eienents EEYEES

Modelling Standards

Doug Palmer?! Danny Cron?
TARMS Inc. TARMS Inc.

September 8, 2000

TARMS Inc. http://www.tarms.com

http://www.tarms.com

Copyright(©2000 TARMS Inc.

Permission is hereby granted, free of charge, to any person obtaining a
copy of this model and associated documentation files (the “Model”),

to deal in the Model without restriction, including without limitation

the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Model, and to permit persons to whom the
Model is furnished to do so, subject to the following conditions:

1. The origin of this model must not be misrepresented; you must
not claim that you wrote the original model. If you use this
Model in a product, an acknowledgment in the product
documentation would be appreciated but is not required.
Similarly notification of this Model’s use in a product would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and
must not be misrepresented as being the original software.

3. This naotice, including the above copyright notice shall be
included in all copies or substantial portions of the Model.

THE MODEL IS PROVIDED “AS IS”, WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS
OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE MODEL OR THE USE OR
OTHER DEALINGS IN THE MODEL.

Typeset in ATEX.

'doug@tarms.com
2danny@tarms.com

Contents

1 Introduction 1
2 Packages 1
3 Use Cases 2
4 Stereotypes 2
4.1 InterfacesandClasses 4
5 Class Diagrams 5
6 Dependencies 6
7 Collection Classes 7
8 Attributes 7
9 Associations 7
9.1 Compositions. 8
9.2 Aggregations. 8
9.3 Specialisations of Associations. 8
10 Reference Data 9
11 Components 10

1 Introduction

UML][1] has been chosen as the object modelling language foeltbements
model. UML allows considerable latitude in terms of modelling approach. In
order to ensure consistency, some standards need to be imposed.

This document outlines the modelling conventions used ireteenents ob-
ject model. As the model is developed, the need for new conventions will be ex-
posed; this document, therefore, will change during the evolution of the project.

2 Packages

The elements object model is divided into a series of packages, which can be
merged together to make a single, complete model. Separating the model into
packages serves several purposes:

¢ |t enables distinct areas of functionality to be isolated, and presented indi-
vidually. This partioning of the logical elements of the system is expected to

facilitate a stronger and more expedient understanding of the specific area of
the model of interest to the reader.

e Not all users okelements want to use every financial instrument and fea-
ture on offer. By selecting packages and merging the packages together, a
model smaller than the complete model can be built.

e It provides greater control over the development of extensioabaments.

e The packages provide the basis for software packages or parcels in those
languages that support such things.

The main part of a package is located in a uniquely named sub-package beneath
theLogical Viewpackage in the Rose model. This package contains all the classes,
use cases, class diagrams, etc. for the part being modelled. Any classes imported
from other packages are placed in appropriately named sub-packages; these classes
arestubified— stripped of documentation, attributes, associations and operations.

Extensions to existing classes in existing packages are made by adding new
documentation, attributes, associations and operations to the stubified classes. The-
se extensions are treated as special cases within the documentation generator and
grouped with the main package. When several packages are merged, the extensions
are added to the appropriate classes in the proper packages.

3 Use Cases

Use cases and diagrams are currently placed in the main package undeyitia
Viewcategory. This is arguably wrong, but convenient.

Use cases can be used to describe examples of the kind of business elements
being modelled. Example use cases should be grouped into use case diagrams that
have “Example” as part of the diagram name.

4 Stereotypes

The following stereotypes — extensions of the vocabulary of the UML, describing
further building blocks targeted at the model — are used.

Interface The standard UML stereotype used to specify a class that is fundamen-
tally just a collection of behaviours, operation signatures and definitions,
rather than classes which contain implementation details. See séctitmn
more discussion about the relationship between classes and interfaces.

Interfaces are usually named for the behaviour or type of object that they
specify, eg., Date, Holiday, RateConstructor.

Exception A class that is used to carry exception information. Exceptions are
events that interrupt the normal flow of control, usually because some piece
of data is missing. At this point, it is more convenient to deal with this atyp-
ical situation elsewhere rather than to interrupt the typical flow of execution.
This is achieved by throwing an exception.

A thrown exception is caught by an appropriate exception handler, usually
keyed to the exception class. The exception handler is then responsible for
dealing with the exceptional condition and returning affairs to a more typical
state.

Exceptions ar@mormal occurrences, not events indicating some catastrophic

error. As an example, an exception may be thrown by a position analytic
calculating routine, indicating that the supplied data is insufficient and that

the analytic cannot be calculated, at present. Clearly, this exception should
not cause the process to halt. However, throwing an exception is, very of-
ten, cleaner than returning a series of “error” return values, that have to be
specially handled by each calling operation.

Classes which are exceptions have “Exception” as the last part of the class
name, eg., NotFoundException.

Service Interface A service, in this case, is not a UML component, as such, but an
object that is part of the larger system than the object model. Services are not
(necessarily) fully specified within the object model, but represent pluggable
software objects that can be used to realise the function of a system that uses
the object model.

A service interface is an interface specification for some sefvice.

An example service is a rate curve constructor. The exact process by which
rate curves are constructed are a subject for the implementor of a system
usingelements, rather tharelementsproper. Howeverelements ob-

jects must be able to interact with curve constructors so that curves, which
are strictly part oelements, can be built.

Class Classes (classes with no stereotype) represent implementations of inter-
faces. See sectiof.1 for a discussion of the relationship between classes
and interfaces.

Classes always have “Model” as the last part of the class name. If the class
directly implements an interface, then it usually has the same name as the
interface, suffixed with “Model”, eg., DateModel or HolidayModel.

3 Note that code generation for Java often depends orntieeface stereotype being a special
case. Service interfaces are also interfaces, although the code generator may have some difficulty
with this fact. Itis the responsibility of whatever preparation scripts are used on the model to prepare
it for code generation in a particular language to rename service interfaces (or any other interfaces)
appropriately.

Service A service is a class that implements a service interface.

Services are included mlements wherever there is a sufficiently standard
methodology for a system (eg. a yield to maturity analytic) or where an
example is useful.

Architectural Service Interface A service interface which specifies the behav-
iour of some architectural component of a complete systemeTéments
model is not directly concerned with system architecture. However, there
are some points where contact needs to be made and a minimal interface
specified.

Architectural Service A service model that implements an architectural service
interface.

Static Method Static methods are operations that apply to the class, rather than
an instance of that class. In Smalltdlkfterms, static methods are class
methods.

4.1 Interfaces and Classes

First some terminology, mostly derived from JaZj:[

e A typeis a group of related method signatures. For example, a Collection
type may consist of thadd remove anddo methods.

e An interfaceis a formal description a type.

¢ A classdefines the representation and methods for an instance of that class.

Classes implement interfaces, by supplying the behaviour for the methods in
an interface. The type of an interface is the type derived from the list of method
signatures in the interface. Classes may have multiple types; as a special case,
the type of a class is the type that can be derived from collecting all the method
signatures of the class.

Both classes and interfaces allow inheritance. Classes may have multiple in-
heritance (eg. C+4] and Eiffel[3]) or single inheritance (eg. Smalltalk and Java).
Interfaces generally have multiple inheritance. Classes that implement interfaces
do not need to follow the inheritance pattern of their associated interfaces.

In strongly typed languages, such as Java, C++ or Eiffel, the arguments in
messages must be typed. If classes are used as types, then there may be difficulties
when the behaviour of one class needs to be extended to encompass another class
somewhere else on the class hierarchy. For example, it may be desirable to treat
users and groups of users identically for certain operations. However, for imple-
mentation purposes, groups of users may need to be placed in a different branch
of the class hierarchy (eg. it should be a subclass of groupable reference data).

Requiring all things which act like a user to be a subclass of user would distort the
class structure.

The usual approach within languages which allow multiple inheritance, such
as C++ and Eiffel, is to use the features of multiple inheritance to allow type-
equivalence across hierarchies. Using the example above, an abstract user class
would be abstracted, and this class would be a superclass of both the user and user
group classes.

Smalltalk is not strongly typed. Any class which implements a method may
respond to a suitable message. Any type errors are detected at run-time and raise an
exception. Although Smalltalk provides no support for types, there is an informal
model of types as collections of methods which naturally group together. Making
the implicit types of Smalltalk explicit strengthens an understanding of any model.

To allow ready extensibility, explanatory power and ease of implementation
across languages, the following conventions are used:

¢ Interfaces provide the primary method of behaviour description; all methods
are grouped together into interfaces and described in terms of their abstract
behaviour.

e Classes only implement interfaces; from the point of view of the object
model, classes have no methods that are not part of an interface (during im-
plementation, private utility methods are likely). All method signatures and
attributes (ie. argument types, return types, etc.) are defined purely in terms
of interfaces, rather than classes.

Interfaces provide an abstract description of the object model’s behaviour. The
object model then needs to implement those interfaces which represent concrete
objects as classes. A class hierarchy of classes, each class being a variation of
implementation behaviours may be required (eg. a hierarchy of different rate quo-
tation methods). Classes are single inheritance and need not follow the inheritance
pattern of their associated interfaces; implementation inheritance and behaviour
inheritance are two distinct concepts.

5 Class Diagrams

Class diagrams should contain a single related group of interfaces and classes.
More than one class diagram should be used within a package to avoid over-
complex diagrams.

Class diagrams should follow standard layout:

e The generalisation, inheritance and realisation hierarchy should run verti-
cally. Base classes should, generally, be above subclasses. Associations
should, where possible, run horizontally, with directional associations point-
ing to the right.

¢ Interfaces should appeabovethe concrete classes that realises the inter-
face. This helps emphasise the “inheritance” nature of the interface. If a
class both realises an interface and inherits from a subclass, then the “most
important” relationship is the most vertical relationship on the class diagram.

e If a class has several subclasses, the inheritance arrows should be linked to-
gether to form a multi-tailed inheritance arrow, rather than making a separate
inheritance arrow to the superclass.

e Classes that realise multiple interfaces should have a separate realisation ar-
row to each interface.

¢ Interfaces that inherit from multiple interfaces should have a separate inher-
itance arrow.

e Try not to cross lines. If lines are crossing, it may be that your diagram is
too big.

¢ |t would be nice to leave role names off directional associations in diagrams.
Role names are needed by the model merger (see s&tiaut clutter things
up and confuse the issue. Sadly, there appears to be no way of controlling
the view of an association.

e If a class is imported from another package or class diagram, then the at-
tributes and operations of that class should be suppressed.

e If there are several independent relationships with classes imported from
other packages or class diagrams, then claniayy beimproved by having
more than one copy of a class depicted on the diagram, rather than having a
single copy with multiple arrows pointing to‘t.

Break any of these rules sooner than say [draw] anything outright
barbarous4]

Note that theAuto-Layout function in Rose doesot follow these guidelines.
In fact, the function tends to re-arrange the diagram in counter-intuitive manner —
particularly with respect to the relationship between interfaces and classes — and
it should be avoided.

6 Dependencies

Dependencies should be avoided until we can figure out a coherent use for them.

4 This is a controversial point. One author (DP) prefers this approach, as he feels that it unclutters
the diagram and emphasises the distinctness of the objects. The other author (DC) feels that this
approach confuses classes and instances and that having all associations pointing to a single class
improves understanding. Make up your own mind.

7 Collection Classes

Certain operations either return or take as parameters classes that have collection-
like behaviour. These classes usually benefit from a parameterisation giving the
type of collection element. Assumed collection classes are:

Collection<Type> A generic collection that can be iterated over.

OrderedCollection<Type> A collection that assumes that elements remain or-
dered in the order in which they were added and maintains the ordering of
its elements.

Dictionary<KeyType, Type> A generic dictionary that allows the looking up of
elements via some sort of comparable key. If no parameters are included, a
mapping from anything Comparable onto any object is assumed.

8 Attributes

An attribute is an atomic object that is only referenced by the enclosing object.
Atomic objects are those for which operations create new objects, as opposed to
manipulating the internal structure of the object. Atomic objects are: Strings, Num-
bers, Dates and Timestamps, Symbols and Enumerations, Booleans, Primitiveln-
struments and the Null object. An example attribute is the name of a user.

The ValueSemantics interface, defined in the Utilities package, can be used to
indicate that an object is a suitable candidate for being an attribute.

9 Associations

Associations are used to model the relationships between complex objects.

Generally, the cardinality of the ends of the association should be indicated;
aggregates and compositions are assumed to be 1-many relationships and need not
be so marked.

Associations may only leave non-interface classes, although directional asso-
ciations should terminate, wherever possible, at interfaces. The reasoning here is
that associations imply some sort of instance variable that holds the association; a
foreign idea to our conception of interfaces.

Wherever possible, the direction of the association should be indicated. Very
often, two-way associations can be modelled by using two directional associations
running from the concrete class to the interface. Eg., if you have interfaces A and
B and classes AModel and BModel, you may be tempted to run a two-way asso-
ciation between AModel and BModel; this can also be modelled as a directional
association running from AModel to B and a directional association running from
BModel to A. See figurd for a diagram of this exampfe.

5 Note that it is almost impossible to elegantly avoid breaking the rule about crossing lines in

<<Interface>> <<Interface>>
A B
AModel BM od el

Figure 1: Example Two-Way Association

Associations should be named. Roles need only be named if there is some use-
ful information to be imparted by naming the role; directional associations rarely
need additional role names.

9.1 Compositions

A composition association is only used to indicate that the composite object is
the only object which refers to the components. The composite object owns its
components. An example of composition is that an instrument is composed of
transactions; no other instrument uses those transactions.

9.2 Aggregations

An aggregation association is only used wherever the aggregate object’s main pur-
pose is to hold the aggregated objects. The aggregated objects are referred to by
objects other than the aggregate object and the aggregate object does not own its
components. An example aggregate object is a deal cache.

9.3 Specialisations of Associations

In some cases, it may be necessary to specialise an existing association when mov-
ing to a subclass. This is generally needed is when there are two related classes

diagrams when doing this.

<<Interface>> ReferenceDataModel
A

AReferenceDataModel

Figure 2: Example Reference Data Structure

and specialisations of the two classes. Generally, there will be an association be-
tween the related superclasses; sheneassociation for the subclasses would, le-
gitimately, want to specialise the association to just be between the subclasses.

At the moment, the suggested technique is to re-iterate the association with a
note mentioning the specialisation. This is not exactly satisfactory, but it’s the best
that we can come up with.

10 Reference Data

The general approach to take when modelling reference data is to treat the model as
something in its own right. A separate model, inheriting from the ReferenceData-
Model class is then used to wrap this model and manage the object as reference
data. The reference data class realises the same interface as the actual model and
can be used in place of an unadorned model; the operations on the interface are
simply implemented by passing through to the wrapped model.

As an example, a Language-type piece of reference data is implemented us-
ing three entities: the Language interface, the LanguageModel class and the Lan-
guageReferenceDataModel class. The LanguageModel class realises the Language
interface. LanguageReferenceDataModel inherits from ReferenceDataModel and
also realises the Language interface by associating itself with an actual instance
some object that implements the Language interface (usually LanguageModel) and
delegating any Language operations to that instance. This process is shown in fig-
ure2.

The advantage of the above approach is that it makes “roll-your-own” data or
named reference data interchangeable, adding to flexibility and separating the fact
that something is reference data from the behaviour that it is expected to imple-

ment.

The association between the reference data model and the wrapped model is,
conventionally, called “model” with “reference data” and “model” roles.

The reference data model is usually named by adding “ReferenceDataModel”
to the interface name.

11 Components

Classes and interfaces shouladt be assigned to any specific component, nor sho-
uld the target language be any other language #&aalysis. elements is sup-

posed to be language-neutral and assigning things to components tends to introduce
a certain amount of language-specific assumptions. Assigning a language, other
thanAnalysis, to a class or component tends to introduce all kinds of oddities, as
Rose tries to adapt to your target language. In particular, primitive types tend to be
language-specific.

We are developing scripts that will automatically generate components, assign
languages and adjust type declarations for a given target language. To use the
scripts, a copy of the model is taken and converted to a language-specific copy for
the purposes of code generation.

References

[1] Grady Booch, James Rumbaugh, and Ivar Jacobsidme Unified Modeling
Language User GuideObject Technology Series. Addison-Wesley, 1999.

[2] Javasoft Home Page
http://www.javasoft.com

[3] Bertrand Meyer.Object-Oriented Software Constructiofrentice-Hall, sec-
ond edition, 1997.

[4] George Orwell.Politics and the English Languag#&946.
http://www.abattoir.com/ prime8/Orwell/patee.html

[5] Smalltalk Industry Council (STIC)
http://stic.oti.com

[6] Bjarne Stroustrup.The C++ Programming LanguageAddison-Wesely, sec-
ond edition, 1991. (Corrections 1992).

10

http://www.javasoft.com
http://www.abattoir.com/~prime8/Orwell/patee.html
http://stic.oti.com

	Introduction
	Packages
	Use Cases
	Stereotypes
	Interfaces and Classes

	Class Diagrams
	Dependencies
	Collection Classes
	Attributes
	Associations
	Compositions
	Aggregations
	Specialisations of Associations

	Reference Data
	Components

