
Instruments Package

TARMS Inc.

September 07, 2000

TARMS Inc. http://www.tarms.com

http://www.tarms.com

Copyright c
2000 TARMS Inc.

Permission is hereby granted, free of charge, to any person obtaining a
copy of this model and associated documentation files (the “Model”),
to deal in the Model without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Model, and to permit persons to whom the
Model is furnished to do so, subject to the following conditions:

1. The origin of this model must not be misrepresented; you must
not claim that you wrote the original model. If you use this
Model in a product, an acknowledgment in the product
documentation would be appreciated but is not required.
Similarly notification of this Model’s use in a product would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and
must not be misrepresented as being the original software.

3. This notice, including the above copyright notice shall be
included in all copies or substantial portions of the Model.

THE MODEL IS PROVIDED “AS IS”, WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS
OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE MODEL OR THE USE OR
OTHER DEALINGS IN THE MODEL.

Typeset in LATEX.

Contents

1 Interfaces 4
1.1 AbstractTransaction. 4

1.1.1 Relationships. 5
1.1.2 Operations . 5

1.2 Transaction . 6
1.2.1 Relationships. 6
1.2.2 Operations . 6

1.3 AtomicInstrument. 7
1.3.1 Relationships. 7
1.3.2 Operations . 7

1.4 CashflowSpecifier. 8
1.4.1 Relationships. 8
1.4.2 Operations . 8

1.5 CollateralItem. 10
1.5.1 Relationships. 10
1.5.2 Operations . 10

1.6 SimpleCashflow. 11
1.6.1 Relationships. 12
1.6.2 Operations . 12

1.7 PriceTransaction . 12
1.7.1 Relationships. 12
1.7.2 Operations . 12

1.8 CommodityHolding. 13
1.8.1 Relationships. 13
1.8.2 Operations . 13

1.9 Condition . 13
1.9.1 Relationships. 14
1.9.2 Operations . 14

1.10 DateCondition. 14
1.10.1 Relationships. 14
1.10.2 Operations. 14

1.11 Instrument. 14
1.11.1 Relationships. 15
1.11.2 Operations. 15

1.12 CashflowSeriesSpecifier. 16
1.12.1 Relationships. 16
1.12.2 Operations. 16

1.13 InstrumentWithMultiplier. 18

1

1.13.1 Relationships. 18
1.13.2 Operations. 18

1.14 InstrumentWithSpecifier. 19
1.14.1 Relationships. 19
1.14.2 Operations. 19

2 Classes 20
2.1 AbstractTransactionModel. 20

2.1.1 Relationships. 20
2.1.2 Attributes. 20
2.1.3 Operations . 21

2.2 CashflowSpecifierModel. 21
2.2.1 Relationships. 21
2.2.2 Attributes. 21
2.2.3 Operations . 22

2.3 CollateralItemModel . 23
2.3.1 Relationships. 24
2.3.2 Attributes. 24
2.3.3 Operations . 24

2.4 SimpleCashflowModel. 25
2.4.1 Relationships. 25
2.4.2 Attributes. 25
2.4.3 Operations . 25

2.5 TransactionModel. 26
2.5.1 Relationships. 26
2.5.2 Attributes. 27
2.5.3 Operations . 27

2.6 PriceTransactionModel. 27
2.6.1 Relationships. 27
2.6.2 Operations . 27

2.7 CashflowSeriesSpecifierModel. 28
2.7.1 Relationships. 28
2.7.2 Attributes. 28
2.7.3 Operations . 28

2.8 CommodityHoldingModel . 29
2.8.1 Relationships. 29
2.8.2 Attributes. 29

2.9 ComplexInstrumentModel. 29
2.9.1 Relationships. 30
2.9.2 Operations . 30

2

2.10 InstrumentWithSpecifierModel. 30
2.10.1 Relationships. 31
2.10.2 Attributes. 31
2.10.3 Operations. 31

2.11 DateConditionModel. 31
2.11.1 Relationships. 32
2.11.2 Attributes. 32

2.12 InstrumentWithMultiplierModel 32
2.12.1 Relationships. 32
2.12.2 Attributes. 32
2.12.3 Operations. 32

3 Associations 33
3.1 specifier. 34
3.2 price . 35
3.3 paymentSpecification. 35
3.4 paymentPeriod . 35
3.5 floatingRateTenor. 35
3.6 floatingRateIndex. 35
3.7 commodity . 35
3.8 unitInstrument. 35
3.9 commodity . 35
3.10 counterparty. 36
3.11 instrument. 36
3.12 underlyingTransaction. 36
3.13 transactionSequence. 36
3.14 security . 36
3.15 asset. 36
3.16 marketPrice. 36
3.17 lendingFee. 36

List of Figures

1 Class Diagram— Instruments. 37
2 Class Diagram— AtomicInstruments. 38
3 Class Diagram— Transactions. 39
4 Class Diagram— Specifiers. 40
5 Class Diagram— Holdings. 41
6 Class Diagram— Conditions. 42

3

7 Class Diagram— Collateral. 43

List of Tables

1 Instruments— Associations. 33
1 . . . continued. 34

Package Description

The Instruments package supplies the ‘instruments’ which are used to record the
details of the financial instruments underlying ‘deals’.

The key components of the instruments package are ’transactions’ and ’instru-
ments’.

A transaction specifies the flow of some financial asset. It specifies the direction
of the flow, the condition under which the flow will occur and the goods being
transferred. The assets being transferred by transactions will be ’instruments’.

An instrument specifies a set of transactions, which can be bought or sold as a
group. For instance, a bond would include all its coupon and principal payments
as transactions.

Thus, the Instruments Model consists of instruments, which contain transac-
tions, which contain instruments, which contain transactions, and so on. This re-
cursive structure bottoms out with ’atomic’ instruments, such as simple cashflows.
For AtomicInstruments to perform this role, they must also be able to function as
transactions. That is, they must have the information of a transaction, and must
implement the Transaction interface.

The specifier part of the package supplies classes for the specification of float-
ing rate cashflows and of series of such cashflows.

1 Interfaces

1.1 AbstractTransaction

AbstractTransaction is intended to be an abstract superclass of classes implement-
ing the Transaction interface. AbstractTransaction supplies a transaction direction
(the buySellMultiplier), and behavior allowing the storage of arbitrary supplemen-
tary data.

4

1.1.1 Relationships

Class Description Notes
* Validatable
+ Transaction §1.2
AbstractTransactionModel §2.1
*:Inherits+:Inherited by #:Realized by

1.1.2 Operations

Integer buySellMultiplier() buySellMulti-
plierEnumeration {1, -1}.

A transaction represents the transfer of an instrument to or from a specified or-
ganization (the ’counterparty’ of the transaction). The buySellMultiplier indicates
whether the counterparty of the transaction is buying or selling the instrument. A
value of +1 indicates that the counterparty is buying, and a value of -1 indicates
selling.

The description of a deal may involve nesting transactions with different coun-
terparties and buySellMultipliers. For example, consider the sale of a bond issued
by organization ’X’ to another organization ’Y’. This would be modeled as a trans-
action that has the bond as its instrument, Y as its counterparty, and a buySellMul-
tiplier of +1. The bond itself would contain a series of transactions representing
coupons. These transaction would have X as their counterparty, and buySellMulti-
pliers of -1.

The use of numbers to indicate the direction of the transaction is a convenience
to allow the effect of compounding to be worked out by multiplication.

Ultimately, a transaction will always be between two organizations. However,
in general we will not know who is on the other side of a transaction. For instance,
the coupon on a bond is paid by the issuer, but the receiver of this coupon is who-
ever owns the bond. For this reason transactions are modeled as having only one
organization.

Object dataFor(String dataKey) dataFor

dataKey: String
Return the supplementary data associated with the specified string. For exam-

ple, dataFor(’counterparty’) would return the counterparty or null if no counter-
party is specified.

Typically, supplementary data would be counterparty information, or informa-
tion about the accounting type of the transaction.

5

Null addData(String dataKey, Object data) addData

dataKey: String
data: Object

Add a piece of supplementary data, with the specified key. For example, ad-
dData(’counterparty’, anOrganization) would store the organization ’anOrganiza-
tion’ as the transaction’s ’counterparty’.

Typically, supplementary data would be counterparty information, or informa-
tion about the accounting type of the transaction.

Null removeDataFor(String dataKey) removeDataFor

dataKey: String
Remove data keyed by the parameter.

1.2 Transaction

A transaction is used to represent a one way flow of goods to or from a specified
party, on a particular date.

An example of this would be a coupon payment on a bond.
The goods being paid or received may be any kind of instrument, including

atomic instruments, such as simple amounts of a commodity, or more complex
financial instruments, such as a bond.

1.2.1 Relationships

Class Description Notes
* AbstractTransaction §1.1
+ PriceTransaction §1.7
+ AtomicInstrument §1.3
TransactionModel §2.5
$ PriceTransactionModel §2.6 underlying-

Transaction
0..1

$ ComplexInstrumentModel §2.9 transactionSe-
quence 0..1

*:Inherits+:Inherited by #:Realized by $:Association!:Navigable�:Aggregate�:Composite

1.2.2 Operations

Condition condition() condition

6

The condition under which the transaction will take place. This transaction will
occur as soon as the condition evaluates to true. Typically this condition will be a
DateCondition, explicitly specifying the date of the transaction.

Instrument instrument() instrument

An instrument defines the goods being exchanged.

Transaction multiplyTransaction(Number multiplier) multiplyTrans-
actionmultiplier: Number

Return a new transaction equivalent to the original transaction times a multi-
plier n. Just multiplies the underlying instrument by this number.

SimpleCashflow valueAtPrice(Price price) valueAtPrice

price: Price
This method takes a price as parameter and returns the value of the transaction:

A simpleCashflow. This value is calculated by applying the price to the receiver’s
underlying instrument, using the ’valueAtPrice’ method on the instrument.

1.3 AtomicInstrument

An AtomicInstrument is an elementary financial instrument. That is, it is not com-
posed from other simple instruments. An AtomicInstrument is either a Simple-
Cashflow or a CashflowSpecifier. It can be composed to form more complex in-
struments.

1.3.1 Relationships

Class Description Notes
* Instrument §1.11
* Transaction §1.2
+ SimpleCashflow §1.6
+ CashflowSpecifier §1.4
+ CollateralItem §1.5
*:Inherits+:Inherited by

1.3.2 Operations

Commodity commodity() commodity

7

The commodity being traded.

Date paymentDate() paymentDate

The actual date on which the cashflow occurs.

1.4 CashflowSpecifier

A CashflowSpecifier defines a single cashflow in terms of a principal and interest
rate to be applied to it, thus allowing the amount of the cashflow to be calculated.
Cashflows are defined in terms of a fixed rate, floating rate and principal payment.

1.4.1 Relationships

Class Description Notes
* AtomicInstrument §1.3
CashflowSpecifierModel §2.2
$ CashflowSeriesSpecifierModel §2.7 paymentSpecifi-

cation 0..1
*:Inherits #:Realized by $:Association !:Navigable�:Aggregate�:Composite

1.4.2 Operations

Date startDate() startDate

Start date of the period for which this cashflow applies. The period from start-
Date to endDate is the period over which the fixed and floating interest rates apply.

Date endDate() endDate

The end date of the period for which the cashflow applies.

Date fixingDate() fixingDate

The date on which the floating rate is fixed. This date must be before the pay-
ment date.

String advanceOrArrears() advanceOrAr-
rearsIndicates whether the payment is made in advance or arrears. If payment is in

advance then paymentDate = startDate. If arrears, then paymentDate = endDate.

Number principal() principal

8

The notional principal used to calculate the cashflow amounts.

PaymentRate fixedInterestRate() fixedIntere-
stRateThe fixed interest rate. This is applied to the principal to calculate the fixed rate

flow.

BasicYieldCurveSpecification floatingRateIndex() floatingRateIn-
dexThe index (rate curve) used to calculate the floating rate payment. For example,

LIBOR, PIBOR, US Treasury etc.
This will be a specifier for the desired rate curve. Typically it will be a standard

specifier set up as reference data.

Period floatingRateTenor() floatin-
gRateTenorThe tenor used to determine the floating rate. For example, if the tenor is 6

months and the floatingRateIndex is LIBOR, the floating rate used will be the 6
month LIBOR rate as at the fixing date.

Note that the floating rate tenor can be different from the term from startDate
to endDate, although they will often be the same.

Number principalCashflow() principalCash-
flowThe amount of principal payment included in the cashflow. For instance, a loan

repayment may include interest and some repayment of principal.

PaymentRate floatingInterestRate() floatingIntere-
stRateThis is the floating interest rate to be used to calculate the floating rate cash-

flow. After the fixing date it will be a set value. Before the fixing date it will be
read off the floatingRateIndex.

SimpleCashflow floatingRateCashflow() floatingRate-
CashflowThe actual cashflow associated with the floating rate. This will be a calculated

value.
The floatingRateCashflow is calculated using the spot interest rate from the

specified index curve for period floatingRateTenor as at the fixing date. This rate
is then converted to an appropriate paymentRate. This rate is then applied to the
principal for the period from startDate to endDate by using the interestOnPrincipal
method on paymentRate.

SimpleCashflow fixedRateCashflow() fixedRateCash-
flow

9

The cashflow generated by the fixedInterestRate. This will be a calculated
value.

The fixedRateCashflow is calculated using the interestOnPrincipal() on the
fixedInterestRate, with the receiver’s principal as parameter to this method.

1.5 CollateralItem

A collateral item is an asset pledged by a borrower that will be given up if a loan is
not paid.

With some trades, for example repos, one party to the deal may feel that there
is a significant risk that the other party may default on the deal. In these situations,
collateral may be provided as extra insurance to the party with the higher credit
rating.

1.5.1 Relationships

Class Description Notes
* AtomicInstrument §1.3
CollateralItemModel §2.3
*:Inherits #:Realized by

1.5.2 Operations

Instrument asset() asset

This is the asset being used as collateral. Bonds or shares are typically assets
which are used as collateral. Cash is another asset which can be used as collateral.

CommodityHolding faceValue() faceValue

The value of the asset being used as collateral.

Enumeration specialOrGeneral() specialOrGen-
eralEnumeration{’special’, ’general’}.

Collateral is identified as either ’special’ or ’general’. With some trades, a
dealer wants to use specific securities (eg. bonds) only as the collateral. ’special’
is used to identify this. If any security can be used to make up the collateral in a
trade, then this field is ’general’.

Date startDate() startDate

10

The date from when the asset is being used as collateral.

Double haircut() haircut

Haircuts are employed to deal with two particular issues concerning repo trades.
The first, that the two parties to a repo will be of different credit standing, thereby
allowing the more creditworthy party to the repo to borrow a greater value than they
lend. The second, that the value of securities pledged as collateral will vary with
market prices; in order to provide some cushion against these changes in value;
thus reducing the number of margin calls to be made.

Date repaymentDate() repaymentDate

The date on which repayment of collateral occurs.

Price marketPrice() marketPrice

When collateral has been obtained from an internal party, then the price at
which the collateral has been obtained needs to be recorded.

CommodityHolding marketValue() marketValue

The value of the collateral at the market price. This will be filled in at a later
date when revaluation is to be taken into account.

type() type

lendingFee() lendingFee

1.6 SimpleCashflow

A SimpleCashflow is a financial instrument which can be used to create more com-
plex instruments. This instrument is ‘simple’ in the sense that it cannot be broken
down any further. This is the minimum amount of information required to define a
meaningful instrument. A SimpleCashflow interface returns a cashflow on a given
date. An example of this would be some amount of a currency, on a given date.
That is 100 USD on 14 January 1999.

11

1.6.1 Relationships

Class Description Notes
* AtomicInstrument §1.3
SimpleCashflowModel §2.4
*:Inherits #:Realized by

1.6.2 Operations

Number quantity() quantity

The amount of a commodity.

1.7 PriceTransaction

A PriceTransaction is used to model the situation where a price is paid in exchange
for another transaction: The ’underlying transaction’.

The consideration paid may be specified either as a ’price’ or as an instrument
to be exchanged for the underlying transaction.

A ’price’ specification would be, for example, a price per hundred face value
or yield to maturity: A number that is applied to the underlying transaction to
calculate the consideration. In this case the instrument method will return this
calculated consideration.

In the case where the consideration is specified explicitly, it will be held in the
’instrument’ of the PriceTransaction.

1.7.1 Relationships

Class Description Notes
* Transaction §1.2
PriceTransactionModel §2.6
*:Inherits #:Realized by

1.7.2 Operations

SecurityPrice price() price

Goods are exchanged for some price. The price the goods are exchanged for
is recorded here. The price is applied to the underlying transaction to calculate an
instrument to be paid as a consideration for the underlying transaction.

Transaction underlyingTransaction() underlying-
Transaction

12

A priceTransaction is used to model a payment which is being made as the
consideration for another transaction. This other transaction is the ’underlying-
Transaction’ of the priceTransaction.

1.8 CommodityHolding

CommodityHolding represents a simple holding of some commodity. For instance,
100 US dollars, or 20 ounces of gold. This is an amount of a commodity without
any concept of date of payment.

1.8.1 Relationships

Class Description Notes
* ValueSemantics
CommodityHoldingModel §2.8
*:Inherits #:Realized by

1.8.2 Operations

Number quantity() quantity

This is the quantity being held.

Commodity commodity() commodity

This is the commodity being held.

1.9 Condition

A condition specifies a set of requirements. The evaluate method will return true if
these requirements are satisfied in the current environment, and false otherwise.

Conditions test time, rates and functions against specified values or other rates
and functions. For example, a condition may specify that date = 1 Feb 2001; or
that the maximum value of a share price over a given period is less than a specified
value.

Conditions are used to specify the circumstances under which a transaction will
occur or an option will be available.

In the modeling of loans, bonds and simple instruments we only need to be
able to specify date conditions. This is all that has been modeled at this stage.
Ultimately more complex types of conditions, for example for use with options,
will be required..

13

1.9.1 Relationships

Class Description Notes
+ DateCondition §1.10
+:Inherited by

1.9.2 Operations

Boolean evaluate() evaluate

This method tests whether or not the condition is satisfied.

1.10 DateCondition

DateConditions test whether the current date has a particular value. A DateCondi-
tion will be true if the current date equals the condition’s date parameter.

1.10.1 Relationships

Class Description Notes
* Condition §1.9
DateConditionModel §2.11
*:Inherits #:Realized by

1.10.2 Operations

Date date() date

This method returns the date for the dateCondition. The dateCondition will be
true if the current date equals this specified date.

Boolean evaluate() evaluate

Tests whether or not the current date is equal to the date returned by the date
method.

1.11 Instrument

An Instrument is used to record the financial details of deals. The financial details
are the underlying cashflows, including information about timing, amount, com-
modity and the organization paying or receiving the cashflow.

14

An instrument specifies a collection of transactions which in turn specify the
exchange of instruments. This hierarchy of containment bottoms out with atomic
instruments, which are ’elementary’, in the sense that they are not composed of
simpler instruments.

1.11.1 Relationships

Class Description Notes
* Validatable
+ InstrumentWithMultiplier §1.13
+ InstrumentWithSpecifier §1.14
+ CashflowSeriesSpecifier §1.12
+ AtomicInstrument §1.3
ComplexInstrumentModel §2.9
$ InstrumentWithMultiplierModel §2.12 unitInstrument

0..n
$ TransactionModel §2.5 instrument 0..1
$ CollateralItemModel §2.3 security
$ CollateralItemModel §2.3 asset
*:Inherits+:Inherited by #:Realized by $:Association!:Navigable�:Aggregate�:Composite

1.11.2 Operations

Collection<Transaction> transactionSequence() transactionSe-
quenceThis returns a collection of transactions which are the cashflows associated

with a deal.

Collection<Transaction> cashflowsAtDate(Date aDate) cashflowsAt-
DateaDate: Date

This returns the cashflows in the transactionSequence that occur on and after
the given date. It will need to check the conditions on transactions to test any date
restrictions.

Instrument multiplyInstrument(Number multiplier) multiplyInstru-
mentmultiplier: Number

Return a given multiple of the receiver.

SimpleCashflow valueAtPrice(Price price) valueAtPrice

15

price: Price
Return the value of the receiver at the specified price.

1.12 CashflowSeriesSpecifier

A cashflow series specifier encodes a series of cashflows. It is capable of generating
and returning the cashflows it defines. These cashflows can be defined in terms of
fixed interest rates, floating rates etc. The sequence can be of any finite length, or
may be infinite (perpetuity).

A CashflowSeriesSpecifier will be used to encode, for example, the repayments
on a loan, the dividends on an equity, or the series of coupons for a bond or floating
rate note. By specifying an infinite series of cashflows it can be used to model
perpetual bonds and equities.

1.12.1 Relationships

Class Description Notes
* Instrument §1.11
CashflowSeriesSpecifierModel §2.7
$ InstrumentWithSpecifierModel §2.10 specifier 0..1
*:Inherits #:Realized by $:Association !:Navigable�:Aggregate�:Composite

1.12.2 Operations

Party counterparty() counterparty

Who is paying/receiving these cashflows to/from us?

RepeatedPeriod paymentPeriod() paymentPeriod

This is a repeated period defining the frequency of the cashflows. This repeated
period is applied to the paymentRate which holds data to generate a series of pay-
ments (cashflowSpecifiers).

CashflowSpecifier paymentSpecification() paymentSpecifi-
cationThis specifies how the cashflows are to be calculated for the cashflowSeries.

This cashflow specifier will have the dates for the first cashflow in the series.
The subsequent dates are calculated by applying the repeated period to these initial
dates.

Double paymentGrowthRate() payment-
GrowthRate

16

This is the annual rate at which payments grow. It is most relevant for equities.

String amortizationType() amortization-
TypeAre the cashflows based on level principal or level payments? The latter is

only meaningful in the case of fixed rate cashflows. It is specifically used for level-
repayment loans.

This operation is included as a convenient method of specifying a standard
pattern of payments. In general, of course, a cashflow series may not follow either
of these forms, in which case this operation will return nil.

The possible return values for this method are ’levelPrincipal’ and ’levelPay-
ment’. These values are of type ’string’. If the development language offers string
interning, then this should be used.

Date endDate() endDate

This is the end date for the cashflowSeries. It is not relevant in the case of
perpetuities.

Boolean perpetuity() perpetuity

Does the cashflow series ever terminate? If so then this method returns false.

Commodity commodity() commodity

Return the commodity (currency) in which this series of cashflows is denomi-
nated.

Collection<Transaction> generateCashflows() generateCash-
flowsThis method will return the full series of cashflows specified by the Cash-

flowSpecifier. If the cashflow series is a perpetuity then we will return, say, 10
cashflows. The first 9 cashflows will be the calculated cashflows. The 10th will be
a new cashflowSeriesSpecifier, specifying the subsequent transactions.

The cashflows will be CashflowSpecifierModels. These will be generated by
starting with the paymentSpecification, and applying the paymentPeriod (which is
a repeatedPeriod) to its dates, and applying the paymentGrowthRate to its princi-
pal. Note that the DateClassifier used to specify holidays for the period calculations
should be taken from the location of the receiver’s commodity
(ie. this.commodity.location.classifier).

Collection<Transaction> generateFirstCashflows(Integer numberOfCash-
flows) generateFirst-

Cashflows

17

numberOfCashflows: Integer
This method takes an integer, N, as its parameter, and returns N+1 transac-

tions. These transactions contain the first N cashflows generated by the specifier.
The last transaction contains a new CashflowSeriesSpecifier encoding the ’tail’ of
the series.

1.13 InstrumentWithMultiplier

An InstrumentWithMultiplier allows an instrument to be specified as a multiple
(the ’multiplier’) of another instrument (the ’unitInstrument’).

For example, consider a trade of 1 million of bonds which have a lot size of
1000. This can be represented by an instrumentWithMultiplier with the required
bond as its unitInstrument, and a multiplier of 1000.

1.13.1 Relationships

Class Description Notes
* Instrument §1.11
InstrumentWithMultiplierModel §2.12
*:Inherits #:Realized by

1.13.2 Operations

Number multiplier() multiplier

The multiplier is used to identify the number of times the unit instrument will
be multiplied by to give the amount of an instrument being traded within a deal.

This can be an integer, fraction or a dollar value depending on the type of
instrument being traded.

For example, a bond issue with a lot size of 1000 (being the unitInstrument),
will trade for a face value of $1,000,000 when the mulitplier is 1000.

Instrument unitInstrument() unitInstrument

An InstrumentWithMultiplier specifies a financial instrument as a multiple of
another instrument. This latter instrument is the ’unitInstrument’ of the Instrumen-
tWithMultiplier.

SimpleCashflow valueAtPrice(Price price) valueAtPrice

price: Price

18

Calculate the value of the unitInstrument at the specified price, and multiply by
the receiver’s multiplier.

1.14 InstrumentWithSpecifier

A specifier is designed to be a summary of information about cashflows. There are
occasions when all the cashflows for a trade are sufficiently standard and regular to
be algorithmically generated. In this case a cashflowSeriesSpecifier can be used to
record the information required to generate the cashflows.

1.14.1 Relationships

Class Description Notes
* Instrument §1.11
InstrumentWithSpecifierModel §2.10
*:Inherits #:Realized by

1.14.2 Operations

CashflowSeriesSpecifier specifier() specifier

This contains information ’specifying’ a cashflow which can be used to gen-
erate a series of cashflows over the life of a deal. For example, a bond deal can
have fixed coupon payments associated with it. If the same things differ between
each coupon then a specifier can be used to construct the series of cashflows for a
particular bond issue.

Boolean useSpecifier() useSpecifier

If the specifier is used to construct the cashflows, then true is returned, other-
wise false is returned. This operation is necessary because there are cases when
the specifier is merely used to generate a default series of cashflows the details
of which are then modified. In this situation we still want to record the specifier,
since it records useful information, even though it is not sufficient to fully define
the cashflows.

For example, a loan with regular fixed repayments would be modeled as an
instrumentWithSpecifier, and the specifier would generate all the cashflows (us-
eSpecifier would be true). If the same loan had an extra one-off principal repay-
ment, then useSpecifier would be false.

19

Collection defaultTransactionSequence() defaultTransac-
tionSequencedefaultTransactionSequence returns the sequence of transactions defined by the

specifier. This will be the result of sending the transactionSequence method to the
specifier.

Commodity commodity() commodity

An instrument with specifier will have a single commodity. This method re-
turns the commodity.

Party counterparty() counterparty

Return the counterparty of the instrumentWithSpecifier.

2 Classes

2.1 AbstractTransactionModel

AbstractTransactionModel realizes the AbstractTransaction interface. It is intended
to be used as an abstract superclass of classes implementing the Transaction inter-
face. It supplies its subclasses with services required for specifying transaction
direction, and named supplementary data.

2.1.1 Relationships

Class Description Notes
" AbstractTransaction §1.1
+ SimpleCashflowModel §2.4
+ TransactionModel §2.5
+ CashflowSpecifierModel §2.2
+ CollateralItemModel §2.3
+:Inherited by":Realizes

2.1.2 Attributes

buySellMultiplier: Integer

supplementaryData: Dictionary The supplementaryData attribute holds a dic-
tionary used to store optional supplementary data, keyed by a descriptive
string. It will hold such things as counterparty, if relevant.

20

2.1.3 Operations

Object dataFor(String dataKey) dataFor

dataKey: String

If the supplementaryData is null, then return null. If supplementary data is a
dictionary, then return the value keyed by the dataKey, if any. If there is no such
key in the dictionary, return null.

Null addData(String dataKey, Object data) addData

dataKey: String
data: Object

If the supplementaryData attribute is a dictionary, then add the data keyed by
the dataKey. If the supplementaryData attribute is null, then set it to be a dictio-
nary, and add the data as above.

2.2 CashflowSpecifierModel

CashflowSpecifierModel implements the CashflowSpecifier interface and provides
attributes for all relevant data. It allows a single cashflow to be specified.

2.2.1 Relationships

Class Description Notes
* AbstractTransactionModel §2.1
" CashflowSpecifier §1.4
$ Period floatin-

gRateTenor
0..1

!

$ BasicYieldCurveSpecification floatingRateIn-
dex 1..1

!

$ Commodity commodity 1..1 !

*:Inherits ":Realizes $:Association !:Navigable�:Aggregate�:Composite

2.2.2 Attributes

startDate: Date

endDate: Date

fixingDate: Date

21

advanceOrArrears: String This attribute records whether the payment is in ad-
vance or arrears. This may be somewhat redundant information, since the
payment will be in advance if paymentDate = start date and in arrears if
payment date = end date.

principal: Number

principalCashflow: Number

fixedInterestRate: PaymentRate

floatingInterestRate: PaymentRate

paymentDate: Date

2.2.3 Operations

Reportable validate() validate

BasicInterestRate floatingInterestRate() floatingIntere-
stRateIf the floatingInterestRate attribute has been set, then return its value. If the

floating rate has not been fixed, then query the floatingRateIndex for the interest
rate applicable from the fixing date for the period floatingRateTenor.

Boolean floatingRateSet() floatingRateSet

This boolean flag records whether or not the floating rate for this cashflow has
been set. This will happen at the rate fixing date.

Instrument instrument() instrument

CashflowSpecifierModel is both an instrument and a transaction, so the instru-
ment method should just return self.

Condition condition() condition

This method will return a DateCondition with date equal to the receiver’s pay-
mentDate.

CashflowSpecifierModel multiply(Number multiplier) multiply

multiplier: Number

22

Return a copy of the receiver with all instance variables the same, except prin-
cipal and principalPayment, which should be multiplied by the parameter (multi-
plier).

Instrument multiplyInstrument(Number multiplier) multiplyInstru-
mentmultiplier: Number

Return an instrument equal to the receiver with all instance variables the same,
except principal and principalPayment, which should be multiplied by the param-
eter (multiplier).

This can be done using the multiply method, and type-casting the result to be
of type instrument.

Transaction multiplyTransaction() multiplyTrans-
actionReturn an instrument equal to the receiver with all instance variables the same,

except principal and principalPayment, which should be multiplied by the param-
eter (multiplier).

This can be done using the multiply method, and type-casting the result to be
of type Transaction

Collection transactionSequence() transactionSe-
quenceReturn a collection of transactions containing only the receiver.

Collection cashflowsAtDate(Date date) cashflowsAt-
Datedate: Date

If the receiver’s paymentDate is the same as or later than the methods date pa-
rameter, then return a collection of transactions containing the receiver. Otherwise
return an empty collection.

2.3 CollateralItemModel

CollateralItemModel realizes the CollateralItem interface

23

2.3.1 Relationships

Class Description Notes
* AbstractTransactionModel §2.1
" CollateralItem §1.5
$ Instrument §1.11 security !

$ Instrument §1.11 asset !

$ Price marketPrice !

$ PaymentRate lendingFee !

*:Inherits ":Realizes $:Association !:Navigable�:Aggregate�:Composite

2.3.2 Attributes

specialOrGeneral: Enumeration = general Enumeration{’special’, ’general’}.

Collateral is identified as either ’special’ or ’general’. With some trades, a
dealer wants to use specific securities only as the collateral. ’special’ is used
to identify this. If any security can be used to make up the collateral against
a trade, then this field is ’general’.

startDate: Date

haircut: Double

repaymentDate: Date

type: Enumeration Enumeration{’repo’, ’buy-sell back’, ’securities lending’}.

This identifies the type of repo being traded. Repos have different character-
istics which can be determined by the type of repo.

2.3.3 Operations

PaymentRate lendingFee() lendingFee

Securities lending transactions are where special securities are lent out for a fee,
(the lending fee) and collateral is held as security in case of counterparty default.

This lending fee is calculated according to the type of general collateral being
held as security.

In the case where the collateral is securities, then letx be the lending fee ex-
pressed as basis points per annum,

lending fee= xb:p:� face value�marketvalueofsecurityatend� term
Or, if the collateral being held is cash, then the lending fee can be expressed as

an interest rate.

24

2.4 SimpleCashflowModel

SimpleCashflowModel realizes the SimpleCashflow interface.

2.4.1 Relationships

Class Description Notes
* AbstractTransactionModel §2.1
" SimpleCashflow §1.6
$ Commodity commodity 1..1 !

*:Inherits ":Realizes $:Association !:Navigable�:Aggregate�:Composite

2.4.2 Attributes

quantity: Number The amount of a commodity.

paymentDate: Date The actual date on which the cashflow occurs.

2.4.3 Operations

validate() validate

Instrument instrument() instrument

The receiver is both a transaction and an instrument. Return the receiver.

Collection transactionSequence() transactionSe-
quenceThe receiver is both an instrument and a transaction. Return a collection of

transactions containing only the receiver.

Condition condition() condition

Return a DateCondition with date equal to the receiver’s paymentDate.

SimpleCashflowModel multiply() multiply

Return a copy of the receiver with all instance variables the same, except the
quantity, which should be multiplied by the parameter (multiplier).

25

Transaction multiplyTransaction() multiplyTrans-
actionReturn a transaction equal to the receiver with all instance variables the same,

except the quantity, which should be multiplied by the parameter (multiplier).
This can be done using the multiply method, and type-casting the result to be

of type Transaction.

Instrument multiplyInstrument(Number multiplier) multiplyInstru-
mentmultiplier: Number

Return an instrument equal to the receiver with all instance variables the same,
except the quantity, which should be multiplied by the parameter (multiplier).

This can be done using the multiply method, and type-casting the result to be
of type instrument.

2.5 TransactionModel

TransactionModel realizes the transaction interface.
A transaction is used to represent a one way flow of goods to or from a specified

party, on a particular date.
The goods being transferred will always be an instrument of some kind. There

are several types of instrument including ’atomic’ and ’complex’. Atomic instru-
ments are simple flows of a commodity. Complex instruments have multiple cash-
flows, and include, for example, bonds.

Examples of transactions include: 1) A coupon payment on a bond would be a
transaction with the bond issuer as its counterparty and the coupon payment as its
instrument (an atomic instrument).

2) The purchase of a bond would be a transaction with the counterparty being
the seller of the bond and the bond as its instrument (a complex instrument).

2.5.1 Relationships

Class Description Notes
* AbstractTransactionModel §2.1
" Transaction §1.2
+ PriceTransactionModel §2.6
$ Instrument §1.11 instrument 1..1 !

*:Inherits+:Inherited by":Realizes $:Association!:Navigable�:Aggregate�:Composite

26

2.5.2 Attributes

condition: Condition This condition will specify the circumstances under which
the transaction will occur. Typically it will be a DateCondition, specifying
the settlement date for the transaction.

2.5.3 Operations

Reportable validate() validate

Transaction multiplyTransaction(Number multiplier) multiplyTrans-
actionmultiplier: Number

Return a transactionModel with instrument equal to the receiver’s instrument
multipled by the specified number. All other attributes and associations of the re-
ceiver are unchanged.

2.6 PriceTransactionModel

This class realizes the PriceTransaction interface. This class is used to record the
details of transactions in which a pair of goods are exchanged between parties, at a
particular price.

2.6.1 Relationships

Class Description Notes
* TransactionModel §2.5
" PriceTransaction §1.7
$ Price price 0..1 !

$ Transaction §1.2 underlying-
Transaction
1..1

!

*:Inherits ":Realizes $:Association !:Navigable�:Aggregate�:Composite

2.6.2 Operations

Instrument instrument() instrument

This method will return the instrument paid for the underlying transaction. This
will either be calculated by applying a price to the underlying transaction, or will
be stored explicitly as the receiver’s associated instrument. In the former case the

27

calculated consideration can be cached as the receiver’s instrument. In the latter
case, the receiver’s ’price’ will be null. The price is applied to the underlying trans-
action using the ’valueAtPrice’ method.

Transaction multiplyTransaction(Number multiplier) multiplyTrans-
actionmultiplier: Number

Return a TransactionAtPriceModel with instrument equal to the receiver’s in-
strument and priceInstrument multipled by the specified number. All other at-
tributes and associations of the receiver are unchanged.

2.7 CashflowSeriesSpecifierModel

CashflowSeriesSpecifierModel implements the CashflowSeriesSpecifier interface

2.7.1 Relationships

Class Description Notes
" CashflowSeriesSpecifier §1.12
$ CashflowSpecifier §1.4 paymentSpecifi-

cation 1..1
!

$ RepeatedPeriod paymentPeriod
1..1

!

$ Party counterparty 1..1 !

":Realizes $:Association !:Navigable�:Aggregate�:Composite

2.7.2 Attributes

paymentGrowthRate: Number

amortizationType: String

endDate: Date

perpetuity: Boolean

2.7.3 Operations

Reportable validate() validate

Commodity commodity() commodity

28

Return the commodity on the paymentSpecification.
Return the commodity of the payment specifier.

Instrument multiplyInstrument(Number multiplier) multiplyInstru-
mentmultiplier: Number

Return a copy of the receiver with all instance variables the same, except the
paymentSpecification which should be set to the original payment specification
multiplied by the parameter (multiplier).

Collection<Transaction> transactionSequence() transactionSe-
quenceReturn the result of the generateCashflows method.

Collection<Transaction> cashflowsAtDate(Date date) cashflowsAt-
Datedate: Date

Return the cashflows (generated by the receiver) that occur on or after the spec-
ified date.

2.8 CommodityHoldingModel

CommodityHoldingModel realizes the CommodityHoldingModelInterface.

2.8.1 Relationships

Class Description Notes
" CommodityHolding §1.8
":Realizes

2.8.2 Attributes

quantity: Number

commodity: Commodity

2.9 ComplexInstrumentModel

A ComplexInstrumentModel is an instrument constructed from a set of specifed
transactions. The ComplexInstrumentModel will hold an explicit set of transac-
tions in its transactionSequence.

29

2.9.1 Relationships

Class Description Notes
" Instrument §1.11
+ InstrumentWithSpecifierModel §2.10
$ Transaction §1.2 transactionSe-

quence 1..n
!

+:Inherited by":Realizes $:Association !:Navigable�:Aggregate�:Composite

2.9.2 Operations

Reportable validate() validate

The validation would be defined by the business rules, and hence is not docu-
mented.

Instrument multiplyInstrument(Number multiplier) multiplyInstru-
mentmultiplier: Number

Return a copy of the receiver with all instance variables the same, except the
transactionSequence multiplied by the parameter.

Collection<Transaction> transactionSequence() transactionSe-
quenceOn ComplexInstrumentModel, the transactionSequence is explicitly stored as

an associated collection of Transactions. This method just returns this collection.

Collection<Transaction> cashflowsAtDate(Number multiplier) cashflowsAt-
Datemultiplier: Number

The cashflowsAtDate() method on complexInstrumentModel will just select
those transactions in the transactionSequence which can occur on or after the spec-
ified date.

2.10 InstrumentWithSpecifierModel

The InstrumentWithSpecifierModel realizes the InstrumentWithSpecifier interface.

30

2.10.1 Relationships

Class Description Notes
* ComplexInstrumentModel §2.9
" InstrumentWithSpecifier §1.14
$ CashflowSeriesSpecifier §1.12 specifier 1..1 !

*:Inherits ":Realizes $:Association !:Navigable�:Aggregate�:Composite

2.10.2 Attributes

useSpecifer: Boolean

2.10.3 Operations

Commodity commodity() commodity

Return the commodity of the associated specifier.

Party counterparty() counterparty

Return the counterparty of the specifier.

Instrument multiplyInstrument(Number multiplier) multiplyInstru-
mentmultiplier: Number

Return a copy of the receiver with all instance variables the same except the
transactionSequence and the specifier, which should both be multiplied by the pa-
rameter.

Collection<Transaction> transactionSequence() transactionSe-
quenceReturn the associated transactionSequence. If the associated specifier is set to

’useSpecifier’ then the transactionSequence will just cache the results of the trans-
actionSequence method on the specifier.

Collection<Transaction> cashflowsAtDate(Number multiplier) cashflowsAt-
Datemultiplier: Number

Return those transactions in the transactionSequence which can occur on or
after the specified date.

2.11 DateConditionModel

31

2.11.1 Relationships

Class Description Notes
" DateCondition §1.10
":Realizes

2.11.2 Attributes

date: Date

2.12 InstrumentWithMultiplierModel

The InstrumentWithMultiplierModel realizes the InstrumentWithMultiplier inter-
face. InstrumentWithMultiplierModel thus also implements the Instrument inter-
face. Each method on an InstrumentWithMultiplier will return the appropriate mul-
tiple of the value returned by the same method on the associated unitInstrument.

2.12.1 Relationships

Class Description Notes
" InstrumentWithMultiplier §1.13
$ Instrument §1.11 unitInstrument

1..1
!

":Realizes $:Association !:Navigable�:Aggregate�:Composite

2.12.2 Attributes

multiplier: Number The multiplier is used to identify the number of times the
unit instrument will be multiplied by to give the amount of an instrument
being traded within a deal. This can be an integer, fraction or a dollar value
depending on the type of instrument being traded.

2.12.3 Operations

Reportable validate() validate

Instrument multiplyInstrument(Number multiplier) multiplyInstru-
mentmultiplier: Number

Return a copy of the receiver with the same unitInstrument, but with a multi-
plier multiplied by the parameter.

32

Collection<Transaction> transactionSequence() transactionSe-
quenceThe transactionSequence method on InstrumentWithMultiplier will return the

transactionSequence of the associated unitInstrument, multiplied by the specified
multiplier.

Collection<Transaction> cashflowsAtDate() cashflowsAt-
DateThe cashflowsAtDate() method on InstrumentWithMultiplier will return the

cashflowsAtDate() of the associated unitInstrument, multiplied by the specified
multiplier.

3 Associations

Table 1: Instruments— Associations

Association
Role Class Card. Notes

specifier
CashflowSeriesSpecifier §1.12 1..1 !

InstrumentWithSpecifierModel §2.10 0..1
price

Price 0..1 !

PriceTransactionModel §2.6 0..1
paymentSpecification

CashflowSpecifier §1.4 1..1 !

CashflowSeriesSpecifierModel §2.7 0..1
paymentPeriod

RepeatedPeriod 1..1 !

CashflowSeriesSpecifierModel §2.7
floatingRateTenor

Period 0..1 !

CashflowSpecifierModel §2.2 0..n
floatingRateIndex

BasicYieldCurveSpecification 1..1 !

CashflowSpecifierModel §2.2 0..n
commodity

Commodity 1..1 !

CashflowSpecifierModel §2.2 0..n

33

Table 1: . . . continued

Association
Role Class Card. Notes

unitInstrument
Instrument §1.11 1..1 !

InstrumentWithMultiplierModel §2.12 0..n
commodity

Commodity 1..1 !

SimpleCashflowModel §2.4 0..n
counterparty

Party 1..1 !

CashflowSeriesSpecifierModel §2.7 0..n
instrument

Instrument §1.11 1..1 !

TransactionModel §2.5 0..1
underlyingTransaction

Transaction §1.2 1..1 !

PriceTransactionModel §2.6 0..1
transactionSequence

Transaction §1.2 1..n !

ComplexInstrumentModel §2.9 0..1
security

Instrument §1.11 !

CollateralItemModel §2.3
asset

Instrument §1.11 !

CollateralItemModel §2.3
marketPrice

Price !

CollateralItemModel §2.3
lendingFee

PaymentRate !

CollateralItemModel §2.3
!:Navigable�:Aggregate�:Composite

3.1 specifier

Role: NavigableCashflowSeriesSpecifier, 1..1.
Role: InstrumentWithSpecifierModel, 0..1.

34

3.2 price

Role: NavigablePrice, 0..1.
Role: PriceTransactionModel, 0..1.

3.3 paymentSpecification

Role: NavigableCashflowSpecifier, 1..1.
Role: CashflowSeriesSpecifierModel, 0..1.

3.4 paymentPeriod

Role: NavigableRepeatedPeriod, 1..1.
Role: CashflowSeriesSpecifierModel.

3.5 floatingRateTenor

Role: NavigablePeriod, 0..1.
Role: CashflowSpecifierModel, 0..n.

3.6 floatingRateIndex

Role: NavigableBasicYieldCurveSpecification, 1..1.
Role: CashflowSpecifierModel, 0..n.

3.7 commodity

Role: NavigableCommodity, 1..1.
Role: CashflowSpecifierModel, 0..n.

3.8 unitInstrument

Role: NavigableInstrument, 1..1.
Role: InstrumentWithMultiplierModel, 0..n.

3.9 commodity

Role: NavigableCommodity, 1..1.
Role: SimpleCashflowModel, 0..n.

35

3.10 counterparty

Role: NavigableParty, 1..1.
Role: CashflowSeriesSpecifierModel, 0..n.

3.11 instrument

Role: NavigableInstrument, 1..1.
Role: TransactionModel, 0..1.

3.12 underlyingTransaction

Role: NavigableTransaction, 1..1.
Role: PriceTransactionModel, 0..1.

3.13 transactionSequence

Role: NavigableTransaction, 1..n.
Role: ComplexInstrumentModel, 0..1.

3.14 security

Role: NavigableInstrument.
Role: CollateralItemModel.

3.15 asset

Role: NavigableInstrument.
Role: CollateralItemModel.

3.16 marketPrice

Role: NavigablePrice.
Role: CollateralItemModel.

3.17 lendingFee

Role: NavigablePaymentRate.
Role: CollateralItemModel.

36

In
st

ru
m

e
nt

W
ith

M
ul

tip
lie

r

m
ul

tip
lie

r(
)

un
itI

ns
tr

um
e

nt
()

va
lu

e
A

tP
ri

ce
()

<
<

In
te

rf
a

ce
>

>
In

st
ru

m
e

nt
W

ith
S

p
e

ci
fie

r

sp
e

ci
fie

r(
)

us
e

S
p

e
ci

fie
r(

)
d

e
fa

ul
tT

ra
ns

a
ct

io
nS

e
q

ue
nc

e
()

co
m

m
o

d
ity

()
co

un
te

rp
a

rt
y(

)

<
<

In
te

rf
a

ce
>

>

C
a

sh
flo

w
S

e
ri

e
sS

p
e

ci
fie

r
<

<
In

te
rf

a
ce

>
>

In
st

ru
m

e
nt

W
ith

S
p

e
ci

fie
rM

o
d

e
l

us
e

S
p

e
ci

fe
r

: B
o

o
le

a
n

co
m

m
o

d
ity

()
co

un
te

rp
a

rt
y(

)
m

ul
tip

ly
In

st
ru

m
e

nt
()

tr
a

ns
a

ct
io

nS
e

q
ue

nc
e

()
ca

sh
flo

w
sA

tD
a

te
()

1
..1

0
..1

1
..1

0
..1 sp

e
ci

fie
r

In
st

ru
m

e
nt

tr
a

ns
a

ct
io

nS
e

q
ue

nc
e

()
ca

sh
flo

w
sA

tD
a

te
()

m
ul

tip
ly

In
st

ru
m

e
nt

()
va

lu
e

A
tP

ri
ce

()

<
<

In
te

rf
a

ce
>

>

In
st

ru
m

e
nt

W
ith

M
ul

tip
lie

rM
o

d
e

l

m
ul

tip
lie

r :
 N

um
b

er

va
lid

a
te

()
m

ul
tip

ly
In

st
ru

m
e

nt
()

tr
an

sa
ct

io
nS

eq
ue

nc
e

()
ca

sh
flo

w
sA

tD
at

e
()

1
..1

0
..*

1
..1

0
..*

u
n

itI
n

st
ru

m
e

n
t

V
al

id
a

ta
b

le

(f
ro

m
 U

ti
lit

ie
s

)

T
ra

ns
a

ct
io

n
<

<
In

te
rf

a
ce

>
>

C
o

m
p

le
xI

ns
tr

um
e

nt
M

o
d

e
l

va
lid

at
e

()
m

ul
tip

ly
In

st
ru

m
e

nt
()

tr
a

ns
a

ct
io

nS
e

q
ue

nc
e

()
ca

sh
flo

w
sA

tD
a

te
()

1
..*

0
..1

1
..*

0
..1

tr
a

n
sa

ct
io

n
S

e
q

u
e

n
ce

Figure 1: Class Diagram— Instruments

37

SimpleCashflow

quantity()

<<Interface>>

AtomicInstrument

com mo dity()
paymentDate()

<<Interface>>

Commodity
(fro m B as ic Co mm od iti es)

<<Interface>>

SimpleCashflowModel

quantity : Number
paymentDate : Date

validate()
instrument()
transactionSequence()
condition()
multiply()
multiplyTransaction()
multiplyInstrument()

1..10..* 1..10..*

co m m od ity

Transaction
<<Interface>>

Instrument
<<Interface>>

AbstractTransactionModel

Figure 2: Class Diagram— AtomicInstruments

38

PriceTransaction

p rice ()
und erlyingTransaction()

<<Interface>> Instrument
<<Interface>>

TransactionModel

condition : Condition

validate()
multiplyTransaction()

1..10..1 1..10..1 instrum ent

Validatable

(from U til it i es)

Price
(fro m B as ic Rates)

<<Interface>>

Tra nsaction

condition()
instrument()
multiplyTransaction()
va lue AtP rice()

<<Interface >>

P rice Transa ctionM od el

instrument()
multiplyTransaction()

0..10..1 0..10..1 p rice

1..1

0..1

1..1

0..1

underlyingTransaction

AbstractTra nsactio n

buySellMultiplier()
dataFor()
addData()
removeDataFor()

<<Interface >>

AbstractTransactionModel

buySellMultiplier : Integer
supplementaryData : D ictionary

dataFor()
addData()

Figure 3: Class Diagram— Transactions

39

C
a

s
h

flo
w

S
e

ri
e

s
S

p
e

c
if

ie
r

c
o

u
n

te
rp

a
rt

y(
)

p
a

ym
e

n
tP

e
ri

o
d

()
p

a
ym

e
n

tS
p

e
c

if
ic

a
ti

o
n

()
p

a
ym

e
n

tG
ro

w
th

R
a

te
()

a
m

o
rt

iz
a

ti
o

n
T

yp
e

()
e

n
d

D
a

te
()

p
e

rp
e

tu
it

y(
)

c
o

m
m

o
d

it
y(

)
g

e
n

e
ra

te
C

a
s

h
flo

w
s

()
g

e
n

e
ra

te
F

ir
s

tC
a

s
h

flo
w

s
()

<
<

In
te

rf
a

c
e

>
>

A
to

m
ic

In
s

tr
u

m
e

n
t

<
<

In
te

rf
a

c
e

>
>

In
s

tr
u

m
e

n
t

<
<

In
te

rf
a

c
e

>
>

P
e

ri
o

d
(f

ro
m

 D
a

te
s)

<
<

In
te

rf
a

c
e

>
>

B
a

s
ic

Y
ie

ld
C

u
rv

e
S

p
e

c
if

ic
a

tio
n

(f
ro

m
 I

n
te

re
s

t
R

a
te

s
)

<
<

In
te

rf
a

c
e

>
>

C
o

m
m

o
d

it
y

(fr
o

m
 B

as
ic

 C
o

m
m

od
iti

es
)

<
<

In
te

rf
a

c
e

>
>

C
a

s
h

fl
o

w
S

p
e

c
if

ie
rM

o
d

e
l

s
ta

rt
D

a
te

 :
 D

a
te

e
n

d
D

a
te

 :
 D

a
te

fi
xi

n
g

D
a

te
 :

 D
a

te
a

d
va

n
c

e
O

rA
rr

e
a

rs
 :

 S
tr

in
g

p
ri

n
c

ip
a

l :
 N

u
m

b
e

r
p

ri
n

c
ip

a
lC

a
s

h
flo

w
 :

 N
u

m
b

e
r

fi
xe

d
In

te
re

s
tR

a
te

 :
P

a
ym

e
nt

R
a

te
flo

a
ti

n
g

In
te

re
s

tR
a

te
 :

 P
a

ym
e

n
tR

a
te

p
a

ym
e

n
tD

a
te

 :
 D

a
te

va
lid

a
te

()
flo

a
ti

n
g

In
te

re
s

tR
a

te
()

flo
a

ti
n

g
R

a
te

S
e

t(
)

in
s

tr
u

m
e

nt
()

c
o

n
d

it
io

n(
)

m
u

lti
p

ly
()

m
u

lti
p

ly
In

s
tr

u
m

e
n

t(
)

m
u

lti
p

ly
T

ra
n

s
a

c
ti

o
n

()
tr

a
n

s
a

c
ti

o
n

S
e

q
u

e
n

c
e

()
c

a
s

h
flo

w
s

A
tD

a
te

()

0
..

1
0

..
*

0
..

1
0

..
*

flo
a

tin
g

R
a

te
T

e
n

o
r

1
..

1

0
..

*

1
..

1

0
..

*

flo
a

tin
g

R
a

te
In

d
e

x

1
..

1

0
..

*

1
..

1

0
..

*

co
m

m
od

ity

C
a

s
h

flo
w

S
p

e
c

if
ie

r

s
ta

rt
D

a
te

()
e

n
d

D
a

te
()

fi
xi

n
g

D
a

te
()

a
d

va
n

c
e

O
rA

rr
e

a
rs

()
p

ri
n

c
ip

a
l(

)
fi

xe
d

In
te

re
s

tR
a

te
()

flo
a

ti
n

g
R

a
te

In
d

e
x(

)
flo

a
ti

n
g

R
a

te
T

e
n

o
r(

)
p

ri
n

c
ip

a
lC

a
s

h
flo

w
()

flo
a

ti
n

g
In

te
re

s
tR

a
te

()
flo

a
ti

n
g

R
a

te
C

a
s

h
flo

w
()

fi
xe

d
R

a
te

C
a

s
h

flo
w

()

<
<

In
te

rf
a

c
e

>
>

R
e

p
e

a
te

d
P

e
ri

o
d

(f
ro

m
 D

a
te

s
)

<
<

In
te

rf
a

c
e

>
>

P
a

rt
y

(f
ro

m
 O

rg
a

n
iz

a
ti

on
)

<
<

In
te

rf
a

c
e

>
>

C
a

s
h

fl
o

w
S

e
ri

e
s

S
p

e
c

if
ie

rM
o

d
e

l

p
a

ym
e

n
tG

ro
w

th
R

a
te

 :
 N

u
m

b
e

r
a

m
o

rt
iz

a
ti

o
n

T
yp

e
 :

 S
tr

in
g

e
n

d
D

a
te

 :
 D

a
te

p
e

rp
e

tu
it

y
:

B
o

o
le

a
n

va
lid

a
te

()
c

o
m

m
o

d
it

y(
)

m
u

lti
p

ly
In

s
tr

u
m

e
n

t(
)

tr
a

n
s

a
c

ti
o

n
S

e
q

u
e

n
c

e
()

c
a

s
h

flo
w

s
A

tD
a

te
()

1
..

1

0
..

1

1
..

1

0
..

1

p
a

ym
e

n
tS

p
e

ci
fic

a
tio

n

1
..

1
1

..
1

p
ay

m
e

nt
P

er
io

d

1
..

10
..

*

1
..

10
..

*

c
o

u
n

te
rp

a
rt

y

A
b

s
tr

a
c

tT
ra

n
s

a
c

ti
o

n
M

o
d

e
l

Figure 4: Class Diagram— Specifiers

40

Comm od ityHolding

quantity()
commodity()

<<Interface>>

CommodityHoldingModel

quantity : Number
commod ity : Commodity

Va lue Se ma ntics

(from Utilit ies)

Figure 5: Class Diagram— Holdings

41

Condition

evaluate()

<<Interface>>

DateConditionModel

date : Date

DateCondition

d ate ()
e va luate ()

<<Interface>>

Figure 6: Class Diagram— Conditions

42

Co llate ra lItem

asset()
faceValue()
specialOrGenera l()
startDate()
haircut()
repaymentDate()
marketPrice()
marketValue()
type()
lendingFee()

<<Interface >>

Atom icInstrume nt

commodity()
paymentDate()

<<Interface >>

AbstractTransactionModel

Instrument
<<Interface>>

Transaction
<<Interface>>

Instrument
<<Interface>>

P rice
(from B as ic Rates)

<<Interface>>

PaymentRate
(from P ay m ent Ra tes)

<<Interface>>

Colla teralItemModel

specialOrGenera l : E numeration = general
startDate : Date
haircut : Double
repaymentDate : Date
type : E numeration

lendingFee()

asset

m arketP rice

le nd ing Fee

Figure 7: Class Diagram— Collateral

43

References

44

	Interfaces
	AbstractTransaction
	Relationships
	Operations

	Transaction
	Relationships
	Operations

	AtomicInstrument
	Relationships
	Operations

	CashflowSpecifier
	Relationships
	Operations

	CollateralItem
	Relationships
	Operations

	SimpleCashflow
	Relationships
	Operations

	PriceTransaction
	Relationships
	Operations

	CommodityHolding
	Relationships
	Operations

	Condition
	Relationships
	Operations

	DateCondition
	Relationships
	Operations

	Instrument
	Relationships
	Operations

	CashflowSeriesSpecifier
	Relationships
	Operations

	InstrumentWithMultiplier
	Relationships
	Operations

	InstrumentWithSpecifier
	Relationships
	Operations

	Classes
	AbstractTransactionModel
	Relationships
	Attributes
	Operations

	CashflowSpecifierModel
	Relationships
	Attributes
	Operations

	CollateralItemModel
	Relationships
	Attributes
	Operations

	SimpleCashflowModel
	Relationships
	Attributes
	Operations

	TransactionModel
	Relationships
	Attributes
	Operations

	PriceTransactionModel
	Relationships
	Operations

	CashflowSeriesSpecifierModel
	Relationships
	Attributes
	Operations

	CommodityHoldingModel
	Relationships
	Attributes

	ComplexInstrumentModel
	Relationships
	Operations

	InstrumentWithSpecifierModel
	Relationships
	Attributes
	Operations

	DateConditionModel
	Relationships
	Attributes

	InstrumentWithMultiplierModel
	Relationships
	Attributes
	Operations

	Associations
	specifier
	price
	paymentSpecification
	paymentPeriod
	floatingRateTenor
	floatingRateIndex
	commodity
	unitInstrument
	commodity
	counterparty
	instrument
	underlyingTransaction
	transactionSequence
	security
	asset
	marketPrice
	lendingFee

