
Object Identity Package

TARMS Inc.

September 07, 2000

TARMS Inc. http://www.tarms.com

http://www.tarms.com

Copyright c
2000 TARMS Inc.

Permission is hereby granted, free of charge, to any person obtaining a
copy of this model and associated documentation files (the “Model”),
to deal in the Model without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Model, and to permit persons to whom the
Model is furnished to do so, subject to the following conditions:

1. The origin of this model must not be misrepresented; you must
not claim that you wrote the original model. If you use this
Model in a product, an acknowledgment in the product
documentation would be appreciated but is not required.
Similarly notification of this Model’s use in a product would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and
must not be misrepresented as being the original software.

3. This notice, including the above copyright notice shall be
included in all copies or substantial portions of the Model.

THE MODEL IS PROVIDED “AS IS”, WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS
OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE MODEL OR THE USE OR
OTHER DEALINGS IN THE MODEL.

Typeset in LATEX.

Contents

1 Use Cases 2
1.1 New Object . 3
1.2 Edit Object . 3
1.3 Get Object. 3
1.4 Compute Delta . 3

2 Interfaces 3
2.1 Domain . 3

2.1.1 Relationships. 4
2.1.2 Operations . 4

2.2 Frank . 4
2.2.1 Relationships. 4
2.2.2 Operations . 4

2.3 Keyable . 5
2.3.1 Relationships. 5
2.3.2 Operations . 5

2.4 Version . 6
2.4.1 Relationships. 6
2.4.2 Operations . 6

3 Architectural Service Interfaces 7
3.1 Depot . 7

3.1.1 Relationships. 8
3.1.2 Operations . 8

4 Classes 9
4.1 DomainModel. 9

4.1.1 Relationships. 9
4.1.2 Attributes. 9
4.1.3 Operations . 10

4.2 FrankModel. 10
4.2.1 Relationships. 10
4.2.2 Attributes. 10
4.2.3 Operations . 11

4.3 VersionModel. 11
4.3.1 Relationships. 11
4.3.2 Attributes. 11
4.3.3 Operations . 11

1

5 Architectural Services 12
5.1 DepotModel. 12

5.1.1 Relationships. 13

6 Exceptions 13
6.1 OutOfOrderException. 13

6.1.1 Operations . 13

7 Associations 13
7.1 performer . 14
7.2 created. 14
7.3 modified. 14
7.4 store. 14
7.5 within . 15
7.6 depository. 15

List of Figures

1 Class Diagram— Franking. 16
2 Class Diagram— Keying and Storage. 17
3 Class Diagram— Examples. 18

List of Tables

1 Object Identity— Associations. 13
1 . . . continued. 14

Package Description

The object identity package contains the basic models for deciding whether two
objects refer to the same business object.

As objects are modified, they have a number of versions. Each version contains
information as to when the version was created, by whom and for what purpose.
Versioning allows an audit trail to be followed for the object, as each version can
be saved individually to persistent storage.

2

1 Use Cases

1.1 New Object

From an initial object, create a new family of objects with a unique key and an
initial version number.

For example: create a new deal object, ready for editing. Once the object has
been accepted, assign it a new deal number (key) from a central pool of keys and a
version number of 1.

1.2 Edit Object

To edit a versioned object, make a copy of the object and modify the copy. When
the modifications are complete, the copy is turned into the current version, with a
new version number.

1.3 Get Object

Get the current version of an object, identified by its key.

1.4 Compute Delta

Get the current version of an object, identified by the object key and the previous
version to the current version. Compute the differences between the two versions
and return the delta.

2 Interfaces

2.1 Domain

Domains represent the business structure of an organization. An organization is
assumed to have a number of semi-independent databases. Each database is located
in a separate domain. Ownership, update and modification rights to an object are
assigned to a single domain.

Domains have a hierarchical structure, reflecting the large-scale structure of the
organization. For example, the Singapore business unit domain is contained within
the Asia-Pacific region domain which, in turn, is contained within the Global do-
main.

3

2.1.1 Relationships

Class Description Notes
* Comparable
" Comparable
DomainModel §4.1
*:Inherits ":Realizes#:Realized by

2.1.2 Operations

String domainId() domainId

The domain name. Return a unique identifier for the domain.

Domain parent() parent

The parent domain. Return the parent domain of this domain, or nil if this has
no parent.

Boolean equals(Comparable arg) equals

arg: Comparable The object to compare this object against.
The equality relationship. Two domains are equal if their domain identifiers

are equal.

2.2 Frank

When a versioned object is created or modified, it needs to be franked with infor-
mation on the details of who made the change and when the change occurred. A
Frank groups this information together.

2.2.1 Relationships

Class Description Notes
FrankModel §4.2
#:Realized by

2.2.2 Operations

Responsible performedBy() performedBy

4

The party which made the change. Return the party responsible for the creation
of the Frank.

Datestamp performedOn() performedOn

Processing date of change. Returns the processing date on which this change
was made. Note that the processing date may not be the same as the actual date.

Timestamp performedAt() performedAt

Time of change. Returns the date and time at which the change occurred.

String action() action

The action that created this Frank. Returns a string description of the change
performed.

2.3 Keyable

Keyable objects have a unique key that can be used to retrieve an object from a
Depot §3.1or to see whether two objects refer to the same logical object or family
of objects.

Each keyable object is associated with a Domain §2.1 that acts as an authority
for the object’s key. Domains allow key spaces to be partitioned.

2.3.1 Relationships

Class Description Notes
* PartiallyOrdered
+ Version §2.4
*:Inherits+:Inherited by

2.3.2 Operations

Domain domain() domain

Domain of the supplied key. Returns the domain that this key was issued under.

Integer key() key

The object key. Returns the integer that, within the domain that supplied the
key, uniquely identifies that object or versioned family.

5

Boolean equals(Comparable arg) equals

arg: Comparable The object to compare this object against.
The equality relationship. Two Keyables are equal if their domains and keys

are equal.

Boolean lessThanOrEqualTo(PartiallyOrdered arg) lessThanOrE-
qualToarg: PartiallyOrdered The object to compare this object against.

The less than or equal to relationship. Keyables from different domains are not
orderable. Within a single domain, Keyables are ordered by identifier number.

2.4 Version

A Version represents a group of objects, each representing a sequence of versions
of that object. An example is a deal, with each deal modification creating a new
version.

2.4.1 Relationships

Class Description Notes
* Keyable §2.3
VersionModel §4.3
$ DepotModel §5.1 store �

*:Inherits #:Realized by $:Association !:Navigable�:Aggregate�:Composite

2.4.2 Operations

Integer versionNumber() versionNumber

Version number. Returns the version number associated with this object.

Version predecessor() predecessor

Previous version to this version. Returns the previous version to this version,
or nil if this is the first version.

Version successor() successor

Next version to this version. Returns the next version to this version, or nil if
this is the most recent version.

Boolean isCurrent() isCurrent

6

Current version? Returns true if this is the current version of the object. The
current version is the version with the largest version number.

Frank created() created

Creation frank. Returns the Frank for the first version of this family of objects.

Frank modified() modified

Modification frank. Returns the Frank associated with the creation of this ver-
sion of the family of objects. If this is the first version, then this frank is the same
as the creation frank.

Boolean equals(Comparable arg) equals

arg: Comparable The object to compare this object against.
The equality relationship. Two Versions are equal if their domains, keys and

version numbers are equal.

Boolean lessThanOrEqualTo(PartiallyOrdered arg) lessThanOrE-
qualToarg: PartiallyOrdered The object to compare this object against.

The less than or equal to relationship. Versions from different domains are not
orderable. Within a single domain,Versions are ordered by key and then by version
number.

3 Architectural Service Interfaces

3.1 Depot

A Depot object is one that maintains a cache of versionable objects so that the latest
version of that object can be returned.

Depots implicitly act as an intermediary between whatever persistent store
scheme is used and the object model. Requests to the cache can cascade as re-
quests to persistent store, updates to the cache can be written through to the store.
The exact implementation of Depots (and their subclasses) is dependent upon the
underlying architecture of the system. This specification provides the Depot inter-
face from the point of view of objects within theelements object model; a place
where objects can be stored and retrieved.

7

3.1.1 Relationships

Class Description Notes
DepotModel §5.1
$ VersionModel §4.3 depository
#:Realized by $:Association !:Navigable�:Aggregate�:Composite

3.1.2 Operations

Version currentVersion(Keyable key) currentVersion

key: Keyable The key associated with this versioned family of objects.
Raises:NotFoundException

Current version of an object. Returns the most current version of the object
with this key. A NotFoundException is raised if the key can not be found.

Version previousVersion(Keyable key) previousVersion

key: Keyable The key of the object in cache.
Raises:NotFoundException

Pre-current version of object. Returns the version previous to the most current
version of the object keyed by key. A NotFoundException is raised if there is no
such version.

Version nextVersion(Keyable key) nextVersion

key: Keyable The key of the object in cache.
New version of object. Returns the object that would be the next version to the

most current version of the object. A copy of the current version of the object is
returned, with the version number updated.

initializeFamily(Version unversioned) initializeFamily

unversioned: Version The object to which a new version should be as-
signed.

Create a new version family. Get a new version with a new unique key for the
current domain and a suitable initial version number and assign it to unversioned.

add(Version newVersion, String action, Responsible performer) add

newVersion: VersionThe new version to add to the cache.
action: String The action that has caused the new version to be created or
updated.
performer: ResponsibleThe party responsible for the update.
Raises:OutOfOrderException

8

Add a new version to the depot. Adds a new version of the object to the depot.
This object is associated with an updated frank containing the performer, action,
the current processing date and now timestamp. If this is the first version of this
object, then the object is associated with a created frank identical to the updated
frank.

An OutOfOrderException is raised if the newVersion has an earlier version
than the current version.

Reportable validate() validate

Validate the depot.
A depot is valid if: for each object with a common identifier held by the depot,

the only object which returns true to isCurrent() is the object with the maximum
version number.

4 Classes

4.1 DomainModel

The DomainModel class provides a concrete implementation of the Domain inter-
face. Domains can be viewed as dot-separated strings, with the leftmost domain in-
dicating the most general domain1. For example RoboBank.Asia.Singapore refers
to the Singapore office of the Asia region of the RoboBank organization.

4.1.1 Relationships

Class Description Notes
" Domain §2.1
" Validatable
$ VersionModel §4.3 within 0..n
":Realizes $:Association !:Navigable�:Aggregate�:Composite

4.1.2 Attributes

domainId: String A string giving the domain identifier. A valid domain attribute
is a string which matches the following regular expression:

1Domains are similar in structure to Rendezvous[1] subjects.

9

[A-Za-z_][A-Za-z0-9_]*(.[A-Za-z_][A-Za-z0-9_]*)*

4.1.3 Operations

Domain parent() parent

The parent domain. The parent domain is computed by removing the rightmost
string matching the regular expression .[A-Za-z_][A-Za-z0-9_]* from the domain
attribute and constructing a new domain with the reduced attribute.

If there is no string that can be removed (ie. we are at a top-level domain) then
nil is returned.

Reportable validate() validate

Validate the domain. A domain is valid if the domain attribute matches the
regular expression given in the domainId attribute documentation.

4.2 FrankModel

The FrankModel class is a concrete implementation of the Frank interface.

4.2.1 Relationships

Class Description Notes
" Frank §2.2
" Validatable
$ Responsible performer 1..1 !

$ VersionModel §4.3 created 1..n
$ VersionModel §4.3 modified 1..1
":Realizes $:Association !:Navigable�:Aggregate�:Composite

4.2.2 Attributes

action: String The action that caused this frank to come into being.

performedOn: Datestamp = Datestamp.currentProcessingDate()The process-
ing date on which the object was created or modified.

performedAt: Timestamp = Timestamp.now() The date and time at which the
franked object was created or updated.

10

4.2.3 Operations

Responsible performedBy() performedBy

The party responsible for the update. Return the associated performer.

Reportable validate() validate

Validate the object. A FrankModel is valid if all of the action, dates and times
and performer are available. If the time the update was performed at comes before
the date the update was performed on, then a warning should be issued.

4.3 VersionModel

A VersionModel is a concrete implementation of the Version interface.
Any class that uses versions should hold a VersionModel attribute. The class

should also implement the Version interface itself, with the methods simply passing
through to the attribute.

4.3.1 Relationships

Class Description Notes
" Version §2.4
" Validatable
$ FrankModel §4.2 created 1..1 !

$ FrankModel §4.2 modified 1..1 !

$ DomainModel §4.1 within 1..1 !

$ Depot §3.1 depository !

":Realizes $:Association !:Navigable�:Aggregate�:Composite

4.3.2 Attributes

key: Integer The key for the object family.

versionNumber: Integer The version number for this object.

4.3.3 Operations

Version predecessor() predecessor

Previous version to this version. Get the previous version of this object from
the associated depot.

11

Version successor() successor

Next version to this version. Get the successor of this version from the associ-
ated depot.

Boolean isCurrent() isCurrent

Current version? Return true if the associated depot returns this object as the
current version of this object family.

Frank created() created

Creation frank. Return the associated creation Frank.

Frank modified() modified

Modification frank. Return the associated modified Frank.

Domain domain() domain

Domain of identification. Return the associated domain that this object is
within.

Reportable validate() validate

Check for for a valid object. A VersionModel is valid if the creation processing
date and timestamp are the same as or earlier than the modification processing date
and timestamp.

5 Architectural Services

5.1 DepotModel

The DepotModel class is an implementation of the Depot interface and provides
basic caching services for objects that use the Version §2.4 interface. The Version
objects accessed by the cache are the actual objects that the version is attached to,
rather than the versions themselves.

The exact implementation of the operations defined in Depot is a function
of the underlying architecture of the system — something not addressed by the
elements object model. As a result, no semantics have been defined for the
Depot operations.

12

5.1.1 Relationships

Class Description Notes
" Depot §3.1
$ Version §2.4 store !

":Realizes $:Association !:Navigable�:Aggregate�:Composite

6 Exceptions

6.1 OutOfOrderException

An exception raised when a versioned object appears to have an incorrect version.

6.1.1 Operations

Version updatingVersion() updatingVersion

Version attempting an update. Returns the object that was being presented as
the newest version.

Version existingVersion() existingVersion

The existing version which the updating version clashes with. Returns the ex-
isting version that is on or after the updating version.

7 Associations

Table 1: Object Identity— Associations

Association
Role Class Card. Notes

performer
performer Responsible 1..1 !

frank FrankModel §4.2 0..n
created

creator FrankModel §4.2 1..1 !

version VersionModel §4.3 1..n
modified

modifier FrankModel §4.2 1..1 !

13

Table 1: . . . continued

Association
Role Class Card. Notes
version VersionModel §4.3 1..1

store
depositor Version §2.4 !

depot DepotModel §5.1 �

within
domain DomainModel §4.1 1..1 !

version VersionModel §4.3 0..n
depository

depot Depot §3.1 !

depositor VersionModel §4.3
!:Navigable�:Aggregate�:Composite

7.1 performer

Role: performer NavigableResponsible, 1..1.
Role: frank FrankModel, 0..n.

The party responsible for the change.

7.2 created

Role: creator NavigableFrankModel, 1..1.
Role: version VersionModel, 1..n.

The creation action for this family of objects.

7.3 modified

Role: modifier NavigableFrankModel, 1..1.
Role: version VersionModel, 1..1.

The modification frank for this version of the object family.

7.4 store

Role: depositor NavigableVersion.
Role: depot AggregateDepotModel.

The objects that make up the depot.

14

7.5 within

Role: domain NavigableDomainModel, 1..1.
Role: version VersionModel, 0..n.

The domain that was the authority for the identifier for this version.

7.6 depository

Role: depot NavigableDepot.
Role: depositor VersionModel.

The depot that holds these objects.

15

C
o

m
p

a
ra

b
le

(f
ro

m
 U

ti
lit

ie
s

)

<
<I

nt
er

fa
ce

>>

F
ra

n
k

p
e

rf
o

rm
e

d
B

y(
)

p
e

rf
o

rm
e

d
O

n(
)

p
e

rf
o

rm
e

d
A

t(
)

a
ct

io
n(

)

<
<I

nt
er

fa
ce

>>

V
a

lid
a

ta
b

le

(f
ro

m
 U

ti
lit

ie
s

)

R
e

sp
o

n
si

b
le

(f
ro

m
 U

ti
lit

ie
s

)

<
<I

nt
er

fa
ce

>>

F
ra

nk
M

od
el

a
ct

io
n

: S
tr

in
g

p
e

rf
o

rm
e

d
O

n
: D

a
te

st
a

m
p

 =
 D

a
te

st
a

m
p

.c
ur

re
nt

P
ro

ce
ss

in
g

D
a

te
()

p
e

rf
o

rm
e

d
A

t :
 T

im
e

st
a

m
p

 =
 T

im
e

st
a

m
p

.n
o

w
()

p
e

rf
o

rm
e

d
B

y(
)

va
lid

a
te

()

1
..1

0
..*

1
..1

0
..*

p
e

rf
o

rm
e

r

Figure 1: Class Diagram— Franking

16

P
a

rt
ia

lly
O

rd
e

re
d

(f
ro

m
 U

til
iti

es
)

<
<

In
te

rf
a

c
e

>
>

D
o

m
a

in

d
o

m
a

in
Id

()
p

a
re

n
t(

)
e

q
u

a
ls

()

<
<

In
te

rf
a

c
e

>
>

K
e

ya
b

le

d
o

m
a

in
()

k
e

y
()

e
q

u
a

ls
()

le
s

s
T

h
a

n
O

rE
q

u
a

lT
o

()

<
<

In
te

rf
a

c
e

>
>

V
a

lid
a

ta
b

le

(f
ro

m
 U

til
it

ie
s

)

V
a

lid
a

ta
b

le

(f
ro

m
 U

til
it

ie
s

)

C
o

m
p

a
ra

b
le

(f
ro

m
 U

til
it

ie
s

)

<
<

In
te

rf
a

c
e

>
>

V
e

rs
io

n

ve
rs

io
n

N
u

m
b

e
r(

)
p

re
d

e
c

e
s

s
o

r(
)

s
u

c
c

e
s

s
o

r(
)

is
C

u
rr

e
n

t(
)

c
re

a
te

d
()

m
o

d
if

ie
d

()
e

q
u

a
ls

()
le

s
s

T
h

a
n

O
rE

q
u

a
lT

o
()

<
<

In
te

rf
a

c
e

>
>

D
e

p
o

tM
o

d
e

l
<

<
A

rc
h

it
e

c
tu

ra
l S

e
rv

ic
e

>
>

st
o

re

F
ra

n
k

M
o

d
e

l

F
ra

n
k

M
o

d
e

l

D
o

m
a

in
M

o
d

e
l

d
o

m
a

in
Id

 :
 S

tr
in

g

p
a

re
n

t(
)

va
lid

a
te

()

D
e

p
o

t

c
u

rr
e

n
tV

e
rs

io
n

()
p

re
vi

o
us

V
e

rs
io

n
()

n
e

x
tV

e
rs

io
n

()
in

it
ia

li
ze

F
a

m
ily

()
a

d
d

()
va

lid
a

te
()

<
<

A
rc

h
it

e
c

tu
ra

l S
e

rv
ic

e
 In

te
rf

a
c

e
>

>

V
e

rs
io

n
M

o
d

e
l

k
e

y
:

In
te

g
e

r
ve

rs
io

n
N

u
m

b
e

r
:

In
te

g
e

r

p
re

d
e

c
e

s
s

o
r(

)
s

u
c

c
e

s
s

o
r(

)
is

C
u

rr
e

n
t(

)
c

re
a

te
d

()
m

o
d

if
ie

d
()

d
o

m
a

in
()

va
lid

a
te

()

1
..

1
1

..
*

1
..

1
1

..
*

cr
e

a
te

d

1
..

1

1
..

1

1
..

1

1
..

1
m

o
d

ifi
e

d

1
..

1
0

..
*

1
..

1
0

..
*

w
ith

in

de
po

si
to

ry

Figure 2: Class Diagram— Keying and Storage

17

Ne w Ob je ct

Edit Object

Get Ob je ct

C ompute D elta

F
igure

3:
C

lass
D

iagram
—

E
xam

ples

18

References

[1] TIB/Rendezvous.
http://www.rv.tibco.com/index.html.

19

http://www.rv.tibco.com/index.html

	Use Cases
	New Object
	Edit Object
	Get Object
	Compute Delta

	Interfaces
	Domain
	Relationships
	Operations

	Frank
	Relationships
	Operations

	Keyable
	Relationships
	Operations

	Version
	Relationships
	Operations

	Architectural Service Interfaces
	Depot
	Relationships
	Operations

	Classes
	DomainModel
	Relationships
	Attributes
	Operations

	FrankModel
	Relationships
	Attributes
	Operations

	VersionModel
	Relationships
	Attributes
	Operations

	Architectural Services
	DepotModel
	Relationships

	Exceptions
	OutOfOrderException
	Operations

	Associations
	performer
	created
	modified
	store
	within
	depository

