
Interest Rates Package

TARMS Inc.

September 07, 2000

TARMS Inc. http://www.tarms.com

http://www.tarms.com

Copyright c2000 TARMS Inc.

Permission is hereby granted, free of charge, to any person obtaining a
copy of this model and associated documentation files (the “Model”),
to deal in the Model without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Model, and to permit persons to whom the
Model is furnished to do so, subject to the following conditions:

1. The origin of this model must not be misrepresented; you must
not claim that you wrote the original model. If you use this
Model in a product, an acknowledgment in the product
documentation would be appreciated but is not required.
Similarly notification of this Model’s use in a product would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and
must not be misrepresented as being the original software.

3. This notice, including the above copyright notice shall be
included in all copies or substantial portions of the Model.

THE MODEL IS PROVIDED “AS IS”, WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS
OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE MODEL OR THE USE OR
OTHER DEALINGS IN THE MODEL.

Typeset in LATEX.

Contents

1 Interfaces 4
1.1 BasicYieldCurveSpecification. 4

1.1.1 Relationships. 5
1.1.2 Operations . 5

1.2 InterestRateCompoundingFrequency. 6
1.2.1 Relationships. 6
1.2.2 Operations . 6

1.3 InterestRatePiece. 7
1.3.1 Relationships. 8

1.4 InterestRatePremiumQuotationMethod. 8
1.4.1 Relationships. 8
1.4.2 Operations . 8

1.5 InterestRateQuotationMethod. 9
1.5.1 Relationships. 9
1.5.2 Operations . 9

1.6 InterestRateQuote. 10
1.6.1 Relationships. 10
1.6.2 Operations . 10

1.7 InterestRateSpecifier. 11
1.7.1 Relationships. 11
1.7.2 Operations . 11

1.8 PointInterestRate. 13
1.8.1 Relationships. 13
1.8.2 Operations . 13

1.9 YieldCurve . 15
1.9.1 Relationships. 16
1.9.2 Operations . 16

1.10 BasicYieldCurve . 17
1.10.1 Relationships. 17

2 Service Interfaces 17
2.1 YieldCurveConstructor. 17

2.1.1 Relationships. 18

3 Classes 18
3.1 BasicInterestRateModel. 18

3.1.1 Relationships. 18
3.2 BasicYieldCurveModel. 18

1

3.2.1 Relationships. 18
3.2.2 Attributes. 18

3.3 BasicYieldCurveReferenceDataModel. 19
3.3.1 Relationships. 19

3.4 BasicYieldCurveSpecificationModel. 19
3.4.1 Relationships. 19
3.4.2 Attributes. 19
3.4.3 Operations . 19

3.5 InterestRateBasisPointsModel. 20
3.5.1 Relationships. 20
3.5.2 Attributes. 20
3.5.3 Operations . 20

3.6 InterestRateCompoundingFrequencyModel. 21
3.6.1 Relationships. 22
3.6.2 Operations . 22

3.7 ContinuousCompoundingFrequencyModel. 22
3.7.1 Relationships. 22
3.7.2 Operations . 22

3.8 DiscreteCompoundingFrequencyModel. 23
3.8.1 Relationships. 24

3.9 DiscreteActualCompoundingFrequencyModel. 24
3.9.1 Relationships. 25
3.9.2 Operations . 25

3.10 DiscreteLevelCompoundingFrequencyModel. 28
3.10.1 Relationships. 28
3.10.2 Attributes. 28
3.10.3 Operations. 28

3.11 SimpleCompoundingFrequencyModel. 30
3.11.1 Relationships. 30
3.11.2 Operations. 30

3.12 InterestRatePieceModel. 31
3.12.1 Relationships. 31

3.13 InterestRateQuotationMethodModel. 31
3.13.1 Relationships. 32
3.13.2 Operations. 32

3.14 DiscountFactorQuotationMethodModel. 32
3.14.1 Relationships. 32
3.14.2 Operations. 32

3.15 InterestRateAbstractYieldModel. 34
3.15.1 Relationships. 34

2

3.15.2 Attributes. 34
3.15.3 Operations. 34

3.16 DiscountRateQuotationMethodModel. 36
3.16.1 Relationships. 36
3.16.2 Operations. 36

3.17 HundredMinusDiscountQuotationMethod. 37
3.17.1 Relationships. 37
3.17.2 Operations. 37

3.18 YieldQuotationMethodModel. 37
3.18.1 Relationships. 38

3.19 HundredMinusYieldQuotationMethodModel. 38
3.19.1 Relationships. 38
3.19.2 Operations. 38

3.20 InterestRateQuoteModel. 38
3.20.1 Relationships. 39

3.21 InterestRateSpecifierModel. 39
3.21.1 Relationships. 39
3.21.2 Attributes. 39
3.21.3 Operations. 40

4 Services 40
4.1 BasicYieldCurveConstructorService. 40

4.1.1 Relationships. 41
4.1.2 Operations . 41

4.2 LinearInterestRateCurveConstructorComponent. 41
4.2.1 Relationships. 41
4.2.2 Operations . 42

5 Associations 44
5.1 fromPeriod . 44
5.2 toPeriod. 45
5.3 location . 45
5.4 party. 45
5.5 period . 45
5.6 points . 45
5.7 model . 45
5.8 specification. 46

3

List of Figures

1 Example Linear Interest Rate Curve Construction. 43
2 Class Diagram— Rate Specification1. 47
3 Class Diagram— Rate Specification2. 48
4 Class Diagram— Rate Specification3. 49
5 Class Diagram— Point Rates. 50
6 Class Diagram— Yield Curves1. 51
7 Class Diagram— Yield Curves2. 52

List of Tables

1 Interest Rates— Associations. 44

Package Description

Interest rates represent the time value of money. Interest rates, in theelements
model represent a rate that transforms an amount of some currency at one date into
an amount of thesamecurrency at another date.

Interest rates can be grouped into curves calledyield curves. A yield curve can
derive an interest rate from any date to any date. Yield curves can, therefore, be
used to discount a series of future (and past) cashflows to a common date. As a
special case, yield curves can be used to discount a set of cashflows to the present,
giving anet present valueor NPV.

The interest rate package is considerably more concrete than the basic rates
package that it depends upon. For a newcomer, we suggest that you read this
package first and then move on to the more abstract basic rates package.

1 Interfaces

1.1 BasicYieldCurveSpecification

Basic yield curves are constructed from more basic rates, converted to interest
rates. This interface provides an interface for the specification of these rates.

4

1.1.1 Relationships

Class Description Notes
* Validatable
* Identifiable
BasicYieldCurveSpecification-

Model §3.4
BasicYieldCurveReferenceData-

Model §3.3
$ BasicYieldCurveReferenceData-

Model §3.3
model 0..1

$ BasicYieldCurveConstructorSer-
vice §4.1

specification

*:Inherits #:Realized by $:Association !:Navigable�:Aggregate�:Composite

1.1.2 Operations

Currency currency() currency

The currency that this yield curve is for. Return the currency for the interest
rates that this curve uses.

DateBasis dateBasis() dateBasis

The date basis for interpolation/extrapolation. Return the date basis that is to
be used when calculating date distances for the purposes of extrapolation and in-
terpolation. Individual source rates may use different date bases when provided.

Collection<RateSpecifier> sources() sources

The source rates for this specification. Return the collection of rate specifiers
that describe this yield curve.

InterestRateQuotationMethod quotationMethod() quotation-
MethodThe common quotation method to use when interpolating or extrapolating in-

terest rates. Return the date basis that is to be used when calculating date distances
for the purposes of extrapolation and interpolation. Individual source rates may
use different date bases when provided.

Reportable validate() validate

Validate this yield curve. A yield curve specification is valid if the currency,
date basis and quotation method are supplied and each source rate specifier satisfies
the following requirements:

5

� The logical rate specifier is an InterestRateSpecifier §1.7with both the from-
and to-dates present.

� If the derivation is a basic derivation, then there is also a quotation method.

� The currency of the logical rate specifier is the same currency as the specifi-
cation’s currency.

In addition, warnings should be added wherever:

� The from- and to-periods are not defined, but exact dates are supplied in-
stead. (This usually means a yield curve with a limited life-span.)

� The date basis for the rate specifier is different to the date basis for the curve.

1.2 InterestRateCompoundingFrequency

The rate at which a yield or discount rate compounds. This is a utility interface used
to allow interest rates which need compounding conventions to choose between
conventions.

1.2.1 Relationships

Class Description Notes
* Comparable
* ValueSemantics
InterestRateCompoundingFrequency-

Model §3.6
*:Inherits #:Realized by

1.2.2 Operations

«Static Method» InterestRateCompoundingFrequency canonical() canonical

The standard quotation frequency. Return a ContinuousCompoundingFrequen-
cyModel §3.7. This model is assumed to use an Actual/Actual date basis.

Number asCanonical(Number r, LogicalRateSpecifier specifier) asCanonical

r: Number The rate (as a yield) to convert.

6

specifier: LogicalRateSpecifierThe specifier to use when interpreting this
rate.

Convert a yield using this quotation frequency into the canonical quotation fre-
quency. Return a yield that would give the same amount of interest as the supplied
yield, but using a continuous compounding frequency.

Number fromCanonical(Number r, LogicalRateSpecifier specifier) fromCanonical

r: Number The rate (as a yield) to convert.
specifier: LogicalRateSpecifierThe specifier to use when interpreting this
rate.

Convert a yield using this the canonical quotation frequency into this quota-
tion frequency. Return a yield in this frequency that would give the same amount
of interest as the supplied yield, which has a continuous compounding frequency..

Number discountToYield(Number r, LogicalRateSpecifier specifier) discount-
ToYieldr: Number The rate (as a yield) to convert.

specifier: LogicalRateSpecifierThe specifier to use when interpreting this
rate.

Convert a discount rate to a yield. Return a yield that would give the same
amount of interest as the supplied discount rate, using whatever day count is re-
quired.

Number yieldToDiscount(Number r, LogicalRateSpecifier specifier) yieldToDis-
countr: Number The rate (as a yield) to convert.

specifier: LogicalRateSpecifierThe specifier to use when interpreting this
rate.

Convert a yield to a discount rate. Return a discount rate that would give the
same amount of interest as the supplied yield, using whatever day count is required.

1.3 InterestRatePiece

A specialization of the RatePiece interface for managing interest rates.

7

1.3.1 Relationships

Class Description Notes
* RatePiece
InterestRatePieceModel §3.12
*:Inherits #:Realized by

1.4 InterestRatePremiumQuotationMethod

Interest rate premiums represent additional margins over some interest rate. The
premiums may be used to reflect additional risk, profit margins or internal trading
margins.

1.4.1 Relationships

Class Description Notes
* QuotationMethod
* ValueSemantics
InterestRateBasisPointsModel §3.5
*:Inherits #:Realized by

1.4.2 Operations

Boolean isMargin() isMargin

Is this rate in margin form? Return true.

Boolean isCanonical() isCanonical

Is this the canonical representation? Return true if the rate is a basis point rep-
resentation, return false otherwise.

String type() type

The type of rate that this quotation method is for. Return “Interest Rate”

Number addPremium(InterestRateQuotationMethod baseQuote, Num-
ber base, Number premium) addPremium

baseQuote: InterestRateQuotationMethodThe quotation method for the
base interest rate.
base: NumberThe base interest rate.
premium: Number The premium to add.

8

Add a premium to an interest rate. To add a premium, the quotation methods
for the base interest rate and the premium must match. The returned rate uses the
same quotation method as the base interest rate.

«Static Method» QuotationMethod canonical() canonical

Canonical quotation method. Return a InterestRateBasisPointsModel §3.5ob-
ject.

1.5 InterestRateQuotationMethod

Interest rate quotation methods have two parts: a style, indicating how the number
representing the interest rate is to be interpreted, and a frequency, indicating the
number of times that the interest rate is compounded over some fixed period.

The canonical representation for an interest rate is in terms of annualized yields.

1.5.1 Relationships

Class Description Notes
* QuotationMethod
* ValueSemantics
InterestRateQuotationMethod-

Model §3.13
*:Inherits #:Realized by

1.5.2 Operations

Boolean isCanonical() isCanonical

Is this the canonical representation? Return true if the rate is a continuously
compounding yield, false otherwise.

String type() type

The type of rate that this quotation method is for. Return “Interest Rate”.

InterestRateCompoundingFrequency frequency() frequency

The compounding frequency of this interest rate. Return the compounding fre-
quency of this interest rate.

9

Boolean isInterestRate() isInterestRate

Is this an interest rate? Interest rates represent quotation methods that represent
additions to or subtractions from initial or final amounts, rather than ratios between
the initial and final amounts. Yields and discount rates are example interest rates;
discount factors are an example of non-interest rates.

Number discountFactor(Number r, LogicalRateSpecifier specifier) discountFactor

r: Number The rate to convert into a discount factor.
specifier: LogicalRateSpecifierThe specifier to use when interpreting this
rate.

Convert a rate in this quotation format into a discount factor. Return the equiv-
alent discount factor for a rate,r, quoted using this quotation method, running from
the from-date to the to-date, using the specifier’s date basis to calculate the term in
years,t.

If � is the canonical equivalent ofr, then returne��t.

«Static Method» QuotationMethod canonical() canonical

Canonical quotation method. Return a YieldQuotationMethodModel §3.18
with a frequency of a ContinuousCompoundingFrequencyModel §3.7. (Contin-
uously compounding yield)

From the definitions of the various interest rate operations and yield curves, it
would appear that discount factors might be a better choice of canonical rate. Dis-
count factors, however, suffer from a singularity when the from- and to-dates are
equal.

1.6 InterestRateQuote

A rate quote specialized to handle interest rates.

1.6.1 Relationships

Class Description Notes
* RateQuoteModel
* RateQuote
InterestRateQuoteModel §3.20
*:Inherits #:Realized by

1.6.2 Operations

10

Number discountFactor(LogicalRateSpecifier specifier) discountFactor

specifier: LogicalRateSpecifierThe specifier to use when interpreting this
rate.

The equivalent discount factor. Return the discount factor constructed from the
total quote.

1.7 InterestRateSpecifier

Interest rates are used for two purposes. The first use of interest rates is to specify
the price of a loan or deposit: the amount of money that is paid for the right to use
some other amount of money for a period of time. The second use is to represent
the time value of money: money in the future is worth less than money now.

These two uses are interrelated. The time value of money can be essentially
viewed as a consequence of the fact that money now can be invested and earn
interest, which means that there will be slightly more money by the time that future
money becomes available.

Interest rates are specified for a commodity and an environment and run be-
tween two dates. In addition, interest rates in a particular currency may vary ac-
cording to the place in which the loan is being made and the party to whom the
loan is being made.

1.7.1 Relationships

Class Description Notes
* LogicalRateSpecifier
InterestRateSpecifierModel §3.21
*:Inherits #:Realized by

1.7.2 Operations

Collection<LogicalRateFormalParameter> formalParameters() formalParame-
tersThe possible parameters for this rate specifier. Return the following set of

parameters:

11

Name Type Description
commodity Commodity discrete The commodity (currency)
location Location discrete The location which is using this

currency
from-date Date continuous The start date of the interest rate.
to-date Date continuous The end date of the interest rate.
from-period Period discrete The start period.
to- period Period discrete The end period.

The from- and to- dates use the LogicalRateDateFormalParameter interface.

Currency currency() currency

The currency that the interest rate is for. Return the currency that is used for
this interest rate.

Date fromDate() fromDate

The start date. Return the date at which a notional loan at this interest rate
commences.

If fromPeriod() returns a non-nil value, then this date must be equal to the from
period added to the current processing date, using the date classifier supplied by
the currency. The location does not play any part in the date classifier.

Date toDate() toDate

The end date. Return the date at which a notional loan at this interest rate
matures.

If toPeriod() returns a non-nil value, then this date must be equal to the to pe-
riod added to the current processing date, using the date classifier supplied by the
currency. The location does not play any part in the date classifier.

Period fromPeriod() fromPeriod

The start period. If there is no from period, then return nil. Otherwise, return
the period from today to when a notional loan in this interest rate commences.

Period toPeriod() toPeriod

The end period. If there is no to period, then return nil. Otherwise, return the
period from today to when a notional loan in this interest rate matures.

Location location() location

The location of the interest rate. Return nil if the notional loan for this currency

12

is location-neutral. If the interest rate is for a specific place, return the location.

Collection<LogicalRateActualParameter> actualParameters() actualParame-
tersThe set parameters for this rate specifier. Return a collection of actual parame-

ters matching the parameter name against the operation of the same name. Do not
include any actual parameters for operations that return nil.

dateBasis dateBasis() dateBasis

The date basis. Return the date basis for calculating day counts and year counts.

Party party() party

The party to whom a loan is being made. Return nil if the notional loan for this
currency is party-neutral (usually meaning that the associated risk is assumed to be
the risk associated with the government that controls the currency). If the interest
rate is for a loan to a specific party, return the party.

1.8 PointInterestRate

A single interest rate, defined for a single currency and two dates.

1.8.1 Relationships

Class Description Notes
* PointRate
BasicInterestRateModel §3.1
*:Inherits #:Realized by

1.8.2 Operations

RateQuote mid() mid

The mid component. The mid component is calculated by taking the mean
of the bid and ask componentdiscount factors. The resulting mid component is
quoted using the same quotation method as the bid component.

If the bid and ask components are constructed from a number of pieces, the mid
pieces are calculated by calculating the discount factors incrementally for the base
rate plus each piece and subtracting the resulting total rate to give a new margin.

13

As an example, using a (annualized, compounding) bid rate of6:52%+100bp+
100bp and an ask rate of6:55% + 120bp+ 110bp over a period of 1.5 years, then:

The base discount factor is given by(1+0:0652)
�1:5+(1+0:0655)�1:5

2 = 0:9094 �

6:53%. The next discount factor is given by(1+0:0752)
�1:5+(1+0:0775)�1:5

2 = 0:8955 �

7:63% � +100bp. The next discount factor is given by(1+0:0852)
�1:5+(1+0:0885)�1:5

2 =

0:8826 � 8:68% � +105bp. So the mid rate is6:53% + 100bp+ 105bp.

Instrument buy(Instrument quantity) buy

quantity: Instrument The quantity to convert.
Raises:RateConversionException

Buy one quantity of an instrument by paying some other quantity of the instru-
ment. See PointRate for an overview of this operation.

If this rate is mine (ie. is from within the system; responds to isMine with true)
and the quantity is greater than zero, use the bid rate. Any change of one of the
listed characteristics flips from bid to ask. Another change flips back from ask to
bid.

The quantity, in this case, must be a SimpleCashflow with a commodity equal
to the primary commodity and a date equal to the from- or to-date. LetDF be
the discount factor for the appropriate bid or ask rate. Letn be the quantity of the
quantity SimpleCashflow. If the supplied quantity has a date equal to the to-date,
then return a SimpleCashflow with the same commodity as the primary commodity,
the from-date andn�DF as the quantity. If the supplied quantity has a date equal
to the from-date, then return a SimpleCashflow with the same commodity as the
primary commodity, the to-date andn=DF as the quantity.

Instrument sell(Instrument quantity) sell

quantity: Instrument The quantity to convert.
Raises:RateConversionException

Sell one quantity of an instrument by paying some other quantity of the instru-
ment. See PointRate for an overview of this operation.

If this rate is mine (ie. is from within the system; responds to isMine with true)
and the quantity is greater than zero, use the ask rate. Any change of one of the
listed characteristics flips from ask to bid. Another change flips back from bid to
ask.

The quantity, in this case, must be a SimpleCashflow with a commodity equal
to the primary commodity and a date equal to the from- or to-date. LetDF be
the discount factor for the appropriate bid or ask rate. Letn be the quantity of the
quantity SimpleCashflow. If the supplied quantity has a date equal to the to-date,

14

then return a SimpleCashflow with the same commodity as the primary commodity,
the from-date andn�DF as the quantity. If the supplied quantity has a date equal
to the from-date, then return a SimpleCashflow with the same commodity as the
primary commodity, the to-date andn=DF as the quantity.

1.9 YieldCurve

A yield curve is a specialization of a rate curve for interest rates. Yield curves
are currency-specific and, essentially, return the discount factor for that currency
between two dates; the from- and to-dates.

Although the from- and to-dates appear to be completely independent parame-
ters, they actually reflect the density nature of interest rates. The discount factors
between dates are transitive in nature. If we have three datesd1 < d2 < d3 and dis-
count factorsD12, D23 andD13 between the various dates, thenD13 = D12D23.

The 30-day day count bases can lead to counter-intuitive interest rates as a
result of variations in day counts. See the YearModelActual class for further dis-
cussion of this problem. Using the example of a 30/360 date basis andd1 equal to
31-Mar-1997,d2 equal to 1-Apr-1997 andd3 equal to 31-Jul-1997, then the term in
years betweend1 andd3 is 120=360, the term in years betweend1 andd2 is 1=360
and the term in years betweend2 andd3 is 120=360. If a level interest rate is used,
thenD12 = (1 + i)�

1

360 , D23 = (1 + i)�
120

360 andD13 = (1 + i)�
120

360 . Clearly,
D13 6= D12D23.

However, interest rates are usually constructed from sets of interest rate points.
In the example above, the interest rates could come from a curve constructed from a
point which has 10% from 31-Mar-1997 to 1-Apr-1997 and 10% from 1-Apr-1997
to 31-Jul-1997. The actual interest rate for 31-Mar-1997 to 31-Jul-1997 is then
calculated by combining the discount factors from the two periods and converting
the resulting discount factor into an interest rate of 10.06%.

Yield curves are always assumed to initially calculate interest rates between a
specified date, theorigin date, and some other date. The origin date is denoted
by d0. Interest rates between two arbitrary dates,d1 and d2 are calculated by
computing discount factors:D12 = D02=D01.

15

1.9.1 Relationships

Class Description Notes
* RateCurve
+ BasicYieldCurve §1.10
*:Inherits+:Inherited by

1.9.2 Operations

Collection<LogicalRateFormalParameter> formalParameters() formalParame-
tersThe parameters of the curve. Return the currency and date basis formal param-

eters. See the InterestRateSpecifier §1.7 interface for details.

Date originDate() originDate

The origin date from which this curve is constructed. Return the date from
which all interpolated interest rates and discount factors are computed.

InterestRate originTo(Date toDate) originTo

toDate: DateThe date to which this interest rate runs.
The interest rate from the origin date to another date. Return the interest rate

running from the origin date to the supplied toDate.

InterestRate fromTo(Date from, Date to) fromTo

from: Date
to: Date

The interest rate between two dates.
If the interest rate from the origin date to the from date has a discount factor of

D01 and the interest rate from the origin date to the toDate has a discount factor of
D02 then return the interest rate that has a discount factor ofD02=D01.

If the origin date and the toDate are equal, then the returned discount factor
will always be 1. At this point, it will not be possible to calculate a unique interest
rate. In this case, the interest rate is estimated to be the interest rate derived from
the interest rate from the fromDate - 1 calendar day to the toDate — the overnight
rate.

PointRate value(Collection<LogicalRateActualParameter> parameters)
value

parameters: Collection<LogicalRateActualParameter>
Raises:RateSpecificationException

16

Get the value at some point on the curve. The supplied parameters must fix the
from-date and to-date parameters. If specified, the supplied parameters must match
the currency and date basis of the yield curve; raise a RateSpecificationException
exception if the parameters do not match.

Return the result of the fromTo() operation, using the from-date and to-date
from the supplied parameters as the arguments.

1.10 BasicYieldCurve

A basic rate curve that is a yield curve. The curve interpolation and extrapolation
machinery is used to construct a curve of interest rates or discount factors running
from the origin date to other dates.

1.10.1 Relationships

Class Description Notes
* BasicRateCurve
* YieldCurve §1.9
BasicYieldCurveModel §3.2
*:Inherits #:Realized by

2 Service Interfaces

2.1 YieldCurveConstructor

A yield curve constructor is used to build a yield curve from an assortment of
interest rates, bond prices, FRA rates and anything else that can be converted into
an implied interest rate.

Once collected, these rates can be interpolated and extrapolated into a suitable
curve. Since some of the source rates may need to use a partially built yield curve to
imply their own equivalent interest rates, construction may be a complex, iterative
process.

17

2.1.1 Relationships

Class Description Notes
* RateConstructor
BasicYieldCurveConstructorSer-

vice §4.1
*:Inherits #:Realized by

3 Classes

3.1 BasicInterestRateModel

A concrete implementation of the PointInterestRate interface. This class holds
components that implement the InterestRateQuote §1.6 interface.

3.1.1 Relationships

Class Description Notes
* BasicPointRateModel
" BasicPointRate
" PointInterestRate §1.8
*:Inherits ":Realizes

3.2 BasicYieldCurveModel

An implementation of the BasicYieldCurve interface using the BasicRateCurve-
Model as a basis. The elements of the curve are restricted to interest rates, with a
consistent date basis.

3.2.1 Relationships

Class Description Notes
* BasicRateCurveModel
" BasicYieldCurve §1.10
*:Inherits ":Realizes

3.2.2 Attributes

originDate: Date The origin date for this yield curve.

18

3.3 BasicYieldCurveReferenceDataModel

An implementation of the BasicYieldCurveSpecification interface that can be man-
aged as a piece of reference data. The interface is realized by holding an actual
model object and delegating to that model.

3.3.1 Relationships

Class Description Notes
* ReferenceDataModel
" BasicYieldCurveSpecification §1.1
$ BasicYieldCurveSpecification §1.1 model !

*:Inherits ":Realizes $:Association !:Navigable�:Aggregate�:Composite

3.4 BasicYieldCurveSpecificationModel

A concrete model of the BasicYieldCurveSpecification §1.1 interface. The various
parameters which make up the specification are implemented as attributes and an
aggregation of point rates.

3.4.1 Relationships

Class Description Notes
" BasicYieldCurveSpecification §1.1
$ RateFunctionSpecifier points !

":Realizes $:Association !:Navigable�:Aggregate�:Composite

3.4.2 Attributes

currency: Currency The currency of the yield curve.

dateBasis: DateBasis The common date basis for the yield curve.

quotationMethod: InterestRateQuotationMethod The common quotation method
for the yield curve.

identifier: String The name of the specification.

3.4.3 Operations

Collection<RateSpecifier> sources() sources

19

The source rates for this specification.
Return the associated points.

3.5 InterestRateBasisPointsModel

A concrete implementation of the InterestRatePremiumQuotationMethod interface.
This class represents an interest rate premium in terms of basis points. Basis points
represent�0:01% difference in a quoted interest rate. The frequency of the basis
point addition can vary independently of that of the base interest rate.

3.5.1 Relationships

Class Description Notes
" InterestRatePremiumQuotation-

Method §1.4
":Realizes

3.5.2 Attributes

frequency: InterestRateCompoundingFrequency The compounding frequency
for this premium.

3.5.3 Operations

Number parse(InputStream stream, Boolean loose, LogicalRateSpeci-
fier specifier) parse

stream: InputStream The stream to read the value from.
loose: BooleanPerform loose parsing. The default value is true.
specifier: LogicalRateSpecifierThe specifier to use when interpreting this
rate.
Raises:ParseException

Read in a text description of a rate and turn it into an appropriately quoted rate.
Read a + or - sign, an integer,p, and a trailing ‘bp’. If loose is true, then the sign
and trailing ‘bp’ are optional. Returnp=10000.

printRate(OutputStream stream, Number rate, Boolean loose, Logical-
RateSpecifier specifier) printRate

stream: OutputStream The stream to print onto.
rate: Number The rate to print.

20

loose: BooleanPrint the rate in loose form. The default value is false.
specifier: LogicalRateSpecifierThe specifier to use when interpreting this
rate.

Print a rate piece on an output stream. Print a + or - sign,rate�10000 rounded
to the nearest integer and a trailing ‘bp’. Zero has a preceding + sign.

Number addPremium(InterestRateQuotationMethod baseQuote, Num-
ber base, Number premium) addPremium

baseQuote: InterestRateQuotationMethodThe quotation method for the
base interest rate.
base: NumberThe base interest rate.
premium: Number The premium to add.

Add a premium to an interest rate.
If the baseQuote is not in interest rate form (ie. it is a discount factor) then

convert the base amount into the canonical quotation method for an interest rate.
Convert the premium amount into a representation with the same compounding

frequency as the baseQuote. Return the sum of the base and premium amounts
(suitably converted) in the form of the base quote.

As an example, suppose that the base rate is10% with a biannual compounding
rate. Suppose that this premium is 50 in basis point format, with a continuous com-
pounding rate. Convert the premium into the biannual frequency2((1 + e0:005 �

1)
1

2 � 1) = 0:005006. Return the sum10:5006%.

3.6 InterestRateCompoundingFrequencyModel

An abstract class that implements the InterestRateCompoundingFrequency inter-
face. Subclasses contain the various compounding conventions.

21

3.6.1 Relationships

Class Description Notes
" InterestRateCompoundingFre-

quency §1.2
+ SimpleCompoundingFrequency-

Model §3.11
+ ContinuousCompoundingFrequency-

Model §3.7
+ DiscreteCompoundingFrequency-

Model §3.8
+:Inherited by":Realizes

3.6.2 Operations

Boolean equal(Comparable arg) equal

arg: Comparable The object to compare against.

Equality test. Return true if the two compounding frequencies are of the same
class, false otherwise.

3.7 ContinuousCompoundingFrequencyModel

Interest is compounded continuously.

3.7.1 Relationships

Class Description Notes
* InterestRateCompoundingFrequency-

Model §3.6
*:Inherits

3.7.2 Operations

Number asCanonical(Number r, LogicalRateSpecifier specifier) asCanonical

r: Number The rate (as a yield) to convert.
specifier: LogicalRateSpecifierThe specifier to use when interpreting this
rate.

Convert a yield using this quotation frequency into the canonical quotation
frequency.

22

Let t be term in years from the from-date to the to-date, using the specifier’s
date basis. Lett0 be term in years from the from-date to the to-date, using an
Actual/Actual date basis.

Return t
t0 r.[2]

Number fromCanonical(Number r, LogicalRateSpecifier specifier) fromCanonical

r: Number The rate (as a yield) to convert.
specifier: LogicalRateSpecifierThe specifier to use when interpreting this
rate.

Convert a yield using this the canonical quotation frequency into this quotation
frequency.

Let t be term in years from the from-date to the to-date, using the specifier’s
date basis. Lett0 be term in years from the from-date to the to-date, using an Ac-
tual/Actual date basis. Returnt

0

t r.[2]

Number discountToYield(Number r, LogicalRateSpecifier specifier) discount-
ToYieldr: Number The rate (as a yield) to convert.

specifier: LogicalRateSpecifierThe specifier to use when interpreting this
rate.

Convert a discount rate to a yield.
Returnr
Derivation:y = d since,limn!1(1+y=n)n(1�d=n)n = 1 fromPV (1+y) =

FV andFV (1� d) = PV .

Number yieldToDiscount(Number r, LogicalRateSpecifier specifier) yieldToDis-
countr: Number The rate (as a yield) to convert.

specifier: LogicalRateSpecifierThe specifier to use when interpreting this
rate.

Convert a yield to a discount rate.
Returnr
Derivation:d = y since,limn!1(1+y=n)n(1�d=n)n = 1 fromPV (1+y) =

FV andFV (1� d) = PV .

3.8 DiscreteCompoundingFrequencyModel

This class models rates which compound over some discrete compounding rate,
eg. annually, bi-annually or quarterly. Two subclasses implement the behavior in
slightly different ways, so as to allow level or actual period calculations.

23

3.8.1 Relationships

Class Description Notes
* InterestRateCompoundingFrequency-

Model §3.6
+ DiscreteLevelCompoundingFrequen-

cyModel §3.10
+ DiscreteActualCompoundingFrequen-

cyModel §3.9
*:Inherits+:Inherited by

3.9 DiscreteActualCompoundingFrequencyModel

A compounding frequency where the interest is compounded on the basis of an
actual sequence of days. The associated RepeatedPeriod gives the mechanism for
calculating the interest rate. This frequency is the most general frequency and
should be used with care.

In the various operation definitions, the following terms are used:
Let fd1; : : : ; dng be the sequence of payment dates generated by using period

to generate dates by adding to the from-date supplied by the quotation method’s
specifier. The sequence is terminated by the last date at or beyond the to-date. Let
ft1 = d2 � d1; : : : ; tn�1 = dn � dn�1g be the series of terms in years, derived
from the specifier’s date basis.

Where the repeated period is too short, the repeated period is applied again,
continuing on from the final date of the repeated period until a complete set of dates
is constructed. Let the sequence of total repeated period dates befp1; : : : ; pmg
where eachpi is the start date of the period. Letfy1 = p2 � p1; : : : ; ym�1 =

pm�pm�1g be the series of terms in years, derived from the specifier’s date basis.
Let y0i be the total period for the termti; i.e. theyj for thepj ! pj+1 into which
di falls. Further, letfi = ti=y

0

i, the fraction of the interest rate period.
Finally, settt = dt � dn�1 wheredt is the to-date andtt is the term in years,

calculated from the specifier’s date basis.
Let t be the term in years from the from-date to the to-date, derived from the

specifier’s date basis. Lett0 be the term in years from the from-date to the to-date,
derived from an Actual/Actual date basis.

As an common example, the repeated period defined by 3 units of 6 months
rolled forward, a date basis of Actual/360, a from-date of 2-Jan-1999 and a to-date
of 8-Jan-2002. Thedi dates are: { 2-Jan-1999, 2-Jul-1999, 3-Jan-2000, 2-Jul-2000,
2-Jan-2001, 2-Jul-2001, 2-Jan-2002, 2-Jul-2002 }. Theti terms are: { 181/360,
185/360, 181/360, 184/360, 181/360, 184/360, 181/360 }. Thepi dates are: {

24

2-Jan-1999, 2-Jul-2000, 2-Jan-2002, 2-Jul-2003 }. Theyi terms are: { 547/360,
549/360, 546/360 } and thefi terms are { 181/547, 185/547, 181/547, 184/549,
181/549, 184/549, 181/546 },tt = 6=360

The Actual/Actual term,t0 = 364=365 + 366=366 + 365=365 + 8=365 =
1102=365

3.9.1 Relationships

Class Description Notes
* DiscreteCompoundingFrequency-

Model §3.8
$ RepeatedPeriod period !

*:Inherits $:Association !:Navigable�:Aggregate�:Composite

3.9.2 Operations

Boolean equal(Comparable arg) equal

arg: Comparable The object to compare against.

Equality test. Return true if the two compounding frequencies are of the same
class and are associated to equal periods, false otherwise.

Number discountToYield(Number r, LogicalRateSpecifier specifier) discount-
ToYieldr: Number The rate (as a yield) to convert.

specifier: LogicalRateSpecifierThe specifier to use when interpreting this
rate.

Convert a discount rate to a yield.
Return the solution toy for the equation

�
(1 + yfn�1)

tt
tn�1�n�2

i=1 (1 + yfi)

�
�

�
(1� rfn�1)

tt
tn�1�n�2

i=1 (1� rfi)

�
= 1

Derivation: This represents the application of a compounding series of interest
payments, with the final payment calculated over a fractional period.

Using the common example, if the discount rate is10% then the equivalent
yield is calculated by:

(1 + y181=546)6=181

(1 + y181=547)(1 + y185=547)

(1 + y181=547)(1 + y184=549)

25

(1 + y181=594)(1 + y184=549)

�

(1� 0:1181=546)6=181

(1� 0:1181=547)(1 � 0:; 1185=547)

(1� 0:1181=547)(1 � 0:1184=549)

(1� 0:1181=594)(1 � 0:1184=549)

= 1

Giving y = 10:34%.

Number yieldToDiscount(Number r, LogicalRateSpecifier specifier) yieldToDis-
countr: Number The rate (as a yield) to convert.

specifier: LogicalRateSpecifierThe specifier to use when interpreting this
rate.

Convert a yield to a discount rate.
Return the solution tod for the equation�
(1 + rfn�1)

tt
tn�1�n�2

i=1 (1 + rfi)

�
�

�
(1� dfn�1)

tt
tn�1�n�2

i=1 (1� dfi)

�
= 1

Derivation: This represents the application of a compounding series of interest
payments, with the final payment calculated over a fractional period.

Using the common example, if the yield is10% then the equivalent discount
rate is calculated by:

(1 + 0:1181=546)6=181

(1 + 0:1181=547)(1 + 0:1185=547)

(1 + 0:1181=547)(1 + 0:1184=549)

(1 + 0:1181=594)(1 + 0:1184=549)

�

(1� d181=546)6=181

(1� d181=547)(1 � d185=547)

(1� d181=547)(1 � d184=549)

(1� d181=594)(1 � d184=549)

= 1

26

Giving d = 9:68%.

Number asCanonical(Number r, LogicalRateSpecifier specifier) asCanonical

r: Number The rate (as a yield) to convert.
specifier: LogicalRateSpecifierThe specifier to use when interpreting this
rate.

Convert a yield using this quotation frequency into the canonical quotation
frequency.

Return
1

t0
ln

�
(1 + rfn�1)

tt
tn�1�n�2

i=1 (1 + rfi)

�

Derivation: This represents the application of a compounding series of interest
payments, with the final payment calculated over a fractional period. The result is
set equal toe�t

0

Using the common example, if the yield is10% then the equivalent canonical
yield is calculated by:

i =
365

1102
ln

0
BB@

(1 + 0:1181=546)6=181

(1 + 0:1181=547)(1 + 0:; 1185=547)
(1 + 0:1181=547)(1 + 0:1184=549)
(1 + 0:1181=549)(1 + 0:1184=549)

1
CCA

Giving i = 6:55% Note that, since the example period runs over about1:5
years, the quoted yield is about10%=1:5.

Number fromCanonical(Number r, LogicalRateSpecifier specifier) fromCanonical

r: Number The rate (as a yield) to convert.
specifier: LogicalRateSpecifierThe specifier to use when interpreting this
rate.

Convert a yield using this the canonical quotation frequency into this quotation
frequency.

Return the solution toy for

(1 + yfn�1)
tt

tn�1�n�2
i=1 (1 + yfi) = ert

0

Derivation: This represents the application of a compounding series of interest
payments, with the final payment calculated over a fractional period. The result is
set equal toe�t

0

Using the common example, if the canonical yield is10% then the equivalent
yield is calculated by:

27

0
BB@

(1 + y181=546)6=181

(1 + y181=547)(1 + y185=547)
(1 + y181=547)(1 + y184=549)
(1 + y181=549)(1 + y184=549)

1
CCA = e0:1

1102

365

Giving y = 15:40%. Note that, since the example period runs over about1:5
years, the quoted yield is about1:5 � 10%.

3.10 DiscreteLevelCompoundingFrequencyModel

A variant of interest rate compounding where the compounding frequency is ex-
pressed in terms of a number of divisions within a year.

3.10.1 Relationships

Class Description Notes
* DiscreteCompoundingFrequency-

Model §3.8
*:Inherits

3.10.2 Attributes

frequency: Number = 1 The number of times a year that interest is paid, leading
to a compounding frequency. Values of 1, 2, 4, 6 or 12 are common. How-
ever, other values, fractional values and values less than 1 are all possible.

3.10.3 Operations

Boolean equal(Comparable arg) equal

arg: Comparable The object to compare against.

Equality test. Return true if the two compounding frequencies are of the same
class and have the same frequency attributes, false otherwise.

Number discountToYield(Number r, LogicalRateSpecifier specifier) discount-
ToYieldr: Number The rate (as a yield) to convert.

specifier: LogicalRateSpecifierThe specifier to use when interpreting this
rate.

28

Convert a discount rate to a yield.
Let n be the level payment frequency. Returnr1� r

n
.

Derivation:(1 + y=n)n(1� d=n)n = 1 from PV (1 + y) = FV andFV (1�
d) = PV .

Number yieldToDiscount(Number r, LogicalRateSpecifier specifier) yieldToDis-
countr: Number The rate (as a yield) to convert.

specifier: LogicalRateSpecifierThe specifier to use when interpreting this
rate.

Convert a yield to a discount rate.
Let n be the level payment frequency. Returnr1+ r

n
.

Derivation:y = d since,(1 + y=n)n(1 � d=n)n = 1 from PV (1 + y) = FV
andFV (1� d) = PV .

Number asCanonical(Number r, LogicalRateSpecifier specifier) asCanonical

r: Number The rate (as a yield) to convert.
specifier: LogicalRateSpecifierThe specifier to use when interpreting this
rate.

Convert a yield using this quotation frequency into the canonical quotation
frequency.

Let t be term in years from the from-date to the to-date, using the specifier’s
date basis. Lett0 be term in years from the from-date to the to-date, using an
Actual/Actual date basis. Returnntt0 ln(1 +

r
n), wheren is the frequency.

Derivation:e�t
0

= (1 + r
n)

nt

Number fromCanonical(Number r, LogicalRateSpecifier specifier) fromCanonical

r: Number The rate (as a yield) to convert.
specifier: LogicalRateSpecifierThe specifier to use when interpreting this
rate.

Convert a yield using this the canonical quotation frequency into this quotation
frequency.

Let t be term in years from the from-date to the to-date, using the specifier’s
date basis. Lett0 be term in years from the from-date to the to-date, using an

Actual/Actual date basis. Returnn(e
rt0

nt � 1), wheren is the frequency.
Derivation:e�t

0

= (1 + r
n)

nt

29

3.11 SimpleCompoundingFrequencyModel

Interest is calculated at a simple rate.

3.11.1 Relationships

Class Description Notes
* InterestRateCompoundingFrequency-

Model §3.6
*:Inherits

3.11.2 Operations

Number asCanonical(Number r, LogicalRateSpecifier specifier) asCanonical

r: Number The rate (as a yield) to convert.
specifier: LogicalRateSpecifierThe specifier to use when interpreting this
rate.

Convert a yield using this quotation frequency into the canonical quotation
frequency.

Let t be the term in years from the from-date to the to-date of the rate specifier
of the quotation, using the specifier’s date basis. Lett0 be the term in years from
the from-date to the to-date using an Actual/Actual date basis. Return1

t0 ln(1+ rt)

Derivation:e�t
0

= (1 + rt).[1]

Number fromCanonical(Number r, LogicalRateSpecifier specifier) fromCanonical

r: Number The rate (as a yield) to convert.
specifier: LogicalRateSpecifierThe specifier to use when interpreting this
rate.

Convert a yield using this the canonical quotation frequency into this quotation
frequency.

Let t be the term in years from the from-date to the to-date of the rate specifier
of the quotation, using the specifiers’s date basis. Lett0 be the term in years from

the from-date to the to-date using an Actual/Actual date basis. Returnert
0

�1
t

Derivation:e)rt
0

= (1 + it).[1]

Number discountToYield(Number r, LogicalRateSpecifier specifier) discount-
ToYieldr: Number The rate (as a yield) to convert.

specifier: LogicalRateSpecifierThe specifier to use when interpreting this
rate.

30

Convert a discount rate to a yield.
Let t be the term in years, derived from the quotation method’s rate specifier,

from and to dates and date basis. Returnr1�rt
Derivation:(1 + yt)(1� dt) = 1 fromPV (1 + yt) = FV andFV (1� dt) =

PV .

Number yieldToDiscount(Number r, LogicalRateSpecifier specifier) yieldToDis-
countr: Number The rate (as a yield) to convert.

specifier: LogicalRateSpecifierThe specifier to use when interpreting this
rate.

Convert a yield to a discount rate.
Let t be the term in years, derived from the quotation method’s rate specifier,

from and to dates and date basis. Returnr1+rt
Derivation:(1 + yt)(1� dt) = 1 fromPV (1 + yt) = FV andFV (1� dt) =

PV .

3.12 InterestRatePieceModel

A concrete implementation of the InterestRatePiece interface. Quotation methods
used by this subclass must implement the InterestRateQuotationMethod §1.5inter-
face.

3.12.1 Relationships

Class Description Notes
* RatePieceModel
" InterestRatePiece §1.3
*:Inherits ":Realizes

3.13 InterestRateQuotationMethodModel

A concrete implementation of the InterestRateQuotationMethod interface. This is
an abstract class. Subclasses encode the various possibilities available.

31

3.13.1 Relationships

Class Description Notes
" InterestRateQuotationMethod §1.5
+ InterestRateAbstractYieldModel §3.15
+ DiscountFactorQuotationMethod-

Model §3.14
+:Inherited by":Realizes

3.13.2 Operations

Boolean isMargin() isMargin

Is this rate in margin form? Return false.

3.14 DiscountFactorQuotationMethodModel

A discount factor simply represents the ratio of two amounts at different times. The
discount factor is expressed in terms of the ratio of the amount at the from date,a1
to the amount at the to datea2 (i.e a1=a2). This is usually expressed as a simple
number less than 1. For display purposes, discount factors are usually displayed
with 4 decimals of accuracy.

3.14.1 Relationships

Class Description Notes
* InterestRateQuotationMethod-

Model §3.13
*:Inherits

3.14.2 Operations

Number parse(InputStream stream, Boolean loose, LogicalRateSpeci-
fier specifier) parse

stream: InputStream The stream to read the value from.
loose: BooleanPerform loose parsing. The default value is true.
specifier: LogicalRateSpecifierThe specifier to use when interpreting this
rate.
Raises:ParseException

Read in a text description of a rate and turn it into an appropriately quoted rate.
If loose is true, then read an arbitrary real number from the stream. If loose is false,

32

then read a real number from the stream with the following format:#.0000 with
any number of digits before the decimal point.

printRate(OutputStream stream, Number rate, Boolean loose, Logical-
RateSpecifier specifier) printRate

stream: OutputStream The stream to print onto.
rate: Number The rate to print.
loose: BooleanPrint the rate in loose form. The default value is false.
specifier: LogicalRateSpecifierThe specifier to use when interpreting this
rate.

Print a rate piece on an output stream. If loose is true then print rate in the
most accurate formal for the class of rate. If loose is false, then print rate using the
#.0000 format.

Number asCanonical(Number r, LogicalRateSpecifier specifier) asCanonical

r: Number The rate to convert into canonical form.
specifier: LogicalRateSpecifierThe specifier to use when interpreting this
rate.

Convert a rate in this quotation format to the canonical quotation format.
Let t0 be the term in years between the from date and to-date using an Ac-

tual/Actual date basis Return

�
1

t0
ln r

Number fromCanonical(Number r, LogicalRateSpecifier specifier) fromCanonical

r: Number The rate to convert into canonical form.
specifier: LogicalRateSpecifierThe specifier to use when interpreting this
rate.

Convert a rate from the canonical quotation format to this quotation format.
Let t0 be the term in years between the from date and to date according to the

specifier’s from and to dates and an Actual/Actual basis. Return

e�rt
0

Number discountFactor(Number r, LogicalRateSpecifier specifier) discountFactor

r: Number The rate to convert into a discount factor.
specifier: LogicalRateSpecifierThe specifier to use when interpreting this
rate.

33

Convert a rate in this quotation format into a discount factor. Returnr.

InterestRateCompoundingFrequency frequency() frequency

The compounding frequency of this interest rate. Return a continuous com-
pounding frequency.1

Boolean isInterestRate() isInterestRate

Is this an interest rate? Return false.

3.15 InterestRateAbstractYieldModel

An abstract model for yield-like quotation methods. Yield-like quotation methods
quote as an interest or discount rate with some sort of payment frequency. Although
always treated, externally, as percentages, the internal representation of a yield-like
rate is as an ordinary number;0:07 rather than7 for 7%.

3.15.1 Relationships

Class Description Notes
* InterestRateQuotationMethod-

Model §3.13
+ YieldQuotationMethodModel §3.18
+ DiscountRateQuotationMethod-

Model §3.16
*:Inherits+:Inherited by

3.15.2 Attributes

frequency: InterestRateCompoundingFrequency = InterestRateCompoundingFrequency.canonical()
The compounding frequency to use.

3.15.3 Operations

Number parse(InputStream stream, Boolean loose, LogicalRateSpeci-
fier specifier) parse

stream: InputStream The stream to read the value from.
loose: BooleanPerform loose parsing. The default value is true.

1 The justification for this compounding frequency is that discount factors are often regarded as
interpolating using exponential interpolation in yield curves.

34

specifier: LogicalRateSpecifierThe specifier to use when interpreting this
rate.
Raises:ParseException

Read in a text description of a rate and turn it into an appropriately quoted
rate. Yield-like rates are assumed to be percentages. If loose is true, then read an
arbitrary real number,r, from the stream, with an optional trailing % symbol. If
loose is false, then read a real number from the stream with the following format:
[+-]#.00% with any number of digits before the decimal point. Returnr=100.

printRate(OutputStream stream, Number rate, Boolean loose, Logical-
RateSpecifier specifier) printRate

stream: OutputStream The stream to print onto.
rate: Number The rate to print.
loose: BooleanPrint the rate in loose form. The default value is false.
specifier: LogicalRateSpecifierThe specifier to use when interpreting this
rate.

Print a rate piece on an output stream. Letr berate=100. If loose is true then
print r in the most accurate formal for the class of rate. If loose is false, then print
r using the#.00% format.

Number asCanonical(Number r, LogicalRateSpecifier specifier) asCanonical

r: Number The rate to convert into canonical form.
specifier: LogicalRateSpecifierThe specifier to use when interpreting this
rate.

Convert a rate in this quotation format to the canonical quotation format. First
get the yield equivalent, by settingy = this:toY ield(r). Return the value of
frequency:asCanonical(this; r).

Number fromCanonical(Number r, LogicalRateSpecifier specifier) fromCanonical

r: Number The rate to convert into canonical form.
specifier: LogicalRateSpecifierThe specifier to use when interpreting this
rate.

Convert a rate from the canonical quotation format to this quotation format.
First get the yield equivalent, by settingy = frequency:fromCanonical(this; r).
The returnthis:fromY ield(this; r).

Number asYield(Number r, LogicalRateSpecifier specifier) asYield

r: Number The rate to convert.
specifier: LogicalRateSpecifierThe specifier to use when interpreting this

35

rate.
Convert a rate quoted in this quotation convention into an equivalent yield. De-

pendent on subclass.

Number fromYield(Number r, LogicalRateSpecifier specifier) fromYield

r: Number The rate to convert.
specifier: LogicalRateSpecifierThe specifier to use when interpreting this
rate.

Convert a rate quoted as a yield into this quotation convention. Dependent on
subclass.

InterestRateCompoundingFrequency frequency() frequency

The compounding frequency of this interest rate. Return the frequency at-
tribute.

3.16 DiscountRateQuotationMethodModel

An interest rate quoted as a discount rate; the proportion of the final amount sub-
tracted from the final amount to form the initial amount.

3.16.1 Relationships

Class Description Notes
* InterestRateAbstractYieldModel §3.15
+ HundredMinusDiscountQuotation-

Method §3.17
*:Inherits+:Inherited by

3.16.2 Operations

Number asYield(Number r, LogicalRateSpecifier specifier) asYield

r: Number The rate to convert.
specifier: LogicalRateSpecifierThe specifier to use when interpreting this
rate.

Convert a rate quoted in this quotation convention into an equivalent yield. Re-
turnfrequency:discountToY ield(this; r)

Number fromYield(Number r, LogicalRateSpecifier specifier) fromYield

r: Number The rate to convert.

36

specifier: LogicalRateSpecifierThe specifier to use when interpreting this
rate.

Convert a rate quoted as a yield into this quotation convention. Return
frequency:yieldToDiscount(this; r).

3.17 HundredMinusDiscountQuotationMethod

A variant of a discount rate where the amount quoted is in terms of a hundred
percent minus the actual discount rate.

3.17.1 Relationships

Class Description Notes
* DiscountRateQuotationMethod-

Model §3.16
*:Inherits

3.17.2 Operations

Number asYield(Number r, LogicalRateSpecifier specifier) asYield

r: Number The rate to convert.
specifier: LogicalRateSpecifierThe specifier to use when interpreting this
rate.

Convert a rate quoted in this quotation convention into an equivalent yield. Re-
turnfrequency:discountToY ield(this; 1 � r)

Number fromYield(Number r, LogicalRateSpecifier specifier) fromYield

r: Number The rate to convert.
specifier: LogicalRateSpecifierThe specifier to use when interpreting this
rate.

Convert a rate quoted as a yield into this quotation convention. Return1 �
frequency:yieldToDiscount(this; r).

3.18 YieldQuotationMethodModel

An interest rate quoted as a yield; the proportion of the initial amount added to
form the final amount.

37

3.18.1 Relationships

Class Description Notes
* InterestRateAbstractYieldModel §3.15
+ HundredMinusYieldQuotation-

MethodModel §3.19
*:Inherits+:Inherited by

3.19 HundredMinusYieldQuotationMethodModel

A variant of a yield where the amount quoted is in terms of a hundred percent
minus the actual yield.

3.19.1 Relationships

Class Description Notes
* YieldQuotationMethodModel §3.18
*:Inherits

3.19.2 Operations

Number asYield(Number r, LogicalRateSpecifier specifier) asYield

r: Number The rate to convert.
specifier: LogicalRateSpecifierThe specifier to use when interpreting this
rate.

Convert a rate quoted in this quotation convention into an equivalent yield. Re-
turn1� r.

Number fromYield(Number r, LogicalRateSpecifier specifier) fromYield

r: Number The rate to convert.
specifier: LogicalRateSpecifierThe specifier to use when interpreting this
rate.

Convert a rate quoted as a yield into this quotation convention. Return1� r.

3.20 InterestRateQuoteModel

A concrete implementation of the InterestRateQuote interface. Instances of this
model are only composed from InterestRatePiece §1.3components.

38

3.20.1 Relationships

Class Description Notes
* RateQuoteModel
" InterestRateQuote §1.6
*:Inherits ":Realizes

3.21 InterestRateSpecifierModel

A concrete model of an InterestRateSpecifier §1.7. The various parameters are
implemented as attributes.

At the moment, only currencies are accepted as suitable commodities. In the
future, this may be generalized to more complex commodities.

3.21.1 Relationships

Class Description Notes
" InterestRateSpecifier §1.7
$ Period fromPeriod 0..1 !
$ Period toPeriod 0..1 !
$ Location location 0..1 !
$ Party party 0..1 !

":Realizes $:Association !:Navigable�:Aggregate�:Composite

3.21.2 Attributes

currency: Currency The currency of the interest rate.

fromDate: Date The start date for the interest rate.

If this specifier has an associated from period, then the start date is calculated
by adding the associated from period to the current processing date, with the
currency’s date classifier. The date classifier for any associated location is
not used.

toDate: Date The end date for the interest rate.

If this specifier has an associated from period, then the start date is calculated
by adding the associated to period to the current processing date, with the
currency’s date classifier. The date classifier for any associated location is
not used.

dateBasis: DateBasis The date basis for day- and year-count calculations.

39

3.21.3 Operations

Date fromDate() fromDate

The start date. If the fromDate attribute is nil and there is an associated from
date Period, then generate the from date. Return the fromDate attribute.

Date toDate() toDate

The end date. If the toDate attribute is nil and there is an associated to date
Period, then generate the to date. Return the toDate attribute.

Period fromPeriod() fromPeriod

The start period. Return the associated from period, if there is one. Otherwise
return nil.

Period toPeriod() toPeriod

The end period. Return the associated to period, if there is one. Otherwise
return nil.

Location location() location

The location of the interest rate. Return the associated location, if there is one.
Otherwise, return nil.

Party party() party

The party to whom a loan is being made. Return the associated party, if there
is one. Otherwise, return nil.

4 Services

4.1 BasicYieldCurveConstructorService

An abstract class for providing the basis for a basic yield curve constructor. The
basic model assumes that a series of basic interest rates are accumulated and fed
into a yield curve constructor. Subclasses provide the requisite construction ma-
chinery.

40

4.1.1 Relationships

Class Description Notes
" YieldCurveConstructor §2.1
+ LinearInterestRateCurveConstructor-

Component §4.2
$ BasicYieldCurveSpecification §1.1 specification !

+:Inherited by":Realizes $:Association !:Navigable�:Aggregate�:Composite

4.1.2 Operations

OrderedCollection<RateSpecifier> sources() sources

The source rates. Return the sources from the associated specification.

Rate construct(OrderedCollection<Rate> sources) construct

sources: OrderedCollection<Rate>
Raises:RateConstructorException

Build the yield curve. Construction of curves is specified by subclasses.

LogicalRateSpecifier result() result

The output rate specification. Return a logical rate specification consisting of
an InterestRateSpecifier §1.7constraining the currency to the currency of the asso-
ciated specification.

4.2 LinearInterestRateCurveConstructorComponent

Construct a yield curve by linearly interpolating between interest rates and flatten-
ing the curve outside the domain of the supplied interest rate points.

This component has been included as an example of yield curve construction.
Other construction methodologies are, of course, possible and encouraged.

4.2.1 Relationships

Class Description Notes
* BasicYieldCurveConstructorSer-

vice §4.1
*:Inherits

41

4.2.2 Operations

Rate construct(OrderedCollection<Rate> sources) construct

sources: OrderedCollection<Rate>
Raises:RateConstructorException

Build the rate.

1. Set the origin date to be the current processing date. Divide the supplied
rates into two groups, those with from-dates on or after the origin date and
those with from-dates before the origin date.

2. Sort the rates with from-dates after the origin date into to-date order.

3. Remove any rates that have� 0 days difference in to-dates from the previous
date, according to the date basis supplied by the associated specification.

4. Choose the first rate,r0, and use this as an initial flat estimate for the yield
curve, converted to the specification’s quotation method and date basis.

Then, for each rateri : i � 1:

1. Use the current yield curve to estimateF0i the discount factor from the origin
date to the from-date ofri.

2. CalculateDFi = F0iDi, whereDi is the discount factor from the from-date
to the to-date ofri andDFi, therefore is the discount factor from the origin
date to the to-date ofri.

3. ConvertDFi into ci using the common quotation method required by the
specification.

4. Construct the linear polynomial

ci�1 +
ci � ci�1
ti � ti�1

(t� ti�1)

to interpolate between the two points, wheretj is the to-date of thejth rate
andt2 � t1 is the term in years between the two dates, calculated according
to the common date basis for this yield curve.

The same process as is outlined above can be used to construct a curve for rates
before the origin date, working backwards from the origin date.

An example linear construction is shown in figure1.

42

Origin Date: 12-Mar-2001
From-Date To-date Quotation Date Basis Rate
12-Mar-2001 13-Mar-2001 simple yield Actual/Actual 5.5%
13-Mar-2001 14-Mar-2001 simple yield Actual/Actual 5.6%
14-Mar-2001 14-Apr-2001 simple yield 30/Actual 5.7%
12-Mar-2001 13-Mar-2001 annually compounded yield 30/Actual 6.0%
Date Basis: 30/Actual
Quotation Method: annually compounded yield

The rates converted to the common quotation method give

Quoted Canonical Converted
5.5% 5.50% 5.65%
5.6% 5.60% 5.76%
5.7% 5.50% 5.85%
6.0% 5.75% 6.00%

These are then converted into the following segments:

From-date To-date DFof DFft DFot Rate Polynomial
12-Mar-2001 13-Mar-2001 1:0000 0:9998 0:9998 5.65% 5:65 + 0� (d� 12-Mar-2001)=(1=365)
13-Mar-2001 14-Mar-2001 0:9998 0:9998 0:9997 5.70% 5:65 + 0:05 � (d� 13-Mar-2001)=(1=365)
14-Mar-2001 14-Apr-2001 0:9997 0:9953 0:9950 5.84% 5:70 + 0:14 � (d� 14-Mar-2001)=(30=365)
14-Mar-2001 14-Mar-2002 0:9997 0:9441 0:9439 6.00% 5:84 + 0:16 � (d� 14-Apr-2001)=(330=365)

Figure 1: Example Linear Interest Rate Curve Construction

43

5 Associations

Table 1: Interest Rates— Associations

Association
Role Class Card. Notes

fromPeriod
from period Period 0..1 !
rate specifier InterestRateSpecifierModel §3.21 0..n

toPeriod
to period Period 0..1 !
rate specifier InterestRateSpecifierModel §3.21 0..n

location
location Location 0..1 !
rate specifier InterestRateSpecifierModel §3.21 0..n

party
party Party 0..1 !
rate specifier InterestRateSpecifierModel §3.21 0..n

period
period RepeatedPeriod !
quotation method DiscreteActualCompoundingFrequen-

cyModel §3.9
points

specifiers RateFunctionSpecifier !
yield curve BasicYieldCurveSpecification-

Model §3.4
�

model
model BasicYieldCurveSpecification §1.1 !
reference data BasicYieldCurveReferenceData-

Model §3.3
0..1

specification
specification BasicYieldCurveSpecification §1.1 !
constructor BasicYieldCurveConstructorSer-

vice §4.1
!:Navigable�:Aggregate�:Composite

5.1 fromPeriod

Role: from period NavigablePeriod, 0..1.
Role: rate specifier InterestRateSpecifierModel, 0..n.

44

A logical period for the start interest date, if required.

5.2 toPeriod

Role: to period NavigablePeriod, 0..1.
Role: rate specifier InterestRateSpecifierModel, 0..n.

The end period, if this rate specifier specifies a moving end date, based on a
period.

5.3 location

Role: location NavigableLocation, 0..1.
Role: rate specifier InterestRateSpecifierModel, 0..n.

An associated location for the interest rate, for interest rates quoted in non-local
currencies.

5.4 party

Role: party NavigableParty, 0..1.
Role: rate specifier InterestRateSpecifierModel, 0..n.

The party for whom the interest rate is being quoted.

5.5 period

Role: period NavigableRepeatedPeriod.
Role: quotation method DiscreteActualCompoundingFrequencyModel.

The period and frequency over which the interest is calculated.

5.6 points

Role: specifiers NavigableRateFunctionSpecifier.
Role: yield curve AggregateBasicYieldCurveSpecificationModel.

The points that make up the curve specification.

5.7 model

Role: model NavigableBasicYieldCurveSpecification.
Role: reference data BasicYieldCurveReferenceDataModel, 0..1.

The yield curve specification that acts as the underlying model for the reference
data.

45

5.8 specification

Role: specification NavigableBasicYieldCurveSpecification.
Role: constructor BasicYieldCurveConstructorService.

The specification used to build the yield curve.

46

Logica lRateSpecifier
(from B as ic R ates)

<<Interface >>

InterestRateSpecifier

formalP arameters()
currency()
fromDate()
toDate()
fromP eriod()
toP eriod()
location()
actua lP arameters()
dateB asis()
party()

<<Interface >>

Period
(from Da tes)

<<Interface>>

Period
(from Da tes)

<<Interface>>

Location
(from Loca t ions)

<<Interface>>

Party
(from O rga niz at ions)

<<Interface>>

InterestRateS pecifierModel

currency : Currency
fromDate : Date
toDate : Date
dateB asis : DateB asis

fromDate()
toDate()
fromP eriod()
toP eriod()
location()
party()

0..1

0 ..*

0..1

0 ..*

from Period

0..1
0..*

0..1
0..*

toP eriod

0..1

0..*

0..1

0..*

location

0..1

0 ..*

0..1

0 ..*
party

Figure 2: Class Diagram— Rate Specification1

47

Q
u

o
ta

tio
n

M
e

th
o

d

(f
ro

m
 B

as
ic

 R
at

e
s

)

<
<

In
te

rf
a

c
e

>
>

V
a

lu
e

S
e

m
a

n
tic

s

(f
ro

m
 U

til
it

ie
s

)

<
<

In
te

rf
a

c
e

>
>

In
te

re
st

R
a

te
A

b
st

ra
ct

Y
ie

ld
M

o
d

e
l

fr
e

q
u

e
n

c
y

:
In

te
re

s
tR

a
te

C
o

m
p

o
u

n
d

in
g

F
re

q
u

e
n

c
y

=
 In

te
re

s
tR

a
te

C
o

m
p

o
u

n
d

in
g

F
re

q
u

e
n

c
y.

c
a

n
o

n
ic

a
l(

)

p
a

rs
e

()
p

ri
n

tR
a

te
()

a
s

C
a

n
o

ni
c

a
l(

)
fr

o
m

C
a

n
o

n
ic

a
l(

)
a

s
Y

ie
ld

()
fr

o
m

Y
ie

ld
()

fr
e

q
u

e
n

c
y(

)

Y
ie

ld
Q

u
o

ta
ti

o
n

M
e

th
o

d
M

o
d

e
l

D
is

c
o

u
n

tF
a

c
to

rQ
u

o
ta

ti
o

n
M

e
th

o
d

M
o

d
e

l

p
a

rs
e

()
p

ri
n

tR
a

te
()

a
s

C
a

n
o

ni
c

a
l(

)
fr

o
m

C
a

n
o

n
ic

a
l(

)
d

is
c

o
u

n
tF

a
c

to
r(

)
fr

e
q

u
e

n
c

y(
)

is
In

te
re

s
tR

a
te

()

D
is

c
o

u
n

tR
a

te
Q

u
o

ta
ti

o
n

M
e

th
o

d
M

o
d

e
l

a
s

Y
ie

ld
()

fr
o

m
Y

ie
ld

()

H
u

n
d

re
d

M
in

u
s

Y
ie

ld
Q

u
o

ta
ti

o
n

M
e

th
o

d
M

o
d

e
l

a
s

Y
ie

ld
()

fr
o

m
Y

ie
ld

()

H
u

n
d

re
d

M
in

u
s

D
is

c
o

u
n

tQ
u

o
ta

ti
o

n
M

e
th

o
d

a
s

Y
ie

ld
()

fr
o

m
Y

ie
ld

()

In
te

re
s

tR
a

te
Q

u
o

ta
tio

n
M

e
th

o
d

M
o

d
e

l

is
M

a
rg

in
()

In
te

re
s

tR
a

te
Q

u
o

ta
ti

o
n

M
e

th
o

d

is
C

a
n

o
n

ic
a

l(
)

ty
p

e
()

fr
e

q
u

e
n

c
y

()
is

In
te

re
s

tR
a

te
()

d
is

c
o

u
n

tF
a

c
to

r(
)

<
<

S
ta

ti
c

 M
e

th
o

d
>

>
 c

a
n

o
n

ic
a

l(
)

<
<

In
te

rf
a

c
e

>
>

In
te

re
st

R
a

te
P

re
m

iu
m

Q
u

o
ta

tio
n

M
e

th
o

d

is
M

a
rg

in
()

is
C

a
n

o
n

ic
a

l(
)

ty
p

e
()

a
d

d
P

re
m

iu
m

()
<

<
S

ta
ti

c
 M

e
th

o
d

>
>

 c
a

n
o

n
ic

a
l(

)

<
<

In
te

rf
a

c
e

>
>V

a
lu

e
S

e
m

a
n

tic
s

(f
ro

m
 U

til
it

ie
s

)

<
<

In
te

rf
a

c
e

>
>

In
te

re
s

tR
a

te
B

a
s

is
P

o
in

ts
M

o
d

e
l

fr
e

q
u

e
n

c
y

:
In

te
re

s
tR

a
te

C
o

m
p

o
u

n
d

in
g

F
re

q
u

e
n

c
y

p
a

rs
e

()
p

ri
n

tR
a

te
()

a
d

d
P

re
m

iu
m

()

Figure 3: Class Diagram— Rate Specification2

48

C
o

m
p

a
ra

b
le

(f
ro

m
 U

til
iti

es
)

<
<

In
te

rf
a

c
e

>
>

V
a

lu
e

S
e

m
an

tic
s

(f
ro

m
 U

til
iti

es
)

<
<

In
te

rf
a

c
e

>
>

In
te

re
st

R
a

te
C

o
m

p
o

u
n

d
in

g
F

re
q

u
e

n
cy

M
o

d
e

l

e
q

u
a

l(
)

S
im

p
le

C
o

m
p

o
u

n
d

in
g

F
re

q
u

e
n

c
yM

o
d

e
l

a
s

C
a

n
o

ni
c

a
l(

)
fr

o
m

C
a

n
o

n
ic

a
l(

)
d

is
c

o
u

n
tT

o
Y

ie
ld

()
yi

e
ld

T
o

D
is

c
o

u
n

t(
)

C
o

n
ti

n
u

o
u

s
C

o
m

p
o

u
n

d
in

g
F

re
q

u
e

n
c

yM
o

d
e

l

a
s

C
a

n
o

ni
c

a
l(

)
fr

o
m

C
a

n
o

n
ic

a
l(

)
d

is
c

o
u

n
tT

o
Y

ie
ld

()
yi

e
ld

T
o

D
is

c
o

u
n

t(
)

D
is

cr
e

te
C

o
m

po
un

di
n

gF
re

q
ue

nc
yM

o
de

l

D
is

c
re

te
L

e
v

e
lC

o
m

p
o

u
n

d
in

g
F

re
q

u
e

n
c

yM
o

d
e

l

fr
e

q
u

e
n

c
y

:
N

u
m

b
e

r
=

 1

e
q

u
a

l(
)

d
is

c
o

u
n

tT
o

Y
ie

ld
()

yi
e

ld
T

o
D

is
c

o
u

n
t(

)
a

s
C

a
n

o
ni

c
a

l(
)

fr
o

m
C

a
n

o
n

ic
a

l(
)

In
te

re
st

R
a

te
C

o
m

p
o

u
n

d
in

g
F

re
q

u
e

n
cy

<
<

S
ta

ti
c

 M
e

th
o

d
>

>
 c

a
n

o
n

ic
a

l(
)

a
s

C
a

n
o

ni
c

a
l(

)
fr

o
m

C
a

n
o

n
ic

a
l(

)
d

is
c

o
u

n
tT

o
Y

ie
ld

()
yi

e
ld

T
o

D
is

c
o

u
n

t(
)

<
<

In
te

rf
a

c
e

>
>

R
e

p
e

a
te

d
P

e
ri

o
d

(f
ro

m
 D

a
te

s
)

<
<

In
te

rf
a

c
e

>
>

D
is

c
re

te
A

c
tu

a
lC

o
m

p
o

u
n

d
in

g
F

re
q

u
e

n
c

yM
o

d
e

l

e
q

u
a

l(
)

d
is

c
o

u
n

tT
o

Y
ie

ld
()

yi
e

ld
T

o
D

is
c

o
u

n
t(

)
a

s
C

a
n

o
ni

c
a

l(
)

fr
o

m
C

a
n

o
n

ic
a

l(
)

1
..

1

0
..

*

p
e

ri
o

d

Figure 4: Class Diagram— Rate Specification3

49

B
a

si
cP

o
in

tR
a

te
(f

ro
m

 B
a

s
ic

 R
a

te
s

)

<
<

In
te

rf
a

ce
>

>

B
a

si
cI

nt
e

re
st

R
a

te
M

o
d

e
l

B
a

si
cP

o
in

tR
a

te
M

o
d

e
l

(f
ro

m
 B

a
s

ic
 R

a
te

s
)

In
te

re
st

R
at

e
Q

uo
te

d
is

co
un

tF
a

ct
o

r(
)

<
<

In
te

rf
a

ce
>

>

R
a

te
Q

u
ot

e
(f

ro
m

 B
a

s
ic

 R
a

te
s

)

<
<

In
te

rf
a

ce
>

>

In
te

re
st

R
a

te
Q

uo
te

M
o

d
e

l

R
a

te
Q

uo
te

M
o

d
e

l
(f

ro
m

 B
a

s
ic

 R
a

te
s

)

R
a

te
P

ie
ce

(f
ro

m
 B

a
s

ic
 R

a
te

s
)

<
<

In
te

rf
a

ce
>

>

In
te

re
st

R
a

te
P

ie
ce

<
<

In
te

rf
a

ce
>

>
R

at
e

P
ie

ce
M

od
el

(f
ro

m
 B

a
s

ic
 R

a
te

s
)

In
te

re
st

R
a

te
P

ie
ce

M
o

d
e

l

P
o

in
tIn

te
re

st
R

a
te

m
id

()
b

uy
()

se
ll(

)

<
<

In
te

rf
a

ce
>

>

P
oi

nt
R

at
e

(f
ro

m
 B

a
s

ic
 R

a
te

s
)

<
<

In
te

rf
a

ce
>

>

Figure 5: Class Diagram— Point Rates

50

Yie ldCurve

formalParameters()
originDate()
originTo()
fromTo()
value()

<<Interface>>

RateCurve
(from Basic Rates)

<<Interface>>

Ba sicYieldCurve
<<Interface>>

BasicRateCurve
(from Basic Rates)

<<Interface>>

BasicYieldCurveModel

originDate : Date

BasicRateCurveModel
(from B asic Rates)

Figure 6: Class Diagram— Yield Curves1

51

R
at

e
C

on
st

ru
ct

o
r

(f
ro

m
 B

as
ic

 R
at

e
s

)

<
<

S
e

rv
ic

e
 In

te
rf

a
ce

>
>

Y
ie

ld
C

u
rv

e
C

o
n

st
ru

ct
o

r
<

<
S

e
rv

ic
e

 In
te

rf
a

ce
>

>

V
al

id
at

a
bl

e
(f

ro
m

 U
til

it
ie

s
)

<
<

In
te

rf
a

c
e

>
>

L
in

e
a

rI
n

te
re

s
tR

a
te

C
u

rv
e

C
o

n
s

tr
u

c
to

rC
o

m
p

o
n

e
n

t

c
o

n
s

tr
u

c
t(

)

<
<

S
e

rv
ic

e
>

>

Id
e

n
ti

fi
a

b
le

(f
ro

m
 U

ti
lit

ie
s

)

<
<

In
te

rf
a

c
e

>
>

R
a

te
F

u
n

c
ti

o
n

S
p

e
c

if
ie

r
(f

ro
m

 B
a

s
ic

 R
a

te
s

)

<
<

In
te

rf
a

c
e

>
>

B
a

s
ic

Y
ie

ld
C

u
rv

e
S

p
e

c
if

ic
a

ti
o

n
M

o
d

e
l

c
u

rr
e

n
c

y
:

C
u

rr
e

n
cy

d
a

te
B

a
si

s
 :

 D
a

te
B

a
s

is
q

u
o

ta
ti

o
n

M
e

th
o

d
 :

In
te

re
s

tR
a

te
Q

u
o

ta
ti

o
n

M
e

th
o

d
id

e
n

ti
fi

e
r

:
S

tr
in

g

s
o

u
rc

e
s

()

0
..

*
0

..
*

p
o

in
ts

B
a

s
ic

Y
ie

ld
C

u
rv

e
R

e
fe

re
n

c
e

D
a

ta
M

o
d

e
l

B
a

si
cY

ie
ld

C
u

rv
e

S
p

e
ci

fic
a

tio
n

c
u

rr
e

n
c

y(
)

d
a

te
B

a
si

s
()

s
o

u
rc

e
s

()
q

u
o

ta
ti

o
n

M
e

th
o

d
()

va
lid

a
te

()<
<

In
te

rf
a

c
e

>
>

0
..

1

1
..

1

0
..

1

m
o

d
e

l

B
a

si
cY

ie
ld

C
u

rv
e

C
o

n
st

ru
ct

o
rS

e
rv

ic
e

s
o

u
rc

e
s

()
c

o
n

s
tr

u
c

t(
)

re
s

u
lt(

)

<
<

S
e

rv
ic

e
>

>

1
..

1

0
..

*

sp
e

ci
fic

a
tio

n

R
e

fe
re

n
ce

D
a

ta
M

o
d

e
l

(f
ro

m
 R

e
fe

re
n

c
e

D
at

a
)

Figure 7: Class Diagram— Yield Curves2

52

References

[1] Michael Sherris.Money and Captial Markets. Allen and Unwin, 1991.

[2] Robert Steiner.Mastering Financial Calculations. Pitman Publishing, 1998.

53

	Interfaces
	BasicYieldCurveSpecification
	Relationships
	Operations

	InterestRateCompoundingFrequency
	Relationships
	Operations

	InterestRatePiece
	Relationships

	InterestRatePremiumQuotationMethod
	Relationships
	Operations

	InterestRateQuotationMethod
	Relationships
	Operations

	InterestRateQuote
	Relationships
	Operations

	InterestRateSpecifier
	Relationships
	Operations

	PointInterestRate
	Relationships
	Operations

	YieldCurve
	Relationships
	Operations

	BasicYieldCurve
	Relationships

	Service Interfaces
	YieldCurveConstructor
	Relationships

	Classes
	BasicInterestRateModel
	Relationships

	BasicYieldCurveModel
	Relationships
	Attributes

	BasicYieldCurveReferenceDataModel
	Relationships

	BasicYieldCurveSpecificationModel
	Relationships
	Attributes
	Operations

	InterestRateBasisPointsModel
	Relationships
	Attributes
	Operations

	InterestRateCompoundingFrequencyModel
	Relationships
	Operations

	ContinuousCompoundingFrequencyModel
	Relationships
	Operations

	DiscreteCompoundingFrequencyModel
	Relationships

	DiscreteActualCompoundingFrequencyModel
	Relationships
	Operations

	DiscreteLevelCompoundingFrequencyModel
	Relationships
	Attributes
	Operations

	SimpleCompoundingFrequencyModel
	Relationships
	Operations

	InterestRatePieceModel
	Relationships

	InterestRateQuotationMethodModel
	Relationships
	Operations

	DiscountFactorQuotationMethodModel
	Relationships
	Operations

	InterestRateAbstractYieldModel
	Relationships
	Attributes
	Operations

	DiscountRateQuotationMethodModel
	Relationships
	Operations

	HundredMinusDiscountQuotationMethod
	Relationships
	Operations

	YieldQuotationMethodModel
	Relationships

	HundredMinusYieldQuotationMethodModel
	Relationships
	Operations

	InterestRateQuoteModel
	Relationships

	InterestRateSpecifierModel
	Relationships
	Attributes
	Operations

	Services
	BasicYieldCurveConstructorService
	Relationships
	Operations

	LinearInterestRateCurveConstructorComponent
	Relationships
	Operations

	Associations
	fromPeriod
	toPeriod
	location
	party
	period
	points
	model
	specification

