
Rate Scenarios Package

TARMS Inc.

September 07, 2000

TARMS Inc. http://www.tarms.com

http://www.tarms.com

Copyright c
2000 TARMS Inc.

Permission is hereby granted, free of charge, to any person obtaining a
copy of this model and associated documentation files (the “Model”),
to deal in the Model without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Model, and to permit persons to whom the
Model is furnished to do so, subject to the following conditions:

1. The origin of this model must not be misrepresented; you must
not claim that you wrote the original model. If you use this
Model in a product, an acknowledgment in the product
documentation would be appreciated but is not required.
Similarly notification of this Model’s use in a product would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and
must not be misrepresented as being the original software.

3. This notice, including the above copyright notice shall be
included in all copies or substantial portions of the Model.

THE MODEL IS PROVIDED “AS IS”, WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS
OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE MODEL OR THE USE OR
OTHER DEALINGS IN THE MODEL.

Typeset in LATEX.

Contents

1 Use Cases 3
1.1 Rate Request. 3
1.2 Derivation Allocation. 3

2 Actors 3
2.1 Rate Client . 3

2.1.1 Relationships. 3
2.2 Rate Manager. 3

2.2.1 Relationships. 4
2.3 End of Day Rate Manager. 4

2.3.1 Relationships. 4
2.4 Rate Scenario. 4

2.4.1 Relationships. 4

3 Interfaces 5
3.1 RateScenario. 5

3.1.1 Relationships. 5
3.1.2 Operations . 5

3.2 RateScenarioRule. 5
3.2.1 Relationships. 6
3.2.2 Operations . 6

4 Architectural Service Interfaces 7
4.1 RateManager. 7

4.1.1 Relationships. 7
4.1.2 Operations . 8

4.2 RateScenarioManager. 9
4.2.1 Relationships. 9
4.2.2 Operations . 9

5 Classes 10
5.1 RateScenarioReferenceDataModel. 10

5.1.1 Relationships. 10
5.2 RateScenarioRuleMatchingModel. 10

5.2.1 Relationships. 11
5.2.2 Operations . 11

5.3 RateScenarioRuleSimpleModel. 11
5.3.1 Relationships. 11

1

5.3.2 Attributes. 11
5.3.3 Operations . 11

5.4 StandardRateScenarioModel. 12
5.4.1 Relationships. 12
5.4.2 Attributes. 12
5.4.3 Operations . 12

6 Exceptions 13
6.1 RateManagerException. 13
6.2 RateScenarioException. 13

7 Associations 13
7.1 parents. 14
7.2 rules . 14
7.3 model . 14
7.4 matching set. 14
7.5 derivation method. 15

List of Figures

1 Class Diagram— Rate Requests. 16
2 Class Diagram— Rate Scenarios. 17
3 Class Diagram— Rate Scenario Rules. 18
4 Class Diagram— Rate Managers. 19

List of Tables

1 Rate Scenarios— Associations. 13
1 . . . continued. 14

Package Description

The rate machinery inelements is designed to allow multiple ways of deriving
a rate for a particular instrument. Rates may be supplied from a direct market feed
or implied from other rates. A deal, position or analytic, however, simply requires
a rate, for valuation purposes.

Rate scenarios allow the creation of consistent “views” of rates. These views
allow rate clients to make requests for rates based on a logical specification of the
rate; the rate is then mapped onto a derivation method.

2

1 Use Cases

1.1 Rate Request

A rate requestis a request sent from a rate client to a rate manager asking for a
rate corresponding to a rate specifier. Clients such as analytics calculators usually
require a stream of notification events, as the rates that they use change.

1.2 Derivation Allocation

A rate manager needs to be able to allocate a derivation method to a logical rate
specifier to form a complete rate specification.

2 Actors

2.1 Rate Client

A rate client is a component that needs an external source of rate information
for valuation purposes. Example rate clients include position screens, analytics
calculators and end-of-day.

Rate clients are, usually, only concerned with the kind of rates that they need
— logical rates.

2.1.1 Relationships

Class Description Notes
$ Rate Request §1.1 !

$:Association !:Navigable�:Aggregate�:Composite

2.2 Rate Manager

A rate manageris a component that translates rate requests from a rate client into
a concrete supply of rates.

The translation involves first associating a derivation method with a logical
rate. A source of rates then has to be found and attached to; the rate manager can
then supply a stream of updates to the client.

3

2.2.1 Relationships

Class Description Notes
+ End of Day Rate Manager §2.3
$ Rate Request §1.1 !

$ Rate Scenario §2.4
$ Derivation Allocation §1.2 !

+:Inherited by $:Association !:Navigable�:Aggregate�:Composite

2.3 End of Day Rate Manager

During the end of date process, positions are usually revalued against market prices.
The market prices are normally supplied as part of the end of day process and are
usually fixed prices set by the middle or back office. To ensure consistency, these
prices are not allowed to vary during end of day, despite market price movements.

An end of day rate manager needs to ensure that the rates are gathered from
a specific end of day source and that the rates, once gathered, are fixed and not
subject to further movement.

2.3.1 Relationships

Class Description Notes
* Rate Manager §2.2
*:Inherits

2.4 Rate Scenario

Rates for a particular contract type can be derived in many ways. For example, a
yield curve can be obtained directly from a set of interest rates, it can be implied
by combining a yield curve in another currency with an FX curve, it can be built
by adding a premium to another yield curve, etc.

A rate scenariomaps a logical rate specifier — a description of the instrument
and other information — onto a derivation method — the mechanism by which
that rate is derived.

2.4.1 Relationships

Class Description Notes
$ Rate Manager §2.2 !

$ Derivation Allocation §1.2 !

$:Association !:Navigable�:Aggregate�:Composite

4

3 Interfaces

3.1 RateScenario

A rate scenario supplies a derivation method for a logical rate.

3.1.1 Relationships

Class Description Notes
* Identifiable
StandardRateScenarioModel §5.4
RateScenarioReferenceData-

Model §5.1
$ StandardRateScenarioModel §5.4 parents 0..n
$ RateScenarioReferenceData-

Model §5.1
model 0..1

*:Inherits #:Realized by $:Association !:Navigable�:Aggregate�:Composite

3.1.2 Operations

RateDerivationSpecifier derivationMethod(RateFunctionSpecifier logi-
calRate) derivation-

MethodlogicalRate: RateFunctionSpecifierThe logical rate specifier that needs to
be allocated a derivation method.
Raises:RateScenarioException

The derivation method for a logical rate. Return a derivation method for a
logical rate, if there is one.

Otherwise, if this scenario is not complete, return nil, to indicate that there is
no derivation method. If this scenario is complete, then raise a RateScenarioEx-
ception §6.2.

Boolean isComplete() isComplete

Return true if this rate scenario attempts to supply derivation methods for all
possible rate requests; otherwise return false.

3.2 RateScenarioRule

A rate scenario rule provides a potential mapping from a logical rate specifier onto

5

a derivation method. If a supplied RateFunctionSpecifier matches the rule, then a
derivation method is constructed and returned.

3.2.1 Relationships

Class Description Notes
RateScenarioRuleMatching-

Model §5.2
$ StandardRateScenarioModel §5.4 rules 0..n
#:Realized by $:Association !:Navigable�:Aggregate�:Composite

3.2.2 Operations

Boolean matches(RateFunctionSpecifier specifier, LogicalRateParame-
terD deriver) matches

specifier: RateFunctionSpecifierThe logical rate specifier to test.
deriver: LogicalRateParameterD The parameter deriver to use when re-
ducing constraints.

Test to see if the supplied specifier triggers the rule. Return true if the argument
specifier matches the rule, false otherwise, using the supplied deriver to reduce any
constraints.

The behavior of this operation is class-specific, but generally involves mak-
ing a partial match of the parameters supplied by the specifier against an internal
template.

RateDerivationSpecifier derivationMethod(RateFunctionSpecifier spec-
ifier, LogicalRateParameterD deriver) derivation-

Methodspecifier: RateFunctionSpecifierThe logical rate specifier to test.
deriver: LogicalRateParameterD The parameter deriver to use when re-
ducing constraints.
Raises:RateScenarioException

Return the derivation method that this rule provides for the supplied specifier
and deriver. Raise a RateScenarioException if a deriver cannot be built.

String type() type

The type of rate that this rule matches. Return a string matching one of the
strings that an instance implementing RateFunctionSpecifier would return for the
type() operation.

6

4 Architectural Service Interfaces

4.1 RateManager

A rate manger provides an interface to the rate management and caching machin-
ery. Rate managers have the following functions:

� Allow clients to access rates for calculations.

� Allow clients to register for a stream of update notifications for a particular
rate, so that event-driven recalculation can be performed.

� Allow clients to access/register for a logical rate, with the derivation method
being supplied by the rate manager.

� Derive implied rates from more basic rates. Consistency between derived
rates and supplied rates needs to be maintained.

� Connect to a source or sources of basic rates, rate constructors or other rate
managers. A networkof rate managers is possible, with a rate manager acting
as a client to another rate manager.

When deriving implied rates, a rate manager may act as a client to itself. In
this case, the rate manager will need to ensure that loops within the derivation
mechanism are prevented.

� Ensure atomic updates of rate information, with source and derived rates
being updated as an atomic action.

A fixed rate manageralways returns the same value for a rate, once a rate has
been obtained. Fixed rate managers allow consistent behavior for such processes
as end of day.

4.1.1 Relationships

Class Description Notes
+ RateScenarioManager §4.2
+:Inherited by

7

4.1.2 Operations

Rate rate(RateFunctionSpecifier specifier) rate

specifier: RateFunctionSpecifier
Raises:RateManagerException, RateScenarioException

Get a rate from the rate manager. The rate specifier is a full rate specifier, with
a derivation method. If the rate manager can supply this rate immediately, then this
rate is returned.

If no suitable rate exists, then return nil.
If this rate manager returns true to isFixed(), the first non-nil value returned for

a specific specifier fixes this rate to that value; any further query will always return
the same rate.

request(RateFunctionSpecifier specifier, Object requester, Dictionary<String,
Object> options) request

specifier: RateFunctionSpecifierThe rate requested.
requester: ObjectThe object that is making this request.
options: Dictionary<String, Object> Any options for this request.
Raises:RateManagerException, RateScenarioException

Request a stream of updates for a rate.
The rate specifier supplied gives the rate to acquire. If the rate cannot be sup-

plied — possibly because it has an incomplete specification — then a RateMan-
agerException is raised.

The requester is assumed to have some form of architecture-specific event
channel or notification mechanism that the rate manager can use to inform the
requester of an update.

The options dictionary is a dictionary of options for such things as update fre-
quency, specialized source requests and priorities.

derequest(RateFunctionSpecifier specifier, Object requester) derequest

specifier: RateFunctionSpecifierThe rate requested.
requester: ObjectThe object that is making this request.
Raises:RateManagerException, RateScenarioException

De-request a stream of updates for a rate. This operation is the inverse of the
request operation, shutting down an update stream.

Boolean isFixed() isFixed

Is this a fixing rate manager? Return true if this rate manager fixes a rate to its
first value, false otherwise.

8

4.2 RateScenarioManager

A rate scenario manager is a rate manager that can use a RateScenario §3.1 to
provide derivation methods for logical rate specifiers.

4.2.1 Relationships

Class Description Notes
* RateManager §4.1
*:Inherits

4.2.2 Operations

RateFunctionSpecifier scenario() scenario

Return the rate scenario that this manager uses.

Rate rate(RateFunctionSpecifier specifier) rate

specifier: RateFunctionSpecifier
Raises:RateManagerException, RateScenarioException

Get a rate from the rate manager. The rate specifier may be a RateFunction-
Specifier, in which case the rate with the derivation method given by the rate sce-
nario is used to build a complete RateFunctionSpecifier. Otherwise, this operation
inherits its behavior from its super-interface.

request(RateFunctionSpecifier specifier, Object requester, Dictionary<String,
Object> options) request

specifier: RateFunctionSpecifierThe rate requested.
requester: ObjectThe object that is making this request.
options: Dictionary<String, Object> Any options for this request.
Raises:RateManagerException, RateScenarioException

Request a stream of updates for a rate. The rate specifier may be a RateFunc-
tionSpecifier, in which case the rate with the derivation method given by the rate
scenario is used to build a complete RateFunctionSpecifier. Otherwise, this opera-
tion inherits its behavior from its super-interface.

derequest(RateFunctionSpecifier specifier, Object requester) derequest

specifier: RateFunctionSpecifierThe rate requested.
requester: ObjectThe object that is making this request.

9

Raises:RateManagerException, RateScenarioException
De-request a stream of updates for a rate. The rate specifier may be a Rate-

FunctionSpecifier, in which case the rate with the derivation method given by the
rate scenario is used to build a complete RateFunctionSpecifier. Otherwise, this
operation inherits its behavior from its super-interface.

5 Classes

5.1 RateScenarioReferenceDataModel

A reference data implementation of the RateScenario interface. All operations on
this interface are delegated to the associated model.

5.1.1 Relationships

Class Description Notes
* ReferenceDataModel
" RateScenario §3.1
$ RateScenario §3.1 model 1..1 !

*:Inherits ":Realizes $:Association !:Navigable�:Aggregate�:Composite

5.2 RateScenarioRuleMatchingModel

A rule based on the matching of parameters. This rule simply tests the type of rate
and the parameters that it has against the supplied specifier. If there is a match,
then a derivation method is returned.

This class is an abstract class, from which different ways of supplying a deriva-
tion method can be defined in subclasses. Rate-type specific derivation methods
can be used as subclasses, with a particular derivation method being assembled
from the supplied parameters.1

1 For example, an FX-specific derivation method that always constructs cross-curves for non-
USD currency pairs.

10

5.2.1 Relationships

Class Description Notes
" RateScenarioRule §3.2
+ RateScenarioRuleSimpleModel §5.3
$ ActualRateParameter matching set 0..n !

+:Inherited by":Realizes $:Association !:Navigable�:Aggregate�:Composite

5.2.2 Operations

Boolean matches(RateFunctionSpecifier specifier) matches

specifier: RateFunctionSpecifierThe logical rate specifier to test.

Test to see if the supplied specifier triggers the rule.
If the type of the supplied specifier does not match the type of this rule then

return false.
Otherwise, form the union of the actual parameters from the supplied specifier

and the associated parameters.

5.3 RateScenarioRuleSimpleModel

The most simple form of rule: a pre-defined derivation method is returned when
this rule is matched. The type of rate being tested for is stored in an attribute.

5.3.1 Relationships

Class Description Notes
* RateScenarioRuleMatching-

Model §5.2
$ RateDerivationSpecifier derivation

method 1..1
!

*:Inherits $:Association !:Navigable�:Aggregate�:Composite

5.3.2 Attributes

type: String The type of rate that this rule specifies.

5.3.3 Operations

RateDerivationSpecifier derivationMethod(RateFunctionSpecifier spec-
ifier, LogicalRateParameterD deriver) derivation-

Method

11

specifier: RateFunctionSpecifierThe logical rate specifier to test.
deriver: LogicalRateParameterD The parameter deriver to use when re-
ducing constraints.
Raises:RateScenarioException

Return the associated derivation.

5.4 StandardRateScenarioModel

A standard rate scenario model allocates derivation methods by attempting to match
logical rate specifiers against a series of rules. The first matching rule is used to
build the derivation method.

Standard rate scenario models tend to be complex. They also tend to reflect mi-
nor variations on a base-case. These conditions indicate that the use of inheritance
is essential. Since groups of rates can be grouped together to form instrument-
specific valuation methods (for example, an interest rate group, an FX group, etc.)
multiple inheritance can also be used. Multiple inheritance tends to create diffi-
culties whenever different super-scenarios clash; clashes are resolved by a priority
mechanism.

5.4.1 Relationships

Class Description Notes
" RateScenario §3.1
$ RateScenario §3.1 parents 0..n !

$ RateScenarioRule §3.2 rules 0..n !

":Realizes $:Association !:Navigable�:Aggregate�:Composite

5.4.2 Attributes

isComplete: Boolean = falseIs this a complete rate scenario?

identifier: String The unique identifier for the rate scenario.

5.4.3 Operations

RateDerivationSpecifier derivationMethod(RateFunctionSpecifier logi-
calRate) derivation-

MethodlogicalRate: RateFunctionSpecifierThe logical rate specifier that needs to
be allocated a derivation method.

12

Raises:RateScenarioException

The derivation method for a logical rate.
Test each rule, in order, to find one that matches this specifier, using the asso-

ciated deriver. If a matching rule is found, return the derivation method from that
rule.

If no explicit rule is found, test each parent scenario until a derivation method
is found and return that method.

If no method has been found and this scenario is complete, then raise a RateSce-
narioException §6.2. Otherwise, if no method has been found, return nil.

6 Exceptions

6.1 RateManagerException

An exception raised when a rate manager is unable to respond to a request for a
rate for structural reasons.

Rate managers, normally, are often unable to respond to a request for a rate,
simply because the feed required has not been established. This exception indicates
that an impossible request has been made.

6.2 RateScenarioException

This exception is raised when a rate scenario — or rate scenario rule — fails in
some unexpected way. This exception is usually raised when a supposedly com-
plete rate scenario is unable to supply a derivation method for a rate.

7 Associations

Table 1: Rate Scenarios— Associations

Association
Role Class Card. Notes

parents
parent RateScenario §3.1 0..n !

scenario StandardRateScenarioModel §5.4 0..n
rules

13

Table 1: . . . continued

Association
Role Class Card. Notes
rule RateScenarioRule §3.2 0..n !

scenario StandardRateScenarioModel §5.4 0..n
model

model RateScenario §3.1 1..1 !

reference data RateScenarioReferenceData-
Model §5.1

0..1

matching set
parameter ActualRateParameter 0..n!
scenario rule RateScenarioRuleMatching-

Model §5.2
0..n

derivation method
derivation RateDerivationSpecifier 1..1 !

scenario rule RateScenarioRuleSimpleModel §5.3 0..n
!:Navigable�:Aggregate�:Composite

7.1 parents

Role: parent NavigableRateScenario, 0..n.
Role: scenario StandardRateScenarioModel, 0..n.

The parent rate scenarios for a standard rate scenario.

7.2 rules

Role: rule NavigableRateScenarioRule, 0..n.
Role: scenario StandardRateScenarioModel, 0..n.

The rules that make up the rate scenario.

7.3 model

Role: model NavigableRateScenario, 1..1.
Role: reference data RateScenarioReferenceDataModel, 0..1.

The wrapped model for this piece of reference data.

7.4 matching set

Role: parameter NavigableActualRateParameter, 0..n.

14

Role: scenario rule RateScenarioRuleMatchingModel, 0..n.
The set of parameters that a logical rate must match to fire a rate scenario rule.

7.5 derivation method

Role: derivation NavigableRateDerivationSpecifier, 1..1.
Role: scenario rule RateScenarioRuleSimpleModel, 0..n.

The derivation method to use for this rate.

15

R
a

te
 C

lie
nt

R
at

e
 R

e
qu

e
st

R
at

e
 M

a
na

g
er

R
a

te
 S

ce
na

ri
o

D
e

riv
at

io
n

A
llo

ca
tio

n

E
nd

 o
f D

a
y

R
a

te

M
a

na
g

e
r

Figure 1: Class Diagram— Rate Requests

16

Id
e

nt
ifi

a
b

le
(f

ro
m

 U
ti

lit
ie

s
)

<
<

In
te

rf
a

ce
>

>

R
ef

e
re

nc
e

D
a

ta
M

o
d

e
l

(f
ro

m
 R

e
fe

re
n

c
e

 D
a

ta
)

R
at

e
S

ce
na

ri
o

R
e

fe
re

nc
e

D
a

ta
M

o
d

e
l

R
a

te
S

ce
n

a
ri

o
R

u
le

<
<I

nt
er

fa
ce

>>

R
a

te
S

ce
na

ri
o

d
e

ri
va

tio
nM

e
th

o
d

()
is

C
o

m
p

le
te

()

<
<

In
te

rf
a

ce
>

>

1
..1

0.
.1

1
..1

0.
.1

m
o

d
e

l

S
ta

nd
a

rd
R

a
te

S
ce

na
ri

o
M

o
d

e
l

is
C

o
m

p
le

te
 :

B
o

o
le

a
n

=
 fa

ls
e

id
en

tif
ie

r :
 S

tri
ng

de
riv

a
tio

nM
e

th
o

d
()

0
..*

0
..*

0
..*

{o
rd

e
re

d
}

0
..*

ru
le

s

0
..*

0
..*

0
..*

{o
rd

e
re

d}

0
..*

p
a

re
n

ts

Figure 2: Class Diagram— Rate Scenarios

17

R
at

e
S

ce
n

a
ri

o
R

u
le

m
a

tc
he

s(
)

d
e

ri
va

tio
nM

e
th

o
d

()
ty

p
e

()

<
<

In
te

rf
a

ce
>

>

A
ct

ua
lR

a
te

P
a

ra
m

e
te

r
(f

ro
m

 B
a

s
ic

 R
a

te
s

)

<
<I

nt
er

fa
ce

>>
R

a
te

S
ce

n
a

ri
o

R
u

le
M

a
tc

h
in

g
M

o
d

e
l

m
at

ch
e

s(
)

0
..*

0
..*

0
..*

0
..*

m
a

tc
h

in
g

 s
e

t

R
at

e
D

er
iv

a
tio

nS
pe

ci
fie

r
(f

ro
m

 B
a

s
ic

 R
a

te
s

)

<
<I

nt
er

fa
ce

>>
R

a
te

S
ce

na
ri

o
R

ul
e

S
im

p
le

M
o

d
e

l

ty
p

e
 :

S
tr

in
g

d
e

ri
va

tio
nM

e
th

od
()

1
..1

0
..*

1
..1

0
..*

d
e

ri
va

tio
n

 m
e

th
o

d

Figure 3: Class Diagram— Rate Scenario Rules

18

Ra teMa nag er

rate()
request()
d ere que st()
isFixed()

<<Architectural Service Interface>>

RateScenarioManager

scenario()
rate()
request()
d ere que st()

<<Architectural Service Interface>>

Figure 4: Class Diagram— Rate Managers

19

References

20

	Use Cases
	Rate Request
	Derivation Allocation

	Actors
	Rate Client
	Relationships

	Rate Manager
	Relationships

	End of Day Rate Manager
	Relationships

	Rate Scenario
	Relationships

	Interfaces
	RateScenario
	Relationships
	Operations

	RateScenarioRule
	Relationships
	Operations

	Architectural Service Interfaces
	RateManager
	Relationships
	Operations

	RateScenarioManager
	Relationships
	Operations

	Classes
	RateScenarioReferenceDataModel
	Relationships

	RateScenarioRuleMatchingModel
	Relationships
	Operations

	RateScenarioRuleSimpleModel
	Relationships
	Attributes
	Operations

	StandardRateScenarioModel
	Relationships
	Attributes
	Operations

	Exceptions
	RateManagerException
	RateScenarioException

	Associations
	parents
	rules
	model
	matching set
	derivation method

