ALP,
IEEE, The MIT Press.

Reem BahgaPandora: Non-Deterministic Parallel Logic ProgramminghD thesis, Impe-
rial College, 1991.

Ralph Butler, Terry Disz, Ewing Lusk, Robert Olson, Ross Overbeek, and Rick Stevens.
Scheduling OR-Parallelism: An Argonne perspective. In Robert A. Kowalski and Kenneth A.
Bowen, editorsProceedings of the Fifth International Conference and Symposium on Logic
Programming pages 1590-1605, Seatle, 1988. ALP, IEEE, The MIT Press.

N. D. Belnap. A useful four-valued logic. In J. Michael Dunn and G. Epstein, editftordern
Uses of Multiple-Valued Logjpages 8-37. Reidel, 1977.

R. Bahgat and S. Gregory. Pandora: Non-deterministic parallel logic programming. In Gior-
gio Levi and Maurizio Martelli, editor®Rroceedings of the Sixth International Conference on
Logic Programmingpages 471-486, Lisbon, 1989. The MIT Press.

Maurice Bruynooghe and Gerda Janssens. An instance of abstract interpretation integrating
type and mode inferencing. In Robert A. Kowalski and Kenneth A. Bowen, ediues,
ceedings of the Fifth International Conference and Symposium on Logic Progranpages
669-683, Seatle, 1988. ALP, IEEE, The MIT Press.

P. Borgwardt. Parallel Prolog using stack segments on shared-memory multiprocessors. In
Proc. International Symposium on Logic Programmimpgges 2—-11, Atlantic City, 1984.
IEEE, Computer Society Press.

P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints Clonference Record of the Fourth
ACM Symposium on Principles of Programming Languagegies 238—-252, Los Angeles,
California, January 1977.

113

114

[CG86]

[Cha85]

[Cod91]

[Con83]

[Cong92]

[Cra88]

[CRR92]

[CS89]

[DeG84]

[DLH90]

[FBRO3]

[FF92]

[Fit91]

[Fly66]

[Foo94]

[Fra94]

BIBLIOGRAPHY

Keith L. Clark and Steve Gregory. Parlog: parallel programming in |6%@M Transactions
on Programming Languages and Syste8{4):1-49, January 1986.

Jung-Heng Chang. High performance execution of logic programs based on a static data de-
pendency analysis. Technical Report UCB/CSD 86/263, Univerity of California at Berkeley,
1985.

Michael CodishAbstract Interpretation of Sequential and Concurrent Logic Prografid
thesis, Weizmann Institute of Science, January 1991.

John S. ConeryThe AND/OR process model for parallel interpretation of logic programs
Ph.D. thesis, Department of Information and Computer Science, University of California,
Irvine, June 1983.

John S. Conery. The opal machine. In Peter Kacsuk and Michael J. Wise, édiflesnen-
tations of Distributed Prologpages 159-185. Wiley, 1992.

Jim CrammondImplementation of Committed Choice Languages on Shared Memory Mul-
tiprocessors PhD thesis, Department of Computing, Imperial College of Science and Tech-
nology, London, England, May 1988.

Ta Chen, I. V. Ramakrishnan, and R. Ramesh. Multistage indexing algorithms for speeding
Prolog execution. In Krzysztof Apt, editdProceedings of the Joint International Conference
and Symposium on Logic Programmjpgges 639—653, Washington, USA, 1992. The MIT
Press.

A. Calderwood and P. Szeredi. Scheduling or-parallelism in Aurora: The Manchester sched-
uler. In Giorgio Levi and Maurizio Martelli, editor®roceedings of the Sixth International
Conference on Logic Programmingages 419-435, Lisbon, 1989. The MIT Press.

Doug DeGroot. Restricted and-parallelism.Phoceedings of the 1984 International Con-
ference on Fifth Generation Computer Systepeges 471-478, Tokyo, Japan, November
1984.

Saumya K Debray, Nai-Wei Lin, and Manuel Hermenegildo. Task granularity analysis in
logic programs. IrProceedings of SIGPLAN Conference on Programming Language Design
and Implementatiorpages 174-188, June 1990.

Steve Frank, Henry Burkhadt, and James Rothric. The KSR1: Bridging the gap between
shared memory and mpps. Rioceedings of COMPCQNages 285—-294, Spring 1993.

Sz. Ferenczi and |. Fait’CS-Prolog: A communicating sequential prolog. In Peter Kacsuk
and Michael J. Wise, editorenplementations of Distributed Prolpgages 357-378. Wiley,
1992.

Melvin Fitting. Bilattices and the semantics of logic programmiridhe Journal of Logic
Programming 11(1 & 2):91-116, July 1991.

M. J. Flynn. Very high speed computing systen®oceedings of the IEEE54(12):1901—
1909, December 1966.

Wai-Keong Foong. A directory-based scheme of implementing distributed shared memory
for multi-transputer systems. Wwustralasian Workshop on Parallel and Real-Time Systems
pages 135-149. Victoria University of Technology, 1994.

Torkel Franeh. Some formal aspects of AKL. Research Report R94:10, Swedish Institute of
Computer Science, Kista, Sweden, 1994,

BIBLIOGRAPHY 115

[FWO1]

[GHO1]

[GJ79)]

[GJ89]

[GL8S]

[GL92]

[GMS96]

[Got87]

[Han92]

[HB8S]

[Her86a]

[Her86Db]

[HGO1]

[HJ90]

[Hoa78]

[Jan94]

lan Foster and Will Winsborough. Copy avoidance through compile-time analysis and local
reuse. In Vijay Saraswat and Kazunori Ueda, editbogjic Programming, Proceedings of
the 1991 International Symposiypages 455-469, San Diego, USA, 1991. The MIT Press.

Gopal Gupta and M. Hermenegildo. Ace: And/or-parallel copying-based execution of logic
programs. In Anthony Beaumont and Gopal Gupta, edittisceedings of the ICLP91 Pre-
Conference Workshop on Parallel Execution of Logic ProgrdPasis, France, June 1991.

Michael R. Garey and David S. Johns@omputers and Intractibility W.H. Freeman, San
Francisco, 1979.

G. Gupta and B. Jayaraman. Combined And-Or Parallism on Shared Memory Multiproces-
sors. In Ewing L. Lusk and Ross A. Overbeek, editbhmceedings of the North American
Conference on Logic Programmingages 332—349, Cleveland, Ohio, USA, 1989.

Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic programming.
In Robert A. Kowalski and Kenneth A. Bowen, editoPspceedings of the Fifth International
Conference and Symposium on Logic Programmpages 1081-1086, Seatle, 1988. ALP,
IEEE, The MIT Press.

Maurizio Gabbrielli and Giorgio Levi. Unfolding and fixpoint semantics of concurrent con-
straint logic programsTheoretical Computer Scienci05(1):85-128, 1992.

Laura Giordano, Alberto Martelli, and Maria Luisa Sapino. Extending negation as failure
by abduction: A three valued stable model semantidse Journal of Logic Programming
26(1):31-68, 1996.

A. Goto. Parallel inference machine research in FGCS projederdoeedings of the US-
Japan Al Symposium 8pages 21-36, 1987.

Werner Hans. A complete indexing scheme for WAM-based abstract machines. Technical
Report TR92-11, RWTH Aachen, Lehrstulirfinformatik 11, 1992.

Seif Haridi and Per Brand. Andorra Prolog — an integration of Prolog and committed choice
languages. IiProceedings of the 1988 International Conference on Fifth Generation Com-
puter System®ages 745-754, Tokyo, Japan, December 1988.

Manuel V. Hermenegildo. An abstract machine for restricted AND-parallel execution of
logic programs. In Ehud Shapiro, edit®roceedings of the Third International Conference
on Logic ProgrammingLecture Notes in Computer Science, pages 25-39, London, 1986.
Springer-Verlag.

Manuel V. Hermenegildo. Efficient management of backtracking in AND-Parallelism. In
Ehud Shapiro, editoRroceedings of the Third International Conference on Logic Program-
ming, Lecture Notes in Computer Science, pages 40-54, London, 1986. Springer-Verlag.

Arie Harsat and Ran Ginosar. CARMEL-4: The unify-spawn machine for FCP. In Koichi Fu-
rukawa, editorProceedings of the Eighth International Conference on Logic Programming
pages 840-854, Paris, France, 1991. The MIT Press.

Seif Haridi and Sverker Janson. Kernel Andorra Prolog and its computation model. In David
H. D. Warren and Peter Szeredi, editd®syceedings of the Seventh International Conference
on Logic Programmingpages 31-46, Jerusalem, 1990. The MIT Press.

C.A.R. Hoare. Communicating sequential process&sommunications of the ACM
21(8):666—677,1978.

Sverker JansoKL: A Multiparadigm Programming Languag@®hD thesis, Uppsala Uni-
versity, 1994,

116 BIBLIOGRAPHY

[JH91] Sverker Janson and Seif Haridi. Programming paradigms of the Andorra Kernel Language.
In Vijay Saraswat and Kazunori Ueda, editdregic Programming, Proceedings of the 1991
International Symposiunpages 167-186, San Diego, USA, 1991. The MIT Press.

[JL87] Joxan Jaffar and Jean-Louis Lassez. Constraint logic programmirigroteedings of the
Fourteenth Conference on the Princliples of Programming Languaugesges 111-119. ACM
Press, 1987.

[JLW9O0] Dean Jacobs, Anno Langen, and Will Winsborough. Multiple specialization of logic programs
with run-time test. In David H. D. Warren and Peter Szeredi, edit®rsceedings of the
Seventh International Conference on Logic Programmpages 717—731, Jerusalem, 1990.
The MIT Press.

[Kac92] Peter Kacsuk. Distributed data driven Prolog abstract machine. In Peter Kacsuk and
Michael J. Wise, editordmplementations of Distributed Prolpgages 89-118. Wiley, 1992.

[Kal87] L. V. Kale. The REDUCE-OR process model for parallel evaluation of logic programs. In
Jean-Louis Lassez, edité?roceedings of the Fourth International Conference on Logic Pro
gramming MIT Press Series in Logic Programming, pages 616—-632, Melbourne, 1987. The
MIT Press.

[Kow74] R. Kowalski. Predicate logic as programming language. In Jack L. Rosenfeld, &iter,
ceedings of the Sixth IFIP Congress (Information Processingpétles 569-574, Stockholm,
Sweden, August 1974.

[KS88] Shmuel Kliger and Ehud Shapiro. A decision tree compilation algorithm for FCP?]. In
Robert A. Kowalski and Kenneth A. Bowen, editoPy¥pceedings of the Fifth International
Conference and Symposium on Logic Programmpages 1315-1336, Seatle, 1988. ALP,
IEEE, The MIT Press.

[KT91] M. Korsloot and E. Tick. Compilation techniques for nondeterminate flat concurrent logic
programming languages. In Koichi Furukawa, ediRygceedings of the Eighth International
Conference on Logic Programmingages 457-471, Paris, France, 1991. The MIT Press.

[LBD*90] Ewing Lusk, Ralph Butler, Terrence Disz, Robert Olson, Ross Overbeek, Rick Stevens,
D.H.D. Warren, Alan Calderwood, Peter Szeridi, Seif Haridi, Per Brand, Mats Carlsson, An-
drzej Ciepielewski, and Bogumil Hausman. The Aurora or-parallel Prolog systdaw
Generation Computing/(2, 3):243-271, 1990.

[LK88] Y. J. Lin and V. Kumar. And-parallel execution of logic programs on a shared memory mul-
tiprocessor: A summary of results. In Robert A. Kowalski and Kenneth A. Bowen, editors,
Proceedings of the Fifth International Conference and Symposium on Logic Programming
pages 1123-1141, Seatle, 1988. ALP, IEEE, The MIT Press.

[Llo84] John W. Lloyd.Foundations of Logic Programmin@pringer series in symbolic computation.
Springer-Verlag, New York, 1984.

[LM92] Thomas LeBlanc and Evangelos Markatos. Shared memory vs. message passing in shared
memory multiprocessors. Technical report, University of Rochester, Rochester, NY 14627,
April 1992.

[MA96] Johan Montelius and Khari A. M. Ali. An and/or-parallel implementation of AKNew
Generation Computingl4(1):31-52, 1996.

[MD93] Remco Moolenaar and Bart Demoen. A parallel implementation for AKLPrisgramming
Language Implementation and Logic Programming: PLILR’8&ges 246—261, 1993.

BIBLIOGRAPHY 117

[MD94]

[MH90]

[MH92]

[Mil91]

[MJT91]

[MNL88]

[Mon97]

[MS92]

[MS93]

[MWBOO0]

[Naig6]

[Naigs]

[Naig9]

[Naio3]

[Nak92]

[PN84]

Remco Moolenaar and Bart Demoen. Hybrid tree search in the Andorra model. In Pas-
cal Van Hentenryck, editoRroceedings of the Eleventh International Conference on Logic
Programmingpages 110-123. MIT Press, 1994.

K. Muthukumar and M. V. Hermenegildo. The DCG, UDG, and MEL methods for automatic
compile-time parallelization of logic programs for independent and-parallelism. In David
H. D. Warren and Peter Szeredi, editd®spceedings of the Seventh International Conference

on Logic Programmingpages 221-236, Jerusalem, 1990. The MIT Press.

K. Muthukumar and M. Hermenegildo. Compile-time derivation of variable dependency
using abstract interpretatiofithe Journal of Logic Programmind 3(1, 2, 3 and 4):315-347,
1992.

H‘akan Millroth. Reforming compilation of logic programs. In Vijay Saraswat and Kazunori
Ueda, editorsl.ogic Programming, Proceedings of the 1991 International Symposiages
485-502, San Diego, USA, 1991. The MIT Press.

L. Matyska, A. Jergoa, and D. Toman. Register allocation in WAM. In Koichi Furukawa,
editor, Proceedings of the Eighth International Conference on Logic Programnpiages
142-156, Paris, France, 1991. The MIT Press.

K. Marriott, L. Naish, and J.-L. Lassez. Most specific logic programs. In Robert A. Kowalski
and Kenneth A. Bowen, editorBroceedings of the Fifth International Conference and Sym-
posium on Logic Programmingages 909-923, Seatle, 1988. ALP, IEEE, The MIT Press.

Johan Montelius.Exploiting Fine-grain Parallelism in Concurrent Constraint Languages
PhD thesis, Uppsala University, Uppsala, Sweden, April 1997.

Kim Marriott and Harald Sgndergaard. Bottom-up dataflow analysis of normal logic pro-
grams.The Journal of Logic Programmind3(1, 2, 3 and 4):181-204, 1992.

Maged Michael and Michael Scott. Fast mutual exclusion, even with contention. Technical
report, University of Rochester, Rochester, NY 14627, June 1993.

Anne Mulkers, William Winsborough, and Maurice Bruynooghe. Analysis of shared data
structures for compile-time garbage. In David H. D. Warren and Peter Szeredi, eflitors,
ceedings of the Seventh International Conference on Logic Programipaugs 747—-762,
Jerusalem, 1990. The MIT Press.

Lee Naish. Negation and control in Prolog Number 238 in Lecture Notes in Computer
Science. Springer-Verlag, New York, 1986.

Lee Naish. Parallelizing NU-Prolog. In Robert A. Kowalski and Kenneth A. Bowen, editors,
Proceedings of the Fifth International Conference and Symposium on Logic Programming
pages 1546-1564, Seatle, 1988. ALP, IEEE, The MIT Press.

Lee Naish. Proving properties of committed choice logic prografte Journal of Logic
Programming 7(1):63—-84, July 1989.

Lee Naish. Applying the Andorra principldustralian Computer Science Communications
15(1):191-201, 1993.

K. Nakajima. Distributed implementation of kl1 on the multi-psi. In Peter Kacsuk and
Michael J. Wise, editordmplementations of Distributed Prolpgages 89-118. Wiley, 1992.

Luis Pereira and Roger Nasr. Delta Prolog: A distributed logic programming language. In
Proceedings of the International Conference on Fifth Generation Computer Sysieges
283-291, Tokyo, Japan, November 1984.

118

[PN91]

[RDC92]

[Rou75]

[Sar87]

[SC93]

[Schos]

[SCWY91a]

[SCWY91b]

[Sha83]

[Shag6]

[She92]

[She93]

[SIC88]

[Som87]

[Som89]

BIBLIOGRAPHY

Doug Palmer and Lee Naish. NUA-Prolog: An extension to the WAM for parallel Andorra.
In Koichi Furukawa, editorProceedings of the Eighth International Conference on Logic
Programming pages 429-442, Paris, France, 1991. The MIT Press.

S Raina, Warren D. H. D., and J. Cownie. Parallel prolog on a scalable multiprocessor. In
Peter Kacsuk and Michael J. Wise, editdmplementations of Distributed Prolpgpages
27-44. Wiley, 1992.

P. Roussel. Prolog: Manuel d#érence et d'utilisation. Technical report, Univeesit/Aix-
Marseille, Groupe d’Intelligence Artificielle, 1975.

Vijay A. Saraswat. The concurrent logic programming language CP: definition and opera-
tional semantics. Il€onference Record of the Fourteenth ACM Symposium on Principles of
Programming Languagepages 49—-62, Munich, West Germany, January 1987.

Vitor Santos CostaCompile-Time Analysis for the Parallel Execution of Logic Programs in
Andorra-l. PhD thesis, University of Bristol, Bristol, UK, August 1993.

Erik Sclofn. On the computation of fixpoints in static program analysis with an application of
analysis of AKL. Technical Report R95:06, Swedish Institute of Computer Science, October
1995.

\itor Santos Costa, David H. D. Warren, and Rong Yang. The Andorra-l engine: A parallel
implementation of the basic Andorra model. In Koichi Furukawa, edRarceedings of the
Eighth International Conference on Logic Programmipgges 825-839, Paris, France, 1991.
The MIT Press.

Vitor Santos Costa, David H. D. Warren, and Rong Yang. The Andorra-I preprocessor: Sup-
porting full Prolog on the basic Andorra model. In Koichi Furukawa, edRooceedings of

the Eighth International Conference on Logic Programmipgges 443—-456, Paris, France,
1991. The MIT Press.

Ehud Y. Shapiro. A subset of Concurrent Prolog and its interpreter. Technical Report ICOT
TR-003, Institute for New Generation Computer Technology, Tokyo, Japan, 1983.

E. Shapiro. Concurrent Prolog: A progress reporftuimdamentals of Artificial Intelligence
number Incs 232, pages 277-313. Springer-Verlag, 1986.

Kish Shen. Exploiting dependent and-parallelism in Prolog. The dynamic dependent and-
parallel scheme (DDAS). In Krzysztof Apt, editd?yoceedings of the Joint International
Conference and Symposium on Logic Programmipages 717—-731, Washington, USA,
1992. The MIT Press.

Kish Shen. Implementing dynamic dependent and-parallelism. In David S. Warren, editor,
Proceedings of the Tenth International Conference on Logic Programrmages 167-183.
MIT Press, June 1993.

SICS. Sicstus Prolog user's manual. Technical Report R88007B, Swedish Institute of Com-
puter Science, 1988.

Z. Somogyi. A system of precise models for logic programs. In Jean-Louis Lassez, edi-
tor, Proceedings of the Fourth International Conference on Logic Pro gramnhiii§ Press
Series in Logic Programming, pages 769-787, Melbourne, 1987. The MIT Press.

Zoltan SomogyiA parallel logic programming system based on strong and precise modes
PhD thesis, Department of Computer Science, University of Melbourne, Melbourne, Aus-
tralia, January 1989. Technical Report 89/4.

BIBLIOGRAPHY 119

[SRVS8]

[SS95]

[Stas0]
[Tico5]

[UC90]

[Ued86]

[UF8S]

[War80]

[War83]

[War87]

[WHSS8]

[Win92]

[WR87]

[XG88]

[YAS7]

[YKS90]

[Z0ob90]
[ZT86]

Zoltan Somogyi, Kotagiri Ramamohanarao, and Jayen Vaghani. A stream and-parallel exe-
cution algorithm with backtracking. In Robert A. Kowalski and Kenneth A. Bowen, editors,
Proceedings of the Fifth International Conference and Symposium on Logic Programming
pages 1142-1159, Seatle, 1988. ALP, IEEE, The MIT Press.

Thomas $Jand and Dan Sahlin. Fixpoint analysis of type and alias in AKL programs.
Technical Report R94:13b, Swedish Institute of Computer Science, January 1995.

T. A. StandishData Structure Techniqueé&ddison-Wesley, 1980.

Evan Tick. The deevolution of concurrent logic programming languadgé€s23(1, 2, 3):89—
124, 1995.

K. Ueda and T. Chikayama. Design of the kernel language for the parallel inference machine.
The Computer JournaB3(6):494-500, 1990.

Kazunori Ueda.Guarded Horn ClausesPhD thesis, University of Tokyo, Tokyo, Japan,
March 1986.

K. Ueda and K Furukawa. Transformation rules for ghc programs. In ICOT, editmreed-
ings of the International Conference on Fifth Generation Computer Syspages 582-591,
ICOT, Japan, December 1988.

David H. D. Warren. Logic programming and compiler writigpftware Practise and Expe-
rience 10(2):97-125, 1980.

David H.D. Warren. An abstract Prolog instruction set. Technical Note 309, SRI International,
Menlo Park, California, October 1983.

D.H.D. Warren. The SRI model for or-parallel execution of Prolog: Abstract design and
implementation. IrProceedings of the 1987 Symposium on Logic Programnpiages 92—
102, San Francisco, August - September 1987. IEEE, Computer Society Press.

David H. D. Warren and Seif Haridi. The data diffusion machine: A scalable shared virtual
memory multiprocessor. In ICOT, editdProceedings of the International Conference on
Fifth Generation Computer Systenpages 943-952, ICOT, Japan, December 1988.

Will Winsborough. Multiple specialization using minimal-function graph semantitise
Journal of Logic Programmingl3(1, 2, 3 and 4):259-290, 1992.

H. Westphal and P. Robert. The PEPSys model: Combining backtracking, AND- and OR-
parallelism. InProceedings of the 1987 Symposium on Logic Programnpiages 436—448,
San Francisco, August - September 1987. IEEE, Computer Society Press.

H. Xia and W.K. Giloi. A hybrid scheme for detecting and-parallelism in Prolog programs.
In International Conference on Supercomputipgges 539-559. ACM Press, July 1988.

Rong Yang and Hideo Aiso. P-Prolog: a parallel logic language based on exclusive relation.
New Generation Computing(1):79-95, 1987.

E. Yardeni, S. Kliger, and E. Shapiro. The languages FCP(:,?) and FGCR{).Generation
Computing 7(2, 3):89-107, 1990.

Justin ZobelTypes in Logic Programmind”hD thesis, University of Melbourne, 1990.

Justin Zobel and James Thom. NU-Prolog reference manual, version 1.0. Technical Report
86/10, Department of Computer Science, University of Melbourne, Melbourne, Australia,
1986.

120 BIBLIOGRAPHY

Kang Zhang and Ray Thomas. A non-shared binding scheme for parallel Prolog implemen-
tation. In John Mylopoulos and Ray Reiter, editdPspceedings of the 12th International
Joint Conference on Artifical Intelligenc@ages 877-882. Morgan Kaufmann Publishers,

Inc., August 1991.

[ZT91]

Index

Abstract interpretatiorg85
Abstract machine49
Abstraction function85
broad type89
mode,93
ACE, 14
Adjoined functions85, 89, 93
AGENTS, 77,78
Agents kernel languagseeAKL
AKL, 4,27
And-box,28, 58
And-extension23
And-or tree,7
And-reduction22
And/Or process model4, 53
Andorra kernel languageeeAKL
Andorra model15, 21
andorra prolog22
basic,21, 22
extended26
Andorra prolog22
Andorra-1,22, 25, 81
AO-WAM, 15
Architecture 54
Argonne parallel Prolod
Argument vectory2
Arity, 4
Ask-tell constraint16
Assignment functior97
Atom, 4
Aurora,8
Authoritative program36, 43, 44

Backtrackingb, 50
Bagof-box,28
BAM, 21
Base type87, 90
Basic andorra modeteeBAM
Benchmarksy8, 103
Bilattice, 38
Binding array modelg, 77
Bit-vector model 13
Body

AKL, 27

Andorra Prolog22

121

Committed choice languag&é
Boolean algebre38
Box, 28
and,26, 28
bagof,28
choice,26, 28
copying,77
flags,72
message$4, 72
or, 26, 28
quiet,59
representatiorg9
stable 29, 59
statesp8
Broad type 87
abstraction functior§9
concretisation functiorg88

Call graph 12
Candidate claus@?2
CCL, seeCommitted choice language
CGE,seeConditional Graph Expression
Choice point50
Choice-box28, 58
Chunk,96
Clash set97
Clause4, 5
AKL, 27
Andorra Prolog22
Committed choice languagé6
Clause set62, 75, 88, 90
Clause table75
Closed formulad
Commit, 16, 23, 28, 36, 39
Committed choice languageb, 21
Compiler,83
global,83
Completed definition35
Completeness, 35,43
Composition41
Computation rule5
Concretisation functior85
broad type88
mode,93
Concurrent Prologl5, 16, 21

122

Conditional,28, 37
Conditional Graph Expressioh3
Conditional graph expressiob8
Configuration

AKL, 28

Andorra Prolog22

deadlock42

end,42

terminal, 42
Confluence38
Constant4, 5

representatiorg8
Constraint$, 27, 59

quiet,28

theory,35

trace form 87
Continuation pointe#9, 58, 66
Continuousg, 42
Copying,11, 27,68, 77
CP,15
Cut, 6, 25, 28

Red,25

DAM, 49
box, 64
clause set62
delay,62
environmenty?2
instructions 66
locking,56
nondeterminate promotiori/
registersp6
target architecturé&y5
terms,67
unification,69
variable,59
worker,65
DAP, seeParallelism, dependent and
Data areas}9
DDAS, seeParallelism, dynamic dependent
Decision tree
NP-Hardness of generatiod]
Definite clause4
Delay,62, 75, 95
Delphi, 11, 77
Depth,88
Determinism/15, 21, 29, 83
Andorra Prolog22
Directed,6
Domain,85
Doug’s abstract machineeeDAM

EAM, 26
Entailment6

Environment50
Examples
AKL, 31, 44,103
Andorra Prolog23
Andorra prolog23
binding array8
bit-vector model13
call-graph,12
combining parallelisml14
conditional,29
conditional graph expressiot¥
DAM, 69, 73,75, 107
dependent and parallelisi5, 31
fixpoint, 44
goal ordering95
hash window8
incomplete messagek3
independent and parallelish2, 31
JAM, 54
mode,94
object oriented programmin8
or parallelism31
quietness30
type model90
WAM, 52, 69, 73,75
Execution model
DAM, 58
JAM, 53
WAM, 50
Extended Andorra modedeeEAM

Failure,22, 28, 39, 50
First order logicseel.ogic
Fixpoint, 6, 41, 42, 85
Flat, 16, 26
Flynn taxonomyb54
Formula 4
FOUR,38
Function4, 5
Functions

ofp, 6

glb,6

Ifp, 6

lub, 6

mgu,5

GHC, 15, 16,21
Goal,5
Goal ordering83
Ground term4, 67
Guard
AKL, 27
Andorra Prolog22
commit,36, 39

INDEX

INDEX

Committed choice languagk6
conditional 37
recursive 37
Guard stratified progran37, 44, 46, 85, 89
Guarded Horn ClauseseeGHC

Hash windowy, 77
Herbrand equalityg, 59
Herbrand interpretatior,
Herbrand modeb

IAP, seeParallelism, independent and
Incomplete messagek3
Indecisive operato38
Indexing,61, 75, 86, 90
Indexing expressiorg0
Indifferent program37, 44, 46
Inline call, 96
Instructions49, 51, 54, 66, 68, 72, 75
Interlaced bilattice38
Interpretationb, 41
configuration43
intended35

JAM, 16, 49, 52
Jim’s Abstract MachineseeJAM

KAP, seeAKL

Kernel Andorra PrologseeAKL
Kernel Language IseeKL1
KL1, 15,16

Lattice,6
List, 5, 17
representatiorgl, 68

Literal, 4

Liveness set96
Locking,56, 60

Logic, 4

Lower boundb

Machine architecturé&4

Memory allocation50, 56

Merge predicatel 7, 36

MIMD, 54

Mode, 15, 16, 62, 75, 91
abstraction functior3
concretisation functior§3
inversion,93

Mode abstractiorf2

Mode restriction operato®84

Mode symbol92

Mode tree 92

Model,5, 42

Moding,91

Monotonic functionf

Most general unifie
Multi-sequential maching,1, 77
Muse,11

Negation 36, 92
Nondeterminism3, 15, 18, 29, 63, 77
NU-Prolog,3, 61, 78

Object oriented programming7
Optimising compiler83
Or-box,28

Or-extension23

Oracle, 11

Out of line call,96

P-Prolog21

Pandora22, 81

ParAKL, 59, 77, 81

Parallel NU-Prologl5, 16, 21

Parallelism4, 7
combining,14, 18
data-flow,19
dependent and,5, 21, 31
dynamic dependent3
independent and,2, 31
or,7,31
process-oriented,9
reform,19

Parlog,15, 16, 21

Partial orderp

Penny59, 63,77, 79, 81

PEPSys?, 14

Performance78, 98

Poset6

Predicate4

Program Graph Expressioh3

Program pointe#9, 58, 66

Programming technique$?, 31

Prolog,3, 5

Ptah,18

Quantification4, 38
Quietness28, 59

Reactive programmind,7
Read only variablel6
Reduce-OR model 4
Register allocation
cost,97
NP-Hardnes96
permanentd8
temporary96
Register assignmerip
Registers49, 66

123

124

Scalable architecturé4

Scheduling8, 77, 80, 101

Selection ruleb

SICStus Prolog3

SIMD, 54

SLD-resolution5

SLD-tree5

Soundness, 35, 43

SRI-Model,8

Stable box29, 59

Stable model semantic48

Static analysis
independent and-parallelisth3

Stratified, 37

Stream programmind,7

Structure
representatiorgl

Substitutionb

SuspensiorseeDelay

Suspension rule,6

Term,4
copying,78
representatiorfl, 67

Trace,86

Trail, 50

Type,86
base87, 90
broad,87

Type abstractiorg9

Type model89

Unavailable register se96
Unification,5, 69
broad type88
mode,92
Upper bound6
Used register se6

Variable,4, 5
copying,78
guessable27
local,59, 78
localised 59, 68, 78
parent59
representatiorfl, 67

Variable projection89, 94

WAM, 49
Warren abstract machingeeWAM
Worker,7, 65

INDEX

	Introduction
	Thesis Outline
	Some Preliminaries
	First Order Logic
	Prolog
	Constraints
	Lattices

	An Overview of Parallel Logic Programming
	Or-Parallelism
	The Hash Window Binding Model
	The Binding Array Model
	The Multi-Sequential Machine Model
	The Copying Model

	Independent And-Parallelism
	Run-Time Detection of Independent And-Parallelism
	Static Detection of Independent And-Parallelism
	Conditional Graph Expressions
	Combining Independent And-Parallelism and Or-Parallelism

	Dependent And-Parallelism
	Committed Choice Languages
	Reactive Programming Techniques
	Don't Know Nondeterminism and Dependent And-Parallelism

	Other Forms of Parallelism

	The Andorra Model
	The Basic Andorra Model
	Andorra Prolog
	Execution Model
	Commit
	Cut

	The Extended Andorra Model
	Andorra Kernel Language
	AKL Programs
	Execution Model
	Control
	Using the AKL

	The AKL and Logic
	Logical Aspects of the AKL
	Negation
	Commit Guards
	Conditional Guards
	Recursive Guards

	A Bilattice Interpretation of AKL Programs
	Bilattices
	A Logic Based on PD1OT1ptmptmmmnnFOUR
	Commit Predicates

	A Fixpoint Semantics for the AKL
	The AKL Execution Model
	Some Examples
	Well-Behaved Programs
	Non-Indifferent Programs
	Non-Guard Stratified Programs

	Related Work

	The DAM
	An Overview of Abstract Machines
	The WAM
	The JAM

	Underlying Architecture
	Target Architecture
	Locking
	Memory Allocation

	Execution Model
	Constraints
	Indexing
	Waiting on Variables
	Nondeterminate Promotion
	Box Operations

	Abstract Architecture
	Registers
	Instruction Format
	Terms
	Boxes
	Indexing and Modes
	Nondeterminate Promotion and Copying

	Performance
	Related Work

	An AKL Compiler
	Abstract Interpretation
	Partitioning the Program
	Determining Types
	Determining Modes

	Compilation on Partial Information
	Temporary Register Allocation
	Permanent Register Allocation

	Performance

	Conclusions
	Benchmark Code
	nrev(1000)
	qsort(2500)
	fib(25)
	tree(17)
	subset(15)
	encap(7)
	filter(1000)
	and(50000)

	Sample DAM Code
	Abbreviations

