
Permissions Package

TARMS Inc.

September 07, 2000

TARMS Inc. http://www.tarms.com

http://www.tarms.com

Copyright c
2000 TARMS Inc.

Permission is hereby granted, free of charge, to any person obtaining a
copy of this model and associated documentation files (the “Model”),
to deal in the Model without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Model, and to permit persons to whom the
Model is furnished to do so, subject to the following conditions:

1. The origin of this model must not be misrepresented; you must
not claim that you wrote the original model. If you use this
Model in a product, an acknowledgment in the product
documentation would be appreciated but is not required.
Similarly notification of this Model’s use in a product would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and
must not be misrepresented as being the original software.

3. This notice, including the above copyright notice shall be
included in all copies or substantial portions of the Model.

THE MODEL IS PROVIDED “AS IS”, WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS
OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE MODEL OR THE USE OR
OTHER DEALINGS IN THE MODEL.

Typeset in LATEX.

Contents

1 Use Cases 1
1.1 Authenticate Passphrase. 1
1.2 Perform Operation . 1

2 Actors 2
2.1 User . 2

2.1.1 Relationships. 2

3 Interfaces 2
3.1 AccessLogger. 2

3.1.1 Relationships. 2
3.1.2 Operations . 3

3.2 AuthenticationLogger. 3
3.2.1 Relationships. 3
3.2.2 Operations . 3

3.3 Authenticator . 4
3.3.1 Relationships. 4
3.3.2 Operations . 4

3.4 Passphrase. 4
3.4.1 Relationships. 5
3.4.2 Operations . 5

3.5 Operation . 6
3.5.1 Relationships. 6
3.5.2 Operations . 6

3.6 OperationType . 7
3.6.1 Relationships. 7
3.6.2 Operations . 7

3.7 PermissionGrant . 7
3.7.1 Relationships. 8
3.7.2 Operations . 8

3.8 CompositePermissionGrant. 9
3.8.1 Relationships. 9
3.8.2 Operations . 9

3.9 PermissionOwner. 10
3.9.1 Relationships. 10
3.9.2 Operations . 11

1

4 Classes 13
4.1 CompositePermissionGrantModel. 13

4.1.1 Relationships. 13
4.1.2 Attributes. 13

4.2 NullAccessLoggerModel. 14
4.2.1 Relationships. 14
4.2.2 Operations . 14

4.3 NullAuthenticationLoggerModel. 14
4.3.1 Relationships. 14
4.3.2 Operations . 14

4.4 NullPermissionGrantModel. 15
4.4.1 Relationships. 15
4.4.2 Operations . 15

4.5 OperationModel. 16
4.5.1 Relationships. 16
4.5.2 Attributes. 16
4.5.3 Operations . 16

4.6 OperationTypeModel. 17
4.6.1 Relationships. 17
4.6.2 Attributes. 17
4.6.3 Operations . 17

4.7 PassphraseModel. 18
4.7.1 Relationships. 18
4.7.2 Attributes. 19
4.7.3 Operations . 19

4.8 PermissionGrantModel. 20
4.8.1 Relationships. 20
4.8.2 Attributes. 20
4.8.3 Operations . 20

4.9 PermissionGrantReferenceData. 22
4.9.1 Relationships. 22

4.10 PermissionOwnerModel. 22
4.10.1 Relationships. 22
4.10.2 Attributes. 22

4.11 StandardAccessLoggerModel. 22
4.11.1 Relationships. 23
4.11.2 Operations. 23

4.12 StandardAuthenticationLoggerModel. 23
4.12.1 Relationships. 23
4.12.2 Operations. 24

2

5 Exceptions 24
5.1 AuthenticationException. 24
5.2 AuthorizationException. 24
5.3 InvalidPassphraseExeception. 24

6 Enumerations 24
6.1 OperationAction . 24

6.1.1 Relationships. 25
6.1.2 Operations . 25

7 Associations 25
7.1 permissionGrant. 27
7.2 authenticator . 27
7.3 model . 27
7.4 collection . 27
7.5 accessLogger. 27
7.6 auditor. 27
7.7 authenticationLogger. 28
7.8 auditor. 28
7.9 operationObject. 28
7.10 object . 28
7.11 type . 28
7.12 operationType. 28

8 Extensions to the Auditing Package 38
8.1 Auditor . 38

8.1.1 Relationships. 38

List of Figures

1 Class Diagram— Permission Owner. 29
2 Class Diagram— Operations. 30
3 Class Diagram— Authentication. 31
4 Class Diagram— Access Logging. 32
5 Class Diagram— Authentication. 33
6 Class Diagram— Permission Grant. 34
7 Class Diagram— Attempting an operation. 35
8 Class Diagram— Authentication Logging. 36
9 Class Diagram— Operation Type and Action. 37

3

List of Tables

1 Permissions— Associations. 26
1 . . . continued. 27

Package Description

This package is used to enable entities to have permission to perform restricted
operations. In the field of permissions, such an entity is conventionally referred to
as a “principal”, however it was decided to use the name “permission owner” to
avoid ambiguity with the financial term “principal”. An example of a permission
owner is a user. An example of an operation is the ability to trade a particular deal.

1 Use Cases

1.1 Authenticate Passphrase

Main flow of events:
The system prompts the user to enter their username and their passphrase. The user
enters their username and passphrase via the keyboard and hits “enter” or clicks
“accept”. The system verifies that the combination of user and passphrase is valid.
If the combination of user and passphrase is valid then the system acknowledges
this and the user becomes the current permission owner.
Exceptional flow of events:
The user can cancel the authentication process at any time by pressing the Cancel
button, thus restarting the use case.
Exceptional flow of events:
If the user enters an invalid username and passphrase combination then the use case
restarts. If this happens three times in a row, the system cancels the authentication
procedure, and prevents user access for 60 seconds.

1.2 Perform Operation

Background flow of events: Upon opening a user interface, the program will in-
quire of the current PermissionOwner (in this case a user) about whether it is al-
lowed to perform various operations relevant to the interface. The program will
then disable those parts of the user interface that the user is not allowed to perform.
This will help prevent attempts to perform operations that the current user does

4

not have privilege to perform. (Note: this mechanism is not the primary technique
used to prevent unauthorized access.)

Main flow of events: The user interacts with the interface, instructing it to
perform some operation. At the very beginning of the operation, the “attempt-
ingToDo” method on the current PermissionOwner is called with the object that
represents this operation. The operation is then performed.

Exceptional flow of events: The “attemptingToDo” method raises a Authoriza-
tionException, and the execution of the restricted operation is aborted.

2 Actors

2.1 User

This actor is a user of the system. A user will be a permission owner.

2.1.1 Relationships

Class Description Notes
$ Authenticate Passphrase §1.1 !

$ Perform Operation §1.2 !

$:Association !:Navigable�:Aggregate�:Composite

3 Interfaces

3.1 AccessLogger

This interface is used to receive raw data and record this data appropriately.

3.1.1 Relationships

Class Description Notes
NullAccessLoggerModel §4.2
StandardAccessLoggerModel §4.11
$ PermissionOwnerModel §4.10 accessLogger
#:Realized by $:Association !:Navigable�:Aggregate�:Composite

5

3.1.2 Operations

log(PermissionOwner permissionOwner, Operation operation, Boolean
allowed) log

permissionOwner: PermissionOwnerThe permission owner who has at-
tempted an operation.
operation: Operation The operation that was attempted.
allowed: BooleanA value saying whether the permission owner is allowed
to perform the operation.

This method takes in a permissionOwner, an operation and an allowed flag, and
determines what information should be sent to the associated auditor.

3.2 AuthenticationLogger

This interface defines a log method that is used to recieve raw data (regarding
attempted authentication processes) and to possibly log this data.

3.2.1 Relationships

Class Description Notes
StandardAuthenticationLogger-

Model §4.12
NullAuthenticationLoggerModel §4.3
$ PermissionOwnerModel §4.10 authentication-

Logger
#:Realized by $:Association !:Navigable�:Aggregate�:Composite

3.2.2 Operations

log(PermissionOwner permissionOwner, Boolean authenticated) log

permissionOwner: PermissionOwnerThe permission owner who an en-
tity is claiming to be.
authenticated: BooleanWhether or not the entity claiming to be a permis-
sionGrant was authenticated.

This method takes in a permissionOwner and an authorized flag, and deter-
mines what information should be sent to the associated auditor.

6

3.3 Authenticator

This interface captures the general concept of the authentication of permission
owners. Different permission owners may require different authentication proce-
dures.

The process of authenticating a software component is handled via cryptog-
raphy. The combination of a digital signature and a certificate will authenticate a
software component.

3.3.1 Relationships

Class Description Notes
+ Passphrase §3.4
$ PermissionOwnerModel §4.10 authenticator
+:Inherited by $:Association !:Navigable�:Aggregate�:Composite

3.3.2 Operations

Boolean authenticate(Object authenticationObject) authenticate

authenticationObject: Object This is an object which will be used to de-
termine if the alleged permission owner is really the permission owner it
claims to be.

This method is used to determine if an entity can provide the appropriate infor-
mation that will identify it as a legitimate permission owner.

3.4 Passphrase

This interface enables the verification of passphrases submitted by a permission
owner, for example, a user typing in his passphrase. This is accomplished by com-
paring the submitted passphrase with the passphrase that is currently assigned to
the permission owner.

During the initialization of a passphrase object, a random number is generated
and stored. This number is set only once for the life of the object. This random
number is used when the passphrase is set and during verification of passphrases.

7

3.4.1 Relationships

Class Description Notes
* Authenticator §3.3
PassphraseModel §4.7
*:Inherits #:Realized by

3.4.2 Operations

Date passphraseLastChanged() passphrase-
LastChangedThe date at which this passphrase was last changed.

setPassphrase(String passphrase) setPassphrase

passphrase: StringThe raw passphrase that will be set as the permission
owner’s passphrase.

This method calls passphraseIsHardToGuess with the given (raw) passphrase.
If the given passphrase fails this test then an InvalidPassphraseException is raised.
Otherwise this method encodes the given (raw) passphrase in an appropriate man-
ner for storage.

This method takes a passphrase and combines it with the held randomNum-
ber by appending the lowest order 8 hexadecimal digits (where hexadecimal let-
ters are written in uppercase) of the random number to the front of the passphrase
string. The combination of passphrase and the random number are then hashed
using SHA-1 [2], and the result is stored in the encryptedPassprhase attribute. This
method then updates the passphraseLastChanged variable to be the current date.

Boolean passphaseIsHardToGuess(String passphrase) passpha-
seIsHard-
ToGuess

passphrase: StringThe passphrase that will be checked to see if it is hard
to guess.

This method tests the passphrase to ensure that it is not “too easy” to guess.
Tests could include minimum length, inclusion of upper and lower case characters,
inclusion of non-alphabetic characters, avoidance of repeated characters, avoidance
of common names and difference from previous passphrases. The following refer-
ence gives guidence on what constitutes a passphrase being hard to guess. [1]. The
number of these tests performed and the strictness with which they are enforced
is determined by the adopted security policy. This method returns true if it passes
these tests, otherwise false.

8

3.5 Operation

This class is used to specify operations. An operation is defined as an action on
a particular object. For example, changing a deal would be an operation whose
action is “modify” and whose object is a deal.

In fact, we specify that an operation consists of three pieces of data: an “ac-
tion”, a “type” and an “object”. The “action” is an action that is being applied to
the object, for example to “open” a window, or “resize” a window. The “type”
specifies the general class of the operation (such as operations on deals, opera-
tions on reference data or window operations), and is required when comparing
two operations to ensure that their objects are comparable. The “object” specifies
the particular object to which the operation applies (e.g. FX deals in a particular
book).

Operations are used as part of the permission model: A permission owner will
have the authority to perform certain specified operations. For example, a given
user could have permission to create FX deals in a given book, modify loans in a
different book, and create bond definitions in reference data.

3.5.1 Relationships

Class Description Notes
OperationModel §4.5
#:Realized by

3.5.2 Operations

OperationType type() type

The ‘type’ of an operation specifies the general category into which the oper-
ation falls. For example, operations may have types such as ‘operations on deals’,
‘operations on reference data’, ‘window operations’.

The ‘type’ is required when comparing two operations, to ensure that their ob-
jects have the same structure, and are thus comparable. For example an operation
of type ‘DealOperationType’ will always have a object that is specified with the
keys “Book”, “Counterparty”, “DealType”, etc.

OperationAction action() action

This returns an OperationAction, which is used to specify the action being ap-
plied to an object. For example, the action may be ‘enter’ or ‘modify’ (a deal),
or ‘open’ or ‘move’ (a window). The available actions will be determined by the

9

operation’s type, since, obviously, not all actions are applicable to every class of
object.

Classifier object() object

Returns the associated classifier. This classifier will specify the objects to
which this operation applies. For example, if the operation applies to FX and Loan
deals in books bk1 or bk2, then the specifier would be:

‘DealType’ -> FXDeal, LoanDeal ‘Book’ -> bk1, bk2

3.6 OperationType

An OperationType is used to broadly characterize operations based on the “kind of
object” to which they apply. For example, deals, reference data, windows etc.

The type of an operation will determine two things: The specific actions that
can be performed (you can’t modify a window or resize a deal), and the broad
structure of the Classifier object that specifies the actual objects to which the oper-
ation applies. For example a deal operation can have the following kind of actions:
“Create”, “Read”, “Update” and “Delete”, applied to an object that can be specified
with the following kind of values “book”, “counterparty”, “dealType”, etc.

3.6.1 Relationships

Class Description Notes
* Identifiable
OperationTypeModel §4.6
$ OperationModel §4.5 type
$ PermissionGrantModel §4.8 operationType
*:Inherits #:Realized by $:Association !:Navigable�:Aggregate�:Composite

3.6.2 Operations

Set<OperationAction> appropriateActions() appropriateAc-
tionsReturns a collection of OperationActions that are appropriate to the specific

operation type.

3.7 PermissionGrant

A PermissionGrant is used to grant permission of a certain operation or group of
operations to a permission owner.

10

3.7.1 Relationships

Class Description Notes
* Identifiable
* Validatable
+ CompositePermissionGrant §3.8
PermissionGrantReferenceData §4.9
PermissionGrantModel §4.8
NullPermissionGrantModel §4.4
$ PermissionOwnerModel §4.10 permissionGrant
$ PermissionGrantReferenceData §4.9 model
$ CompositePermissionGrant-

Model §4.1
collection �

*:Inherits+:Inherited by #:Realized by $:Association!:Navigable�:Aggregate�:Composite

3.7.2 Operations

Boolean allowedToDo(Operation operation) allowedToDo

operation: Operation The operation which may be allowed to be per-
formed by this permission grant.

This method takes an operation and determines whether this permission grant
allows it to be performed.

Collection<Object> allowedValues(Operation operation, String key) allowedValues

operation: Operation This is the operation that must be allowed by a per-
mission grant before this method will return a list of values corresponding
to the key parameter.
key: String This key specifies a particular aspect of an object. All allowed
values of that aspect will be returned from this method.

This method returns a list of values that are allowed to be used in conjunction
with the given operation. This list of values comes from the category that is de-
termined by the given key. If the operation is not allowed then return an empty
collection. If the key is not present then return an empty collection.

For example, when a user opens an FX deal entry screen we will want to know
the list of counterparties which whom the user can trade. To obtain this list we
create an operation object with the type “Deal Operation”, the action “create”,
and a classifier that has the aspect “deal type” with a corresponding value “FX”.

11

We then ask the current permission owner what are your allowedValues given this
operation, and the key “counterparties”. See also PermissionOwner §3.9 and Per-
missionGrantModel §4.8.

3.8 CompositePermissionGrant

This interface is a type of permission grant that is composed of a number of other
permission grants. This permission grant allows an operation if any of the per-
mission grants that it is composed of allows the operation. The act of grouping
permission grants together enables groups of permissions to be allocated to peo-
ple. Permission grants can be grouped together to form a particular role. Thus this
class provides the ability to manage permission in a role-based manner.

3.8.1 Relationships

Class Description Notes
* PermissionGrant §3.7
CompositePermissionGrant-

Model §4.1
*:Inherits #:Realized by

3.8.2 Operations

Boolean allowedToDo(Operation operation) allowedToDo

operation: Operation The operation which may be allowed to be per-
formed by this permission grant.

This method determines whether the given operation is allowed by this permis-
sion grant.

If any of the permission grants in the held collection return true when asked
whether they are “allowToDo” the given operation then return true, otherwise false.

Collection<Object> allowedValues(Operation operation, String key) allowedValues

operation: Operation This is the operation that must be allowed by this
permission grant before this method will return a list of allowed values.
key: String This key specifies a particular aspect of an object. All allowed
values of that aspect will be returned from this method.

This method calls the same method with the same arguments on all of the Per-
missionGrants in its held collection and combines all the returned collections. This

12

method returns the combined collection.

Collection<PermissionGrant> collection() collection

The collection of permission grants that makes up this composite permission
grant.

add(PermissionGrant permissionGrant) add

permissionGrant: PermissionGrant The permissionGrant to be added to
the CompositePermissionGrant’s collection.

Adds the given permissionGrant to this object’s collection.

Reportable validate() validate

This method returns a Reportable composed of all the Reportables returned
from the calling the “validate” method on the permission grants in this interface’s
collection.

3.9 PermissionOwner

A permission owner is an entity that can have permission to perform a restricted
operation. Such an entity is conventionally referred to as a “principal”, however
it was decided to use the name “permission owner” to avoid ambiguity with the
financial term “principal”. An example of a permission owner is a user. This
interface provides authentication and authorization procedures.

At places where authorization is required before an operation can be performed,
the current permission owner is asked whether it can perform the desired opera-
tion. This is done by sending the “allowedToDo” method to the current Permis-
sionOwner with the desired operation as the parameter. See Operation §3.5.

Any appropriate object can become a permission owner. This can be achieved
in two ways. Either the object can inherit from the PermissionOwnerModel, or it
can realize the PermissionOwner interface and delegate to an associated realization
of the PermissionOwner interface.

3.9.1 Relationships

Class Description Notes
* Identifiable
* Validatable
PermissionOwnerModel §4.10
*:Inherits #:Realized by

13

3.9.2 Operations

Boolean allowedToDo(Operation operation) allowedToDo

operation: Operation

This method determines whether this permission owner is permitted to perform
the given operation. The operation is permitted if this permission owner “isActive”
and if any of the permission grants, that are returned from calling the permission
grants method, allow the given operation. The allowedToDo method on the per-
mission grant is called to determine whether it allows a given operation.

Collection<Object> allowedValues(Operation operation, String key) allowedValues

operation: Operation This is the operation that must be allowed by a per-
mission grant before it will return a list of values corresponding to the key
parameter.
key: String This is the key that specifies what kind of values are being
sought from the permission grant.

This method is used to generate a list of allowed values (the nature of which is
determined by the given key) that can be used to make a more specific operation of
the same structure as the given one. For example if a user opens an FX deal screen,
we will want a list of all the counterparties that the user can trade. To obtain this
list we need to send the “allowableValues” method to the user with two parameters.
The first parameter is an operation with the following three parts:
1) the dealOperationType (Which can be obtained by sending the dealOperationType
method to the OperationTypeModel),
2) the “create” action. (Which can be obtained by sending the “create” method to
the DealOperationAction class), and
3) a classifier containing a key that is the string “Deal types” and corresponds to
a value that is the class FXTypeModel. The second parameter to be send with the
“allowableValues” method is the string "Counterparty".

attemptingToDo(Operation operation) attemptingToDo

operation: Operation
This method is called when a permission owner is attempting to perform an

operation. This method calls the allowedToDo method with the given operation.
Then it calls the log method on the associated logger with itself, the operation,
and the value returned from the allowedToDo method. If the allowedToDo method
returns false then this method raises an AuthorizationException (after the logging
has occurred).

14

authenticate(Object authenticationObject) authenticate

authenticationObject: Object This is an object that will be used to deter-
mine if the alleged permission owner is really the permission owner it claims
to be.

This method is called when an entity is attempting to gain recognition as this
permission owner. If this object’s “isActive” method returns false, then the attempt
to be recognized as this permission owner is considered false. If “isActive” is
true then this method calls the “authenticate” method on the object returned from
calling the “authenticator” method. After determining whether the authentication
process was successful this method sends a “log” message to the authentication-
Logger, with itself, and a boolean saying whether the authentication was successful
or not. If the authentication was not successful then this method raises an Authen-
ticationException after the logging has occurred.

Boolean isActive() isActive

This method returns a boolean flag which determines whether this Permis-
sionOwner is “active” or “non-active”. An active PermissionOwner will function
in a normal capacity. A non-active PermissionOwner prevents the represented en-
tity from performing any restricted operations. No entity can authenticate itself as
a non-active PermissionOwner.

Two examples of when a PermissionOwner would be deactivated are:
1) if it is suspected that its authentication procedure has been compromised, or
2) if the integrity of the entity represented by the PermissionOwner has come into
question.

Authenticator authenticator() authenticator

Returns the associated Authenticator object.

AuthenticationLogger authenticationLogger() authentication-
LoggerReturns the associated AuthenticationLogger, which will be able to provide

various logging behavior for when an entity attempts to gain recognition as this
permission owner.

AccessLogger accessLogger() accessLogger

Returns an associated accessLogger, which will be able to provide various log-
ging behavior for when a PermissionOwner attempts to do something.

PermissionGrant permissionGrant() permission-
GrantThis method returns the collection of permission grants that are used in deter-

15

mining whether a permission owner is allowed to perform an operation.

Reportable validate() validate

This method returns an object of type Reportable which will contain all the
errors and warnings generated from this method. Below is a list of the axioms
for an instance of a class that realizes this interface to be valid. Each statement
is followed by the error or warning message that will be issued if the axiom is
violated.

� This interface must have an authenticator. If not, then issue a “Permission
owner has no authenticator” error.

� This interface must have an permission grant. If not, then issue a “Permission
owner has no permission grant” error.

� This interface must have an authenticationLogger. If not, then issue a “Per-
mission owner has no authenticationLogger” error.

� This interface must have an accessLogger. If not, then issue a “Permission
owner has no accessLogger”.

This method also calls the validate method on the permissionGrant.

4 Classes

4.1 CompositePermissionGrantModel

This class is a concrete realization of the CompositionPermissionGrant interface.

4.1.1 Relationships

Class Description Notes
" CompositePermissionGrant §3.8
$ PermissionGrant §3.7 collection 0..n !

":Realizes $:Association !:Navigable�:Aggregate�:Composite

4.1.2 Attributes

identifier: String The identifier of the composite permission grant.

16

4.2 NullAccessLoggerModel

This class provides the ability not to log information about attempted access to
restricted operations. This class has only one instance.

4.2.1 Relationships

Class Description Notes
" AccessLogger §3.1
":Realizes

4.2.2 Operations

log(PermissionOwner permissionOwner, Operation operation, Boolean
allowed) log

permissionOwner: PermissionOwnerThe permission owner who has at-
tempted an operation.
operation: Operation The operation that was attempted.
allowed: BooleanA value saying whether the permission owner is allowed
to perform the operation.

This method does nothing.

«Static Method» NullAccessLoggerModel getInstance() getInstance

This method returns the single instance of this class.

4.3 NullAuthenticationLoggerModel

This class provides the ability to log no information about attempted authentica-
tion. This class has only one instance.

4.3.1 Relationships

Class Description Notes
" AuthenticationLogger §3.2
":Realizes

4.3.2 Operations

log(PermissionOwner permissionOwner, Boolean authenticated) log

17

permissionOwner: PermissionOwnerThe permission owner who an en-
tity is claiming to be.
authenticated: BooleanWhether the entity claiming to be a permission-
Grant was authenticated.

This method does nothing.

«Static Method» NullAuthenticationLoggerModel getInstance() getInstance

This method returns the single instance of this class.

4.4 NullPermissionGrantModel

This class has a single instance, which is used when a permission owner has no
permissions. This PermissionGrant grants no permissions.

4.4.1 Relationships

Class Description Notes
" PermissionGrant §3.7
":Realizes

4.4.2 Operations

String identifier() identifier

Returns the string “Null Permission Grant”.

Boolean allowedToDo(Operation operation) allowedToDo

operation: Operation The operation which may be allowed to be per-
formed by this permission grant.

This method returns false. (This grant does not allow any permissions).

Collection<Object> allowedValues(Operation operation, String key) allowedValues

operation: Operation This is the operation that must be allowed by a per-
mission grant before this method will return a list of values corresponding
to the key parameter.
key: String This key specifies a particular aspect of an object. All allowed
values of that aspect will be returned from this method.

As this permission grant does not allow any operation this method simply re-
turns an empty collection.

18

«Static Method» NullPermissionGrant getInstance() getInstance

Returns the single instance of this class.

Reportable validate() validate

Returns the NullReportable.

4.5 OperationModel

This class is a concrete realization of the Operation interface. An operation is
defined as an action applied to an object. In this implementation the object of the
operation is specified by a classifier.

4.5.1 Relationships

Class Description Notes
" Operation §3.5
" Validatable
$ Classifier object !

$ OperationType §3.6 type !

":Realizes $:Association !:Navigable�:Aggregate�:Composite

4.5.2 Attributes

action: OperationAction

4.5.3 Operations

Reportable validate() validate

This method returns an object of type Reportable which will contain all the
errors and warnings generated from this method. Below is a list of the axioms for
an instance of this class to be valid. Each statement is followed by the error or
warning message that will be issued if the axiom is violated.

� This operation’s action must be contained within the operation’s type’s ap-
propriateActions. If not, then this method creates the following error mes-
sage: “Operation has an invalid action named “<id1>”.”, where <id1> is the
identifier of the operation.

Note that additional validation could be performed if the OperationType was
to hold onto a collection of keys that a collection of a given type can have. This

19

collection would contains the keys that a classifier of an operation of a particular
type could have. Then this validation method could make sure that the keys of it
classifier are allowed by the held operation type.

4.6 OperationTypeModel

This class is a concrete realization of the OperationType interface. This class has
a fixed number of instances. Each instance will be accessible via its own static
method on this class.

4.6.1 Relationships

Class Description Notes
" OperationType §3.6
":Realizes

4.6.2 Attributes

identifier: String This identifies the operation type.

appropriateActions: Set<OperationAction> Returns a set of OperationActions.
Every instance of this class will have a unique collection of operation actions.

4.6.3 Operations

«Static Method» OperationTypeModel dealOperationType() dealOpera-
tionTypeThis method returns a particular instance of this class that has the identifier

“Deal Operation Type”, and a set of appropriateActions that consists of the objects
returned from calling the following methods on the OperationAction class: “cre-
ate”, “browse”, “modify” and “cancel”. Classifiers associated with this type are
likely to have the following keys: “books”, “counterparties”, “dealType”, “dealPur-
pose”.

«Static Method» OperationTypeModel screenOperationType() screenOpera-
tionTypeThis method returns a particular instance of this class that has the identifier

“Screen Operation Type”, and a set of appropriateActions that consists of the ob-
jects returned from calling the following methods on the OperationAction class:

20

“open”. Classifiers associated with this type are likely to have the following keys:
“screen name”.

«Static Method» OperationTypeModel referenceDataOperationType() referenceData-
OperationTypeThis method returns a particular instance of this class that has the identifier

“Reference Data Operation Type”, and a set of appropriateActions that consists of
the objects returned from calling the following methods on the OperationAction
class: “create”, “browse”, “modify” and “delete”. Classifiers associated with this
type are likely to have the following keys: “reference data”.

«Static Method» OperationTypeModel namedOperationType() namedOpera-
tionTypeThis method returns a particular instance of this class that has the identifier

“Named Operation Type”, and a set of appropriateActions that consists of the ob-
jects returned from calling the following methods on the OperationAction class:
perform. The named operation type is quite generic as it is used to specify opera-
tions based only upon its name. Classifiers associated with this type are likely to
have the following keys: “operation name”.

«Static Method» OperationType passwordOperationType() passwordOpera-
tionTypeThis method returns a particular instance of this class that has the identifier

“Password Operation Type”, and a set of appropriateActions that consists of the
object returned from calling the following method on the OperationAction class:
“modify”. Classifiers associated with this type are likely to have the following
keys: “user”.

4.7 PassphraseModel

This class is a concrete realization of the Passphrase interface. It includes some
implementation detail on how the passphrases are stored.

4.7.1 Relationships

Class Description Notes
" Passphrase §3.4
":Realizes

21

4.7.2 Attributes

encryptedPassphrase: String Holds the encrypted passphrase of this user.

randomNumber: Integer Holds a number that was randomally generated upon
instantiation of this object.

passphraseLastChanged: DateHolds the date at which this passphrase was last
changed.

4.7.3 Operations

Boolean authenticate(Object authenticationObject) authenticate

authenticationObject: Object This is an object that will be used to deter-
mine if the alleged permission owner is really the permission owner it claims
to be.

This method calls verifyPassphrase with the authenticationObject, and returns
that result.

Boolean verifyPassphrase(String passphrase) verify-
Passphrasepassphrase: StringA string that has been entered by a human user and

will be compared against the passphrase held by this interface to determine
whether it matches.

Combine the given passphrase with the held random number (according to the
method outlined in the setPassphrase documentation). Hash the combined string
with SHA-1 and compare against the encryptedPassphrase. This method returns
true if they match, otherwise it returns false.

String encryptedPassphrase() encrypted-
PassphraseReturns the encrypted passphrase of this user.

integer randomNumber() randomNumber

Returns a number that was randomly generated during the initialization of this
object. This random number is generated only once for the life of this object. This
random number should be between 0 and2

32 � 1. A different random number is
kept with each passphrase object in order to make brute force passphrase attacks
harder.

22

4.8 PermissionGrantModel

This is a concrete realization of the PermissionGrant interface.

4.8.1 Relationships

Class Description Notes
" PermissionGrant §3.7
$ Classifier operationObject !

$ OperationType §3.6 operationType !

":Realizes $:Association !:Navigable�:Aggregate�:Composite

4.8.2 Attributes

identifier: String This string identifies this permission grant.

operationActions: Collection<OperationAction> This attribute specifies the “ac-
tions” authorized by the permissionGrant, for example, “modify” (a deal) or
“open” (a window). The attribute contains a collection of OperationActions,
which are the actions of an operation that this PermissionGrant allows. See
Operation §3.5.

4.8.3 Operations

Boolean allowedToDo(Operation operation) allowedToDo

operation: Operation The operation which may be allowed to be per-
formed by this permission grant.

This method determines whether the given operation is allowed by this Permis-
sionGrant.

For this method to return true the following three conditions must be met:
1) This object’s operationType is the same as the given operation’s “type”,
2) The given operation’s action exists within this object’s operationActions set.
3) This object’s operationObject “is a superset of” the given operation’s object.

Collection<Object> allowedValues(Operation operation, String key) allowedValues

operation: Operation This is the operation that must be allowed by a per-
mission grant before this method will return a list of values corresponding
to the key parameter.

23

key: String This is the key that specifies what kind of values are being
sought from the permission grant.

If this class is “allowedToDo” the given operation, then ask the classifier, re-
turned from the “operationObject” method, for its value at the given key, and return
that result. If the operation is not allowed then return an empty collection. If the
key is not present then return an empty collection.

Classifier operationObject() operationObject

This method returns the associated classifier. An operation is defined as an
action on an object. This classifier contains information on what kind of objects
(of an operation) that this permission grant allows.

OperationType operationType() operationType

This method returns the associated OperationType, which is used to identify
the “type” of the operation that this permission grant authorizes. For example,
“deal operations” or “window operations”. See Operation §3.5 for an explanation
of “Operations” and operation “types”.

Reportable validate() validate

This method returns an object of type Reportable which will contain all the
errors and warnings generated from this method. Below is a list of the axioms for
an instance of this class to be valid. Each statement is followed by the error or
warning message that will be issued if the axiom is violated.

� This grant’s operationActions must be a subset of this grant’s type’s appro-
priateActions. For all invalid actions the following error message should be
added to the Reportable that will be returned from this method: “Permis-
sion grant “<id1>” has an invalid action named “<id2>”.”, where id1 is the
identifier of this permission grant, and id2 is the identification of the invalid
action.

Note that additional validation could be performed if the OperationType was
to hold on to a collection of keys that a collection of a given type can have. This
collection would contain the keys that a classifier of an operation of a particular
type could have. Then this validation method could make sure that the keys of its
classifier are allowed by the held operation type.

24

4.9 PermissionGrantReferenceData

Implements the interface by delegating to the associated model.

4.9.1 Relationships

Class Description Notes
* ReferenceDataModel
" PermissionGrant §3.7
$ PermissionGrant §3.7 model !

*:Inherits ":Realizes $:Association !:Navigable�:Aggregate�:Composite

4.10 PermissionOwnerModel

This class is a concrete realization of the PermissionOwner interface.
This class holds onto a single permission grant, which can be a composite

permission grant.

4.10.1 Relationships

Class Description Notes
" PermissionOwner §3.9
$ PermissionGrant §3.7 permissionGrant !

$ Authenticator §3.3 authenticator !

$ AccessLogger §3.1 accessLogger !

$ AuthenticationLogger §3.2 authentication-
Logger

!

":Realizes $:Association !:Navigable�:Aggregate�:Composite

4.10.2 Attributes

identifier: String The identifier of this permission owner.

isActive: Boolean Is this permission owner active?

4.11 StandardAccessLoggerModel

This class provides an implementation of a particular auditing policy for informa-
tion pertaining to attempted performing of restricted operations. The details of this
class have not yet been defined due to its relationship with the currently undefined
auditing package.

25

4.11.1 Relationships

Class Description Notes
" AccessLogger §3.1
$ Auditor auditor !

":Realizes $:Association !:Navigable�:Aggregate�:Composite

4.11.2 Operations

log(PermissionOwner permissionOwner, Operation operation, Boolean
allowed) log

permissionOwner: PermissionOwnerThe permission owner who is at-
tempting to perform a restricted operation.
operation: Operation The operation that a permission owner is attempting
to perform.
allowed: BooleanWhether the permission owner is permitted to perform
the operation.

This method sends some information to the auditor. The information sent to
the auditor is not defined because the auditing package has not yet been specified.

Auditor auditor() auditor

Returns the auditor that will have permission logging information sent to it. An
Auditor is an object that receives and records arbitrary data.

4.12 StandardAuthenticationLoggerModel

This class provides an implementation of a particular auditing policy for informa-
tion pertaining to attempted authentication. The details of this class have not yet
been defined due to its relationship with the currently undefined auditing package.

4.12.1 Relationships

Class Description Notes
" AuthenticationLogger §3.2
$ Auditor auditor !

":Realizes $:Association !:Navigable�:Aggregate�:Composite

26

4.12.2 Operations

log(PermissionOwner permissionOwner, Boolean authenticated) log

permissionOwner: PermissionOwner
authenticated: BooleanWhether the entity claiming to be a permission-
Grant was authenticated.

This method sends some information to the auditor. The information sent to
the auditor is not defined because the auditing package has not yet been specified.

Auditor auditor() auditor

Returns the associated auditor.

5 Exceptions

5.1 AuthenticationException

This exception is raised when a permission owner fails to correctly verify itself as
the permission owner it claims to be.

5.2 AuthorizationException

This exception is raised when the current permission owner is not allowed to per-
form the operation being attempted.

5.3 InvalidPassphraseExeception

This exception is raised when a passphrase does not meet the requirements of a
string that is sufficiently difficult to guess.

6 Enumerations

6.1 OperationAction

This class is an enumeration. It has a fixed number of instances each of which
represent a particular action that can be applied to an object that together specify
an operation. For example we would use the action “create” in conjuction with a
particular deal classifier in order to construct a deal operation.

27

6.1.1 Relationships

Class Description Notes
* Enum
*:Inherits

6.1.2 Operations

«Static Method» OperationAction create() create

This method returns the instance of this class that has the name “create”.

«Static Method» OperationAction browse() browse

This method returns the instance of this class that has the name “browse”.

«Static Method» OperationAction modify() modify

This method returns the instance of this class that has the name “modify”.

«Static Method» OperationAction cancel() cancel

This method returns the instance of this class that has the name “cancel”.

«Static Method» OperationAction delete() delete

This method returns the instance of this class that has the name “delete”.

«Static Method» OperationAction open() open

This method returns the instance of this class that has the name “open”.

«Static Method» OperationAction perform() perform

This method returns the instance of this class that has the name “perform”.

«Static Method» Collection<OperationAction> elements() elements

This method returns all the instances of this enumeration class. This will be a
list of all the possible actions that can be applied to an object in order to form an
operation, however not all of these actions can be applied to every object.

7 Associations

28

Table 1: Permissions— Associations

Association
Role Class Card. Notes

permissionGrant
PermissionGrant §3.7 !

PermissionOwnerModel §4.10
authenticator

Authenticator §3.3 !

PermissionOwnerModel §4.10
model

PermissionGrant §3.7 !

PermissionGrantReferenceData §4.9
collection

PermissionGrant §3.7 0..n !

CompositePermissionGrant-
Model §4.1

�

accessLogger
AccessLogger §3.1 !

PermissionOwnerModel §4.10
auditor

Auditor !

StandardAccessLoggerModel §4.11
authenticationLogger

AuthenticationLogger §3.2 !

PermissionOwnerModel §4.10
auditor

Auditor !

StandardAuthenticationLogger-
Model §4.12

operationObject
Classifier !

PermissionGrantModel §4.8
object

Classifier !

OperationModel §4.5
type

OperationType §3.6 !

OperationModel §4.5

29

Table 1: . . . continued

Association
Role Class Card. Notes

operationType
OperationType §3.6 !

PermissionGrantModel §4.8
!:Navigable�:Aggregate�:Composite

7.1 permissionGrant

Role: NavigablePermissionGrant.
Role: PermissionOwnerModel.

7.2 authenticator

Role: NavigableAuthenticator.
Role: PermissionOwnerModel.

7.3 model

Role: NavigablePermissionGrant.
Role: PermissionGrantReferenceData.

7.4 collection

Role: NavigablePermissionGrant, 0..n.
Role: AggregateCompositePermissionGrantModel.

7.5 accessLogger

Role: NavigableAccessLogger.
Role: PermissionOwnerModel.

7.6 auditor

Role: NavigableAuditor.
Role: StandardAccessLoggerModel.

30

7.7 authenticationLogger

Role: NavigableAuthenticationLogger.
Role: PermissionOwnerModel.

7.8 auditor

Role: NavigableAuditor.
Role: StandardAuthenticationLoggerModel.

7.9 operationObject

Role: NavigableClassifier.
Role: PermissionGrantModel.

7.10 object

Role: NavigableClassifier.
Role: OperationModel.

7.11 type

Role: NavigableOperationType.
Role: OperationModel.

7.12 operationType

Role: NavigableOperationType.
Role: PermissionGrantModel.

31

P
e

rm
is

si
o

nO
w

ne
r

a
llo

w
e

d
T

o
D

o
()

a
llo

w
ed

V
a

lu
e

s(
)

a
tte

m
p

tin
g

T
o

D
o

()
a

ut
he

nt
ic

a
te

()
is

A
ct

iv
e

()
a

ut
he

nt
ic

a
to

r(
)

a
ut

he
nt

ic
a

tio
nL

o
g

g
e

r(
)

a
cc

e
ss

L
o

g
g

e
r(

)
p

er
m

is
si

o
nG

ra
nt

()
va

lid
a

te
()<

<I
nt

er
fa

ce
>>

Id
e

nt
ifi

a
b

le

(fr
o

m
 U

til
iti

es
)

A
ut

he
nt

ic
a

to
r

<
<I

nt
er

fa
ce

>>
P

e
rm

is
si

o
nG

ra
nt

<
<I

nt
er

fa
ce

>>

A
cc

e
ss

L
o

g
g

e
r

<
<I

nt
er

fa
ce

>>

A
ut

he
nt

ic
a

tio
nL

o
g

g
e

r
<

<I
nt

er
fa

ce
>>

P
er

m
is

si
o

nO
w

ne
rM

od
el

id
e

nt
ifi

e
r

: S
tr

in
g

is
A

ct
iv

e
 :

B
o

o
le

a
n

a
u

th
e

n
tic

a
to

r
pe

rm
is

si
o

nG
ra

n
t

ac
ce

ss
Lo

gg
er

a
u

th
e

n
tic

a
tio

n
L

o
g

g
e

r

V
a

lid
a

ta
b

le

(fr
o

m
 U

til
iti

es
)

Figure 1: Class Diagram— Permission Owner

32

Operation

type()
action()
object()

<<Interface>>

C lassifier
(from Utilit ies)

<<Interface>>

Operatio nType
<<Interface>>

Ope ra tionM od el

action : OperationAction

va lid ate ()

o bje ct

type

Validatable

(from Utilit ies)

F
igure

2:
C

lass
D

iagram
—

O
perations

33

A
ut

he
nt

ic
a

te
 P

a
ss

p
hr

a
se

U
se

r

Figure 3: Class Diagram— Authentication

34

N
ul

lA
cc

e
ss

L
og

ge
rM

od
el

lo
g

()
<

<S
ta

tic
 M

et
ho

d>
>

 g
e

tIn
st

a
nc

e
()

A
cc

e
ss

Lo
gg

er

lo
g

()

<
<

In
te

rf
a

ce
>

>

A
ud

ito
r

(f
ro

m
 A

u
d

it
in

g
)

<
<

In
te

rf
a

ce
>

>
S

ta
nd

a
rd

A
cc

e
ss

L
o

g
g

e
rM

o
d

e
l

lo
g

()
au

d
ito

r(
)

a
u

d
ito

r

Figure 4: Class Diagram— Access Logging

35

PassphraseModel

encryptedPassphrase : String
randomNumber : Integer
passphraseLastChanged : Date

authenticate()
verifyPassphrase()
encryptedPassphrase()
randomNumber()

Pa ssphrase

passp hra seL astChang ed ()
setPa ssphrase ()
passphaseIsHardToGuess()

<<Interface>>

Authenticator

authenticate()

<<Interface>>

Figure 5: Class Diagram— Authentication

36

Refere nceDa taM od el
(fro m Re fe rence Data)

Ide ntifiab le

(from U til it ies)

PermissionGrantReferenceData

PermissionGrant

allowedToDo()
a llowed Va lue s()

<<Interface>>

m odel

CompositeP ermissionGrantModel

identifier : String

0 ..*0 ..*

collection

CompositeP ermissionGrant

allowedToDo()
a llowed Va lue s()
co llectio n()
a dd ()
va lidate()

<<Interface>>

C lassifier
(from U til it ies)

<<Interface>>

OperationType
<<Interface>>

PermissionGrantModel

identifier : String
operationActions : Collection<OperationA ction>

allowedToDo()
allowedV alues()
operationObject()
operationType()
va lidate()

operationObject

operationType

NullP ermissionGrantModel

identifier()
allowedToDo()
allowedV alues()
<<Static Method>> getInstance()
va lidate()

V alida tab le

(from U til it ies)

Figure 6: Class Diagram— Permission Grant

37

P
er

fo
rm

 O
p

er
at

io
n

U
se

r

Figure 7: Class Diagram— Attempting an operation

38

A
ut

he
nt

ic
a

tio
nL

o
gg

er

lo
g

()<
<

In
te

rf
a

ce
>

>

A
ud

ito
r

(fr
o

m
 A

u
d

it
in

g
)

<
<

In
te

rf
a

ce
>

>
S

ta
nd

a
rd

A
ut

he
nt

ic
a

tio
nL

o
g

g
e

rM
o

d
e

l

lo
g

()
a

ud
ito

r(
)

a
u

d
ito

r
N

ul
lA

ut
he

nt
ic

a
tio

nL
o

g
g

e
rM

o
d

e
l

lo
g

()
<

<
S

ta
tic

 M
e

th
o

d
>

>
 g

e
tIn

st
a

nc
e

()

Figure 8: Class Diagram— Authentication Logging

39

O
p

e
ra

tio
nT

yp
e

a
p

p
ro

p
ri

a
te

A
ct

io
ns

()

<
<

In
te

rf
a

ce
>

>

Id
e

nt
ifi

ab
le

(f
ro

m
 U

ti
lit

ie
s

)

O
p

e
ra

tio
nT

yp
e

M
o

d
e

l

id
en

tif
ie

r :
 S

tri
ng

a
p

p
ro

p
ri

a
te

A
ct

io
ns

 :
S

et
<

O
pe

ra
tio

nA
ct

io
n>

<
<S

ta
tic

 M
et

ho
d

>
>

 d
e

a
lO

p
e

ra
tio

nT
yp

e
()

<
<

S
ta

tic
 M

e
th

od
>>

 s
cr

e
en

O
p

er
at

io
nT

yp
e

()
<

<
S

ta
tic

 M
et

ho
d

>
>

 r
e

fe
re

nc
e

D
a

ta
O

p
e

ra
tio

nT
yp

e
()

<
<

S
ta

tic
 M

et
ho

d
>

>
 n

a
m

e
d

O
p

e
ra

tio
nT

yp
e

()
<

<
S

ta
tic

 M
et

ho
d

>
>

 p
a

ss
w

o
rd

O
p

e
ra

tio
nT

yp
e

()

O
p

er
at

io
nA

ct
io

n

<<
S

ta
tic

 M
e

th
od

>>
 c

re
a

te
()

<
<

S
ta

tic
 M

e
th

o
d

>
>

 b
ro

w
se

()
<<

S
ta

tic
 M

e
th

od
>>

 m
o

d
ify

()
<

<
S

ta
tic

 M
e

th
o

d
>

>
 c

a
nc

el
()

<
<

S
ta

tic
 M

e
th

o
d

>
>

 d
el

et
e

()
<

<
S

ta
tic

 M
e

th
o

d
>

>
 o

pe
n(

)
<<

S
ta

tic
 M

e
th

od
>>

 p
e

rf
o

rm
()

<
<

S
ta

tic
 M

e
th

o
d

>
>

 e
le

m
e

nt
s(

)

<
<

E
nu

m
e

ra
tio

n>
>

E
nu

m
(f

ro
m

 U
ti

lit
ie

s
)

<
<

E
nu

m
e

ra
tio

n>
>

Figure 9: Class Diagram— Operation Type and Action

40

8 Extensions to the Auditing Package

8.1 Auditor

An Auditor is an object that receives and records arbitrary data. Auditing has not
yet been defined.

8.1.1 Relationships

Class Description Notes
$ StandardAccessLoggerModel §4.11 auditor
$ StandardAuthenticationLogger-

Model §4.12
auditor

$:Association !:Navigable�:Aggregate�:Composite

41

References

[1] The Passphrase FAQ. version 1.04.
http://www.stack.nl/ galactus/remailers/passphrase-faq.html.

[2] Bruce Schneier.Applied Cryptography. John Wiley & Sons, second edition,
1996.

42

http://www.stack.nl/~galactus/remailers/passphrase-faq.h% tml

	Use Cases
	Authenticate Passphrase
	Perform Operation

	Actors
	User
	Relationships

	Interfaces
	AccessLogger
	Relationships
	Operations

	AuthenticationLogger
	Relationships
	Operations

	Authenticator
	Relationships
	Operations

	Passphrase
	Relationships
	Operations

	Operation
	Relationships
	Operations

	OperationType
	Relationships
	Operations

	PermissionGrant
	Relationships
	Operations

	CompositePermissionGrant
	Relationships
	Operations

	PermissionOwner
	Relationships
	Operations

	Classes
	CompositePermissionGrantModel
	Relationships
	Attributes

	NullAccessLoggerModel
	Relationships
	Operations

	NullAuthenticationLoggerModel
	Relationships
	Operations

	NullPermissionGrantModel
	Relationships
	Operations

	OperationModel
	Relationships
	Attributes
	Operations

	OperationTypeModel
	Relationships
	Attributes
	Operations

	PassphraseModel
	Relationships
	Attributes
	Operations

	PermissionGrantModel
	Relationships
	Attributes
	Operations

	PermissionGrantReferenceData
	Relationships

	PermissionOwnerModel
	Relationships
	Attributes

	StandardAccessLoggerModel
	Relationships
	Operations

	StandardAuthenticationLoggerModel
	Relationships
	Operations

	Exceptions
	AuthenticationException
	AuthorizationException
	InvalidPassphraseExeception

	Enumerations
	OperationAction
	Relationships
	Operations

	Associations
	permissionGrant
	authenticator
	model
	collection
	accessLogger
	auditor
	authenticationLogger
	auditor
	operationObject
	object
	type
	operationType

	Extensions to the Auditing Package
	Auditor
	Relationships

