elements RS

Security Prices Package

TARMS Inc.

September 07, 2000

TARMS Inc. http://www.tarms.com

http://www.tarms.com

Copyright(©2000 TARMS Inc.

Permission is hereby granted, free of charge, to any person obtaining a
copy of this model and associated documentation files (the “Model”),

to deal in the Model without restriction, including without limitation

the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Model, and to permit persons to whom the
Model is furnished to do so, subject to the following conditions:

1. The origin of this model must not be misrepresented; you must
not claim that you wrote the original model. If you use this
Model in a product, an acknowledgment in the product
documentation would be appreciated but is not required.
Similarly notification of this Model's use in a product would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and
must not be misrepresented as being the original software.

3. This notice, including the above copyright notice shall be
included in all copies or substantial portions of the Model.

THE MODEL IS PROVIDED “AS IS”, WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS
OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE MODEL OR THE USE OR
OTHER DEALINGS IN THE MODEL.

Typeset inATEX.

Contents

1 Use Cases

1.1
1.2
1.3
1.4
15
1.6
1.7

Price Per100Face Value.
YieldtoMaturity
Fraction Quotation.
Yield. e
Simple Yieldto Maturity,
CurrentYield
Clean/Dirty Price.

2 Interfaces

2.1

2.2

2.3

24

2.5

2.6

2.7

2.8

29

2.10

ImpliedSecuritylnterestRateDerivationSpecifier.

2.1.1 Relationships
2.1.2 Operations. i
ImpliedSecurityPriceDerivationSpecifier.

2.2.1 Relationships
222 Operations. e
RelativeSecurityPriceSpecifier
2.3.1 Relationships
232 Operations.
SecurityBenchmarkSequence
241 Relationships
242 Operations. i
SecurityMarginQuotationMethod.
251 Relationships
252 Operations.
SecurityPrice.
2.6.1 Relationships
26.2 Operations.
SecurityPricePiece. Lo L L
271 Relationships
SecurityPriceQuotationMethod.
2.8.1 Relationships
2.82 Operations. i
SecurityPriceQuote
2.9.1 Relationships L.
SecurityPriceSpecifier. oL
2.10.1 Relationships
2.10.2 Operations. e

3 Service Interfaces 17

3.1 ImpliedSecuritylnterestRateConstructor. 17
3.1.1 Relationships 18
3.1.2 Operations. 18

3.2 ImpliedSecurityPriceConstructor. 19
3.2.1 Relationships L 19
3.22 Operations. e 19

3.3 RelativeSecurityPriceConstructor 20
3.3.1 Relationships, 20
3322 Operations. 20

4 Classes 21

4.1 BasicSecurityPriceModel 21
4.1.1 Relationships 22

4.2 EXOrCumEnum 22
421 Operations. i 22

4.3 ImpliedSecurityInterestRateDerivationSpecifierModel. 22
4.3.1 Relationships, 22
432 Operations. 23

4.4 ImpliedSecurityPriceDerivationSpecifierModel 23
441 Relationships 23
442 Operations. i 23

4.5 PricePerlO0OFaceValueMarginModel. 23
45.1 Relationships 24
452 Attributes. 24
453 Operations. e 24

4.6 RelativeSecurityPriceSpecifierModel 26
4.6.1 Relationships 26

4.7 SecurityBechmarkReferenceDataModel 26
4.7.1 Relationships 26

4.8 SecurityBenchmarkSequenceModel. 26
48.1 Relationships 27
4.8.2 Attributes. 27
483 Operations. 27

4.9 SecurityPricePieceModel, 27
49.1 Relationships 28

4.10 SecurityPriceQuotationMethodModel 28
4.10.1 Relationships 28
4.10.2 Attributes. 28

4.11 PricePerl00FaceValueModel. 28

4.11.1 Relationships
4.11.2 Attributes.
4.11.3 Operations. oo
4.12 SecurityYieldModel o oo
4,12.1 Relationships,
4122 Attributes. L
4,12.3 Operations.
4.13 SecurityCurrentYieldModel
4,13.1 Relationships
4.13.2 Operations.
4.14 SecuritySimpleYieldModel
4.14.1 Relationships
4,142 Operations.
4.15 SecurityPriceQuoteModel. oL
4,15.1 Relationships,
4.16 SecurityPriceSpecifierModel
4.16.1 Relationships
4.16.2 Attributes. L

Services

5.1 ImpliedSecuritylnterestRateConstructorService
5.1.1 Relationships,
51.2 Operations.o

5.2 ImpliedSecurityPriceConstructorService
5.2.1 Relationships L.
5,22 Operations.

5.3 RelativeSecurityPriceConstructorService.
5.3.1 Relationships
5.3.2 Operations.

Enumerations

6.1 CleanDirtyEnum
6.1.1 Relationships
6.1.2 Operations.

6.2 PriceFractionStyleEnum.,
6.2.1 Operations.

Associations
7.1 SECUNtY o o
7.2 baseprice. e

7.3 mMarginS. 45

7.4 margins. e e e e e 45
7.5 deriver. 45
7.6 result 45
7.7 deriver. 46
7.8 result 46
7.9 deriver. 46
7.10 SEBQUENCE v o o e e e e e 46
7.11 model 46
7.12 benchmark 46
7.13 period. e 46

List of Figures

1 Class Diagram— Quotation Methods 48
2 Class Diagram— Security Price Specificationl. 49
3 Class Diagram— Security Price Specification2. 50
4 Class Diagram— Security Price Specification3. 51
5 Class Diagram— PointRates. 52
6 Class Diagram— Relative Security Prices. 53
7 Class Diagram— Implied Security Prices 54
8 Class Diagram— Implied Interest Rates1. 55
9 Class Diagram— Implied Interest Rates2. 56
10 Class Diagram— Benchmark Sequences. 57
List of Tables
1 Security Prices— Associations. 43
1 .continued ... L L L 44

Package Description

Securities represent standardized interest-bearing contracts. Since the contracts are
standardized, it is possible to both quote the prices for the securities — usually for
some standardized amount — and receive a market feed of securities prices. The
Security Prices package models the specification, quotation and derivation of these
prices.

Since a security’s price essentially reflects the price paid now for an amount of
money in the future, securities prices and interest rates are closely linked. Yield
curves may be used to derive implied securities prices. Conversely, security prices
may be used to imply interest rates. The latter conversion is of interest in develop-
ing long-dated yield curves; bonds of 10 or more years duration are not uncommon,
and can be used to extrapolate yield curves beyond simple quoted interest rates.

1 Use Cases

1.1 Price Per 100 Face Value

Theprice per hundred face valu@r PP100FVfor short) quotation method gives
the amount paid, in the currency that the security is denominated in, for 100 cur-
rency units of that security.

As an example, for bonds with a face value of DEM 1,000,000 and a PP100FV
of 101.23, the amount paid for the bonds is DEM 1,012,300.

1.2 Yield to Maturity

The yield to maturity represents the value of a bond at a constant rate of if{éjest.
Suppose a bond pays coupons and principdlpef . . . , p,} (with p,, usually

being the return of principal) at dat¢d, ..., d,}. Suppose the yield to maturity

is y, quoted as an annualized, compound rate. Then the dirty price paid for the

bond is

S x (1+y) "

wheret; is the term in years between the trade datedndalculated according
to the date basis convention of the security.

As an example, suppose a bond with a face value of USD 1,000,000 matures
on 26-Jan-2001 with a semi-annual coupon of 5%, paid on 26-Jan-2000 and 26-
Jul-2000. If the trade date is 7-Jan-2000, the date basis is 30/360 and the quoted
yield is 5.66%, then the dirty price is:

25000 x 1.0566~19/360 1.
25000 x 1.05667199/360 1 = 992863.93
1000000 x 1.0566~379/360

1 Most bond valuation methods value the bond against a yield curve, giving different interest rates
and discount factors for each payment. A yield to maturity represents a single, composite interest
rate corresponding to a quoted price.

1.3 Fraction Quotation

Price per hundred face value prices are sometimes quoted in fractional, rather than
decimal form. Fractions are usually expressed in 1/32 of a unit, although 1/64 is
sometimes used. The price 101 8/32, therefore, is equivalent to 101.25.

A short form drops the denominator and expresses the fraction as a whole part,
a dash and the numerator of the fraction. In this form, 101 8/32 would be expressed
as 101-08. If the fraction is quoted as n/64 then it is represented as a fraction of
/32 +/1 1/64. So 101 3/64 would be represented as 101-01+ (ie. 101 + 1/32 + 1/64)
and 101 1/64 would be 101-01- (ie. 101 + 1/32 - 1/64).

1.4 Yield

Rather than being quoted in direct terms, a bond price may be quotegigis.a
The yield is an interest rate roughly equivalent to the interest paid on the bond.

1.5 Simple Yield to Maturity

A simple calculation of yield that ignores the effects of the the time value of
money.[]

If a bond has a coupon rate ef a face value (redemption amount) mfa
number of years to maturity @afand a simple yield to maturity aof then the clean
price, ¢, of the bond is given by:

. r+p/t
y+ 1/t

For example, JPY 1,000,000 of a 7 year bond paying a coupon of 10% and with
a simple yield to maturity of 11% has a clean price of

100000 + 1000000/7

— 960451.98
0.11 +1/7

Derivation:

1.6 Current Yield

A simple calculation of yield, ignoring the effects of the return of principal and the
time value of money]]]
If the coupon rate of a bond ts the face value i and the current yield ig
then the clean price;, for a bond is given by:
T
c=pX —
Yy
For example, the clean price for bonds with DEM 1,000,000 face value, a
coupon rate of 7% and a current yield of 8.56% is

0.07
1 — =281 .01
000000 x 0.0856 817757.0

Derivation: .,

y=—
c/p

1.7 Clean/Dirty Price

Security prices may be eitheleanor dirty. When a security is purchased part-way
through a coupon period, the seller of the security expects to be paid the accrued in-
terest for the part of the coupon period during which the seller held the sedjrity.[

A price quoted including this accrual is called the dirty price. A price from
which the accrued interest has been subtracted is the clean price.

For example, assume a bond paying a 6% semi-annual coupon. The last coupon
date was 19-Aug-2002. The next coupon date will be 19-Feb-2003. The trade date
is 16-Sep-2002, with accrued interest calculated on a 30/Actual date basis. The
dirty price is 103.45 (PP100FV).

The accrued interest from 19-Aug-2002 to 16-Sep-200B(sx 0.06 x % =
0.44. The clean price is, therefor&)3.45 — 0.44 = 103.01.

2 Interfaces

2.1 ImpliedSecurityinterestRateDerivationSpecifier

Just as a yield curve and a security can be used to derive a security’s price (see
ImpliedSecurityPriceConstructo38), so can a security’s price be used to derive
an implied interest rate for the maturity date. Unlike the standard yield to maturity

calculations, this implied interest rate uses a yield curve to accurately discount the
security’s coupons, giving an accurate interest rate for the maturity date.

These implied interest rates can be used to perfooopon stripson a bond,
allowing bond prices to be used while building yield curves.

2.1.1 Relationships

Class Description Notes
1 ImpliedRateDerivationSpecifier
J ImpliedSecuritylnterestRateDeriva-
tionSpecifierModel 8.3
+» ImpliedSecuritylnterestRateConstruc-deriver
torService §.1
f:Inherits |:Realized by <«s:Association —:Navigable®:Aggregate¢:Composite

2.1.2 Operations

RateFunctionSpecifier yieldCurve() yieldCurve

Returns the yield curve used to discount the security cashflows. This rate spec-
ifier must have yieldCurve().specifier().type() = “Interest Rate” and no from- or
to-date parameters set. The rate specifier may, or may not, include a derivation
method.

RateFunctionSpecifier securityPrice() securityPrice
Returns the security price. This rate specifier must have securityPrice().specifier().type()
= “Security Price” The rate specifier may, or may not, include a derivation method.

OrderedCollection<RateFunctionSpecifier> sources() sources
Returns the source rates. Returns an ordered collection built from the result of
the yieldCurve() and securityPrice() operations.

RateConstructor constructor() constructor
Returns the rate constructor. Returns an instance of ImpliedSecuritylntere-
stRateConstructorE1l

2.2 ImpliedSecurityPriceDerivationSpecifier

An implied security price is built from a yield curve. The yield curve is used to

discount the cashflows associated with the security price to provide a net present
value (NPV). This NPV, normalized to 100 units, forms a price.

2.2.1 Relationships

Class Description Notes
1+ ImpliedRateDerivationSpecifier
1 ImpliedSecurityPriceDerivationSpeci-

fierModel 8.4
M:Inherits |:Realized by

2.2.2 Operations

RateConstructor constructor() constructor

The rate constructor. Returns an instance of ImpliedSecurityPriceConstruc-
tor 83.2

RateFunctionSpecifier yieldCurve() yieldCurve

Returns the yield curve used to discount the security cashflows. This rate spec-
ifier must have yieldCurve().specifier().type() = “Interest Rate” and no from- or
to-date parameters set. The rate specifier may, or may not, include a derivation
method.

OrderedCollection<RateFunctionSpecifier> sources() sources
The source rates. Returns an ordered collection built from the result of the
yieldCurve() operation.

2.3 RelativeSecurityPriceSpecifier

A relative security price is an implied security price built by taking the price for a
different security and adding a margin to that security.

As an example, the price for a 8% US T-Bond, maturing on 21-Mar-2001 may
be set equal to the price for an 8% US T-Bond, maturing on 21-Jan-2001, with a
margin of -0-10. If the price of the base bond was 103-03, then the price for the
relative bond would be 102-25.

A rate component is constructed by getting the base rate component and adding
any margin specified for the rate component in the associated margin list. A “de-
fault” margin can be applied to components with no special margining require-
ments.

Chains of relative prices can be built by using a relative price as the base price.

2.3.1 Relationships

Class Description Notes
f+ ImpliedRateDerivationSpecifier
1T SecurityPrice 8.6

RelativeSecurityPriceSpecifier-

Model 4.6
< SecurityPrice 8.6 base price 1..1 —
+ SecurityPriceQuoteZ9 margins 0..n —
+ RelativeSecurityPriceConstructorSer- deriver 0..n

vice .3

M:Inherits 1:Realizes|:Realized by <»:Association—:Navigable(:Aggregate¢:Composite

2.3.2 Operations

RateConstructor constructor() constructor

Returns an instance of RelativeSecurityPriceConstru@d gith the sources
and margins of this specifier.

RateFunctionSpecifier base() base
The base rate. Returns a rate specifier that gives the base security price to use
when building this rate.

Collection<RateQuote> margins() margins
Returns a collection of components which give the margins to add to each com-
ponent of the base rate. One margin may be distinguished by the “default” label.

OrderedCollection<RateFunctionSpecifier> sources() sources
The source rates. Returns a collection containing the result of the base() oper-
ation.

2.4 SecurityBenchmarkSequence

Individual securities have a single, fixed maturity date. When using securities to
calculate implied rates, it is often convenient to use a sequence of securities, with
the closest security in the sequence to a particular date acting as the representative
of the sequence. As the current date moves forward, the next security is chosen.

10

Using benchmark sequences aids in the maintenance of static data, since only
the sequence needs to be updated over time, rather than the yield curves, etc. that
use the sequence.

2.4.1 Relationships

Class Description Notes
Identifiable
SecurityBenchmarkSequence-
Model 4.8
} SecurityBechmarkReferenceData-
Model &4.7
+» SecurityBechmarkReferenceData- model 0..n
Model &4.7
<> ImpliedSecuritylnterestRateDeriva- benchmark 0..n
tionSpecifierModel 4.3
f:Inherits |:Realized by <«s:Association —:Navigable®:Aggregate¢:Composite

— =

2.4.2 Operations

OrderedCollection<Security> sequence() sequence

The benchmark securities. Returns the sequence of securities, ordered by ma-
turity date, that this benchmark sequence represents.

Security securityFor(Date date) securityFor
date: Date The date to benchmark against.

The closest security in the sequence to a given date. Returns the security from
the sequence() operation that has a maturity date closest to the argument date. If
two securities are equidistant, returns the later security.

Currency currency() currency
The currency of the sequence. Returns the common currency for the securities
that make up the sequence.

Security securityFor(Period period) securityFor
period: Period The period to benchmark against.

The closest security in the sequence to a given date. Return the result of
this.securityFor(date) where date is computed by adding the supplied period to
the conversion date.

11

2.5 SecurityMarginQuotationMethod

Security price margins represent additions to or subtractions from a basic security
price. The margins can be used to represent margins added to reflect extra risk,
profit margins or internal trading arrangements.

2.5.1 Relationships

Class Description Notes
1+ QuotationMethod
1} PricePerl00FaceValueMarginModél.§
M:Inherits |:Realized by

2.5.2 Operations

Boolean isMargin() isMargin
Is this a marginal quotation method? Return true.

Boolean isCanonical() isCanonical
Is this quotation method in canonical form? The canonical form is a price per
100 face value margin.

String type() type
The type of instrument that this quotation method is for. Returns “Security
Price”.

Number addMargin(SecurityPriceQuotationMethod baseQuote, Num-
ber base, Number margin) addMargin
baseQuote: SecurityPriceQuotationMethodThe quotation method used
for the base price.
base: NumberThe base price.
margin: Number The margin to add.
Add a margin to a securities price. To add a margin, the form of the base price
and the margin must match. The returned rate uses the quotation method of the
base rate.

12

2.6 SecurityPrice

The basic model for a security price. Since price per hundred face value quotation
methods give linear prices, these quotation methods are used to derive mid rates
and calculate buy and sell amounts.

2.6.1 Relationships

Class Description Notes
I PointRate
1 BasicSecurityPriceModel&g1
} RelativeSecurityPriceSpecifieR 8
“~
Ml

RelativeSecurityPriceSpecifieR 8 base price 0..n
nherits |:Realized by <«»:Association —:Navigable®:Aggregate¢:Composite

2.6.2 Operations

RateQuote mid() mid

The mid component. Létbe the bid component ardthe ask component. Let
b’ anda’ be these components, expressed using the PricePer100FaceValueMbiiel §
and the same clean/dirty convention as the bid component.

Returns?£% converted to the bid component quotation method.

Instrument buy(Instrument quantity) buy
quantity: Instrument The quantity to convert.

Buy one quantity of an instrument by paying another quantity of the instrument.

If this rate is mine, the quantity represents a security and the quantity is greater
than zero, then use the bid rate. A change in any one of these characteristics flips
from bid to ask. Another change flips back from ask to bid. Convert the component
to a clean, PricePer100FaceValue, form:

If the instrument represents a quantity of a security, with face vajuben
return an amount of the currency that the security is denominated in, with a date
equal to the date on quantity and an amount equgifo< r.

If the instrument represents a quantity,of the currency that the security of
this rate is denominated in, then return an amount of the security with a date equal
to the date on quantity and a face value equgl to 100.

Instrument sell(Instrument quantity) sell

13

quantity: Instrument The quantity to convert.

Sell one quantity of an instrument in exchange for another quantity of an in-
strument.

If this rate is mine, the quantity represents a security and the quantity is greater
than zero, then use the ask rate. A change in any one of these characteristics flips
from ask to bid. Another change flips back from bid to ask. Convert the component
to a clean, PricePer100FaceValue, form:

If the instrument represents a quantity of a security, with face vaju@en
return an amount of the currency that the security is denominated in, with a date
equal to the date on quantity and an amount equg}gox r.

If the instrument represents a quantity,of the currency that the security of
this rate is denominated in, then return an amount of the security with a date equal
to the date on quantity and a face value equgl to 100.

2.7 SecurityPricePiece

A rate piece specialized towards the handling of security prices.

2.7.1 Relationships

Class Description Notes
1+ RatePiece
1 SecurityPricePieceModeKl$
1:Inherits |:Realized by

2.8 SecurityPriceQuotationMethod

Security prices can be quoted as either a price per hundred face value or as various
forms of yield. In addition, security prices may be 'clean’ or 'dirty’.

A security price is said to be quoted 'clean’ if it excludes accrued interest. Itis
called 'dirty’ if it includes accrued interest.

14

2.8.1 Relationships

Class Description Notes
1+ QuotationMethod
1 SecurityPriceQuotationMethod-

Model $4.10
M:Inherits |:Realized by

2.8.2 Operations

String type() type
The type of rate that this quotation method is for. Returns “Security Price”.

Boolean isCanonical(RateFunctionSpecifier specifier) isCanonical
specifier: RateFunctionSpecifiefThe specifier to test against.

Is this rate in canonical form? Returns true if this quotation method is a price
per hundred face value in clean form.

Boolean isMargin() isMargin
Is this rate in margin form? Returns false.

CleanDirtyEnum cleanOrDirty() cleanOrDirty
Is this securities price a clean or dirty price? The price is 'clean’ if it excludes
accrued interest. Itis dirty otherwise.

ExOrCumEnum exOrCum() exOrcum

Is this price quoted ex or cum coupon? The price is cum-coupon if the pur-
chaser of the security will receive the next coupon. Itis ex-coupon if the purchaser
does not receive the next coupon. Typically each security will have a standard
ex-coupon period, where a purchaser will not receive the coupon if the security is
traded within the ex-coupon period before the next coupon date.

«Static Method» QuotationMethod canonical() canonical
Canonical quotation method. Returns an instance of PricePer100FaceValueModel.

Number cleanPrice(Number r, SecurityPriceSpecifier specifier) cleanPrice
r: Number The rate to convert.

specifier: SecurityPriceSpecifierThe rate specifier describing this price.
Raises:RateQuotationException

15

Convert a dirty price into a clean price.

If this quotation method is already in clean form, then return r. Otherwise,
convert r into the clean equivalent price and return that price.

A RateQuotationException is returned if the conversion cannot be performed.

Number dirtyPrice(Number r, SecurityPriceSpecifier specifier) dirtyPrice
r: Number The rate to convert.
specifier: SecurityPriceSpecifierThe rate specifier describing this price.
Raises:RateQuotationException

Convert a clean price into a dirty price. If this quotation method is already in
dirty form, then return r. Otherwise, convert r into the dirty equivalent price and
return that price.

A RateQuotationException is returned if the conversion cannot be performed.

2.9 SecurityPriceQuote

A rate quote specialized to handle security prices.

2.9.1 Relationships

Class Description Notes
I+ RateQuote
1 SecurityPriceQuoteModel§15
+ RelativeSecurityPriceSpecifie2 8 margins 0..n
+» RelativeSecurityPriceSpecifier- margins 0..n
Model 8.6

f:Inherits |:Realized by <«s:Association —:Navigable®:Aggregate¢:Composite

2.10 SecurityPriceSpecifier

A security price specifies the value of a specific securities contract in terms of the
currency that the security is denominated in. The contract supplies details as to the
currency, date of maturity, etc.

16

2.10.1 Relationships

Class Description Notes
RateFunctionSpecifier

SecurityPriceSpecifierModeHlg§L6
ImpliedSecurityPriceConstructorSer- result

vice &.2

f:Inherits |:Realized by <«»:Association —:Navigable®:Aggregate¢:Composite

Te=

2.10.2 Operations

Collection<FormalRateParameter> formalParameters() formalParame-

The possible parameters for this rate specifier. Returns the following set df
parameters:
Name Type Description
security Security discrete The securities contract for this rate.

Security security() security
Returns the securities contract that this rate is for.

Collection<ActualRateParameter> actualParameters() actualParame-
The set parameters for this specifier. Returns an actual parameter corresgtnd-

ing to each formal parameter where the operation of the same name returns a non-

nil result.

Date date() date
Returns the date at which the security price applies.

3 Service Interfaces

3.1 ImpliedSecuritylnterestRateConstructor

A rate constructor that takes a yield curve and a securities price and constructs an
equivalent interest rate for the security, discounting the security payments by the
discount factors given by the yield curve.

A secondary use of this constructor is to allow yield curve constructors to use
security prices as points on the yield curve. A partially constructed yield curve is
supplied and the interest rate built by finding the interest rate that corresponds to
the price.

17

3.1.1 Relationships

Class Description Notes
1+ RateConstructor
1 ImpliedSecurityInterestRateConstruc-

torService 8.1
M:Inherits |:Realized by

3.1.2 Operations

Rate construct(OrderedCollection<Rate> sources) construct
sources: OrderedCollection<Rate>The source rates.
Raises:RateConstructorException

Construct an implied interest rate. The supplied sources should be a yield curve
and a security price. The currency of the security and the yield curve should be the
same; otherwise, raise a RateConstructorException.

The basic approach to construction is to use the yield curve to remove coupon
payments from the security price, leaving a single payment at the maturity date of
the security.

Individual implementations may use different calculation techniques and allo-
cate rate pieces in different ways.

RateFunctionSpecifier result() result
Returns the output rate specification. This is an InterestRateSpecifier with the
currency of the yield curve and security.

ImpliedSecurityIinterestRateDerivationSpecifier deriver() deriver
The derivation method. Returns the derivation method for this constructor.

OrderedCollection<RateFunctionSpecifier> sources() sources
The source rate specifiers. Returns the result of sending sources() to the de-
river.

InterestRate strip(YieldCurveConstructor yieldCurveConstructor, Col-
lection<InterestRate> baseRates, SecurityPrice securityPrice) strip
yieldCurveConstructor: YieldCurveConstructor The constructor that is
attempting to build the yield curve.

baseRates: Collection<InterestRate>The current collection of interest

rate points.

securityPrice: SecurityPrice The security price to strip.

18

Raises:RateConstructorException

Strips a security price of coupons and returns an interest rate that reflects the
security price. This operation finds an interest rate running from the conversion
date to the maturity date of the security which, when added to the interest rates
which already make up the yield curve and interpolated by the curve constructor
correctly values the security.

Deriving the correct rate may involve complex, iterative, curve builditdi-
vidual implementations may use different calculation techniques and allocate rate
pieces in different ways.

Raises a RateConstructorException if the supplied rates are in error or if the
rate cannot be constructed.

3.2 ImpliedSecurityPriceConstructor

A constructor that builds an implied security price from a yield curve and security
definition.

3.2.1 Relationships

Class Description Notes
1+ RateConstructor
1 ImpliedSecurityPriceConstructorSer-

vice &.2
1:Inherits |:Realized by

3.2.2 Operations

Rate construct(OrderedCollection<Rate> sources) construct
sources: OrderedCollection<Rate>The source rates.
Raises:RateConstructorException

Constructs an implied security price. The supplied sources should be a single
yield curve, with the same currency as the currency of the security; otherwise,
raises a RateConstructorException.

An outline of the basic approach taken here is that the cashflows of the security
are discounted to build an implied price. Specific implementations will split the
discounted value in different ways.

2 The method the curve constructor uses may also have an effect. A linear curve constructor
can pre-construct a curve for the known interest rates and concentrate on deriving the security-based
in interest rate. A curve constructor using cubic-spline interpolation will need to rebuild the entire
curve on each iteration.

19

RateFunctionSpecifier result() result
Returns the output rate specification. This must be a SecurityPriceSpeRifiér §

Security security() security
The security that this constructor derives a price for. Returns the security()
operation on the deriver.

ImpliedSecurityPriceDerivationSpecifier deriver() deriver
The derivation method. Returns the derivation method for this constructor.

OrderedCollection<RateFunctionSpecifier> sources() sources
The source rate specifiers. Returns a collection consisting of the application of
yieldCurve() to the deriver.

3.3 RelativeSecurityPriceConstructor

A rate constructor that takes a base security price and produces an offset security
price for another security.

3.3.1 Relationships

Class Description Notes
1+ RateConstructor
1 RelativeSecurityPriceConstructorSer-

vice .3
M:Inherits |:Realized by

3.3.2 Operations

Rate construct(OrderedCollection<Rate> sources) construct
sources: OrderedCollection<Rate>
Raises:RateConstructorException

Builds a relative security price. The sources must consist of a single security
price with a logical rate specifier that matches the base rate specifier; otherwise,
raises a RateConstructorException. This price is the base rate.

20

A new security price, with a logical rate specifier given by the result() is built.

A new component is built for each base rate component. Each component of the
new security price is built in the following manner:

The associated margins are queried to get the margin component with the same
identifier as component. If there is no margin with the identifier of the compo-
nent, get the margin with an identifier of “default”. If no margin exists, the new
component is the base component.

Constructs a new rate component by adding each rate piece from the margin to
each rate piece of the component. If there are two pieces with the same name, adds
the two pieces together, otherwise simply includes the named piece.

As an example, suppose the base rate had a bid component of 100.34+0.05(risk)+0.10(profit)
and there is a margin of +0.06(risk)+0.10(time) then the resulting component would
be 100.34+0.11(risk)+0.10(profit)+0.10(time).

Returns the resulting security price.

ImpliedRateDerivationSpecifier deriver() deriver
Returns the deriver for this rate. The returned object gives the base rate and
margins to apply.

RateFunctionSpecifier base() base
The base rate. Returns the result of the base() operation on the deriver.

Collection<RateQuote> margins() margins
Returns a collection of components which give the margins to add to each com-
ponent of the base rate. Returns the result of the margins() operation on the deriver.

OrderedCollection<RateFunctionSpecifier> sources() sources
The source rates. Returns the result of the sources() operation on the deriver.

4 Classes

4.1 BasicSecurityPriceModel

A form of the basic point rate designed to hold security prices. Components of this
interface are restricted to being BasicSecurityPriceComponent components.

21

4.1.1 Relationships

Class Description Notes
1+ BasicPointRateModel
1T SecurityPrice 8.6
{r:Inherits 1:Realizes

4.2 ExXOrCumEnum

An enumeration indicating whether a security price is quoted ex or cum coupon.
A security is traded ex coupon if the purchaser is not entitled to receive the next
coupon.

4.2.1 Operations

«Static Method» ExOrCumEnum ex() ex
Returns an instance with identifier 'ex’.

«Static Method» ExOrCumEnum cum() cum
Returns an instance with identifier ‘cum’.

«Static Method» Collection<ExOrCumEnum> elements() elements
Returns a collection consisting of the results of the ex() and cum() operations.

4.3 ImpliedSecurityInterestRateDerivationSpecifierModel

A concrete implementation of the ImpliedSecuritylnterestRateDerivationSpecfier §
interface. The security’s price may be either for a specific security (and derivation
method) or a logical security chosen from a benchmark sequence.

4.3.1 Relationships

Class Description Notes
1T ImpliedSecuritylnterestRateDeriva-
tionSpecifier .1

+» SecurityBenchmarkSequencg.& benchmark 0..1 —
+ Period period 0..1 —
T:Realizes <«s:Association —:Navigable¢:Aggregate$:Composite

22

4.3.2 Operations

RateFunctionSpecifier yieldCurve() yieldCurve

The yield curve used to discount the security cashflows. Return the associated
curve.

RateFunctionSpecifier securityPrice() securityPrice
The security price. If there is an associated price, return the associated price.

Otherwise, return a rate specifier consisting of a logical rate specifier containing

the security chosen by the associated benchmark for the associated period and no

derivation method.

4.4 ImpliedSecurityPriceDerivationSpecifierModel

A concrete implementation of the ImpliedSecurityPriceDerivationSpecifier inter-
face.

4.4.1 Relationships

Class Description Notes
1 ImpliedSecurityPriceDerivationSpeci-
fier 8.2
T:Realizes

4.4.2 Operations

RateFunctionSpecifier yieldCurve() yieldCurve

The yield curve used to discount the security cashflows. Returns the associated
curve.

4.5 PricePerl00FaceValueMarginModel

A margin which represents an additional amount added to a price per hundred face
value amount.

This form of margin represents the only form of margin modeled at present.
The non-linearity of yields makes margin conversion difficult.

23

4.5.1 Relationships

Class Description Notes
1T SecurityMarginQuotationMethod2&
T:Realizes

4.5.2 Attributes

printStyle: PriceFractionStyleEnum = PriceFractionStyleEnum.decimal() The
fractional printing convention to use.

4.5.3 Operations

Number asCanonical(Number r, RateFunctionSpecifier specifier) asCanonical
r: Number The rate to convert.

specifier: RateFunctionSpecifieThe specifier to use when converting this

rate.

Converts a rate in this quotation format to the canonical quotation format. Re-
turns r.

Number fromCanonical(Number r, RateFunctionSpecifier specifier) fromCanonical
r: Number The rate to convert.
specifier: RateFunctionSpecifieThe specifier to use when converting this
rate.
Converts a rate in the canonical quotation format to this quotation format. Re-
turns .

Number parse(InputStream stream, Boolean loose, RateFunctionSpec-
ifier specifier) parse
stream: InputStream The stream to read from.
loose: BoolearPerform loose parsing.
specifier: RateFunctionSpecifierThe specifier to use when parsing this
rate.
Raises:ParseException
Read a text representation of a rate and turn it into an appropriately quoted rate.
There are three possible text representations:

{+-}www.ff Decimal representation.

{+-{www} nn/dd Explicit fractional representation.

24

{+-}www-nn Implicit fractional representation.

Wherewww represents a whole numbéir,the decimal fraction of a number,
nn a fractional numerator andd a fractional denominator. Braces ({}) represent
optional portions of the number.

If loose is true, then any input format is permitted. If loose is false, then the in-
put format depends on the value of the printStyle attribute: decimal representation
only in the case of decimal, implicit or explicit fractional representation in the case
of fractional or half-fractional.

If the implicit fractional representation is used, the denominator of the fraction
is 64 if printStyle is halfFraction, 32 otherwise.

printRate(OutputStream stream, Number rate, Boolean loose, Rate-
FunctionSpecifier specifier) printRate
stream: OutputStream The stream to print onto.
rate: Number The rate to print.
loose: BoolearPrint the rate in loose form?
specifier: RateFunctionSpecifiefThe specifier for the rate.

Prints a rate piece on the output stream.

If the printStyle is decimal, then if loose is true, print r to the natural level of
accuracy of r. If loose is false, print r using a formaf-e{]#0.00

If the printStyle is fractional or halfFractional then: If loose is true, print r
using the formaf+-Jwww-nn , where www is the whole part of r and nn is the
numerator of a fraction with a denominator of 32 for fractional and 64 for halfFrac-
tional print styles. If loose is false, print r using the formef{www} nn/dd
where dd is equal to 32 for fractional and 64 for halfFractional print styles. The
numerator is rounded off.

Brackets []) represent non-optional choices — margins are always signed.
Braces ({}) represent optional components.

Number addMargin(SecurityPriceQuotationMethod baseQuote, Num-
ber base, Number margin) addMargin
baseQuote: SecurityPriceQuotationMethodThe quotation method used
for the base price.
base: NumberThe base price.
margin: Number The margin to add.
Adds a margin to a securities price.
Converts base from the baseQuote quotation convention to a
PricePer100FaceValueMode#.8 1 convention, keeping the clean or dirty status.

25

Adds margin to the resulting base value. Converts the sum back into the baseQuote
quotation convention and returns the result.

4.6 RelativeSecurityPriceSpecifierModel

A concrete implementation of the RelativeSecurityPriceSpecifier interface.

A base rate is specified by a rate specifier. This rate must have a logical speci-
fication of type “Security Price”. A derivation path is optional.

A collection of margins gives the margin for each rate component.

4.6.1 Relationships

Class Description Notes
1 RelativeSecurityPriceSpecifieR 8
+ SecurityPriceQuoteZ9 margins 0..n —
T:Realizes <»:Association —:Navigable:Aggregate¢:Composite

4.7 SecurityBechmarkReferenceDataModel

A reference data implementation of the SecurityBenchmarkSequence interface.
Operations are delegated to the held benchmark sequence.

4.7.1 Relationships

Class Description Notes
1+ ReferenceDataModel
1T SecurityBenchmarkSequencg.§
+ SecurityBenchmarkSequencg.g model 1..1 —
f:Inherits 1:Realizes <»:Association —:Navigable¢:Aggregate¢:Composite

4.8 SecurityBenchmarkSequenceModel

A concrete implementation of the SecurityBenchmarkSequence interface. All as-
sociated securities must be denominated in the same currency.

26

4.8.1 Relationships

Class Description Notes
1T SecurityBenchmarkSequencg.&
1 Validatable
< Security sequence 1..n —
T:Realizes <«s:Association —:Navigable¢:Aggregate$:Composite

4.8.2 Attributes

identifier: String The unique identifier for the sequence.

4.8.3 Operations

OrderedCollection<Security> sequence() sequence

The benchmark securities. Returns the associated securities, sorted by maturity
date.

Reportable validate() validate
Validate the benchmark sequence.

e Add an error if all securities in the sequence do not share a common currency.
e Add an error if two securities share a common maturity date.

e Add an error if all securities in the sequence have maturity dates before the
current processing date.

e Add a warning if not all securities have a common issuer.

4.9 SecurityPricePieceModel

A concrete implementation of the SecurityPricePiece interface. Quotation methods
used by this model must implement the SecurityPriceQuotationMetRo8l of
SecurityMarginQuotationMethod2& interfaces.

27

4.9.1 Relationships

Class Description Notes
1 RatePieceModel
1T SecurityPricePiece&7
{r:Inherits 1:Realizes

4.10 SecurityPriceQuotationMethodModel

An abstract superclass for the various security price quotation methods. All secu-
rity prices may be quoted as clean or dirty.

4.10.1 Relationships

Class Description Notes
SecurityPriceQuotationMetho®$
PricePerl100FaceValueModet .81
SecurityYieldModel .12

:Inherited byt:Realizes

===

4.10.2 Attributes

cleanOrDirty: CleanDirtyEnum = clean Whether or not this price is a clean or
dirty quotation.

exOrCum: ExOrCumEnum = cum |Is the bond traded ex or cum coupon?

411 PricePerl00FaceValueModel

The price represents the price paid for 100 units of the face value of the security,
using the currency in which the security is denominated.

4.11.1 Relationships

Class Description Notes
1 SecurityPriceQuotationMethod-

Model $4.10
1:Inherits

28

4.11.2 Attributes

printStyle: PriceFractionStyleEnum = PriceFractionStyleEnum.decimal() The
fractional printing convention to use.

4.11.3 Operations

Number asCanonical(Number r, RateFunctionSpecifier specifier) asCanonical
r: Number The rate to convert.

specifier: RateFunctionSpecifieThe specifier to use when converting this

rate.

Converts a rate in this quotation format to the canonical quotation format. If
this quotation method is in clean form, then returns r, otherwise converts r to the
clean form, using the cleanPrice operation and returns the converted rate. Note that
the specifier parameter will actually be a SecurityPriceSpecifier, which knows the
appropriate date to perform the clean price calculations.

Number fromCanonical(Number r, RateFunctionSpecifier specifier) fromCanonical
r: Number The rate to convert.
specifier: RateFunctionSpecifieThe specifier to use when converting this
rate.
Converts a rate in the canonical quotation format to this quotation format. If
this quotation method is in clean form, then returns r, otherwise converts r to the
dirty form, using the dirtyPrice operation and returns the converted rate. Note that
the specifier parameter will actually be a SecurityPriceSpecifier, which knows the
appropriate date to perform the clean price calculations.

Number parse(InputStream stream, Boolean loose, RateFunctionSpec-
ifier specifier) parse
stream: InputStream The stream to read from.
loose: BoolearPerform loose parsing.
specifier: RateFunctionSpecifierThe specifier to use when parsing this
rate.
Raises:ParseException
Reads a text representation of a rate and turns it into an appropriately quoted
rate. There are three possible text representations:

www.ff Decimal representation.

www nn/dd Explicit fractional representation.

29

www-nn Implicit fractional representation.

Wherewww represents a whole numbéir,the decimal fraction of a number,
nn a fractional numerator ardgt a fractional denominator.

If loose is true, then any input format is permitted. If loose is false, then the in-
put format depends on the value of the printStyle attribute: decimal representation
only in the case of decimal, implicit or explicit fractional representation in the case
of fractional or half-fractional.

If the implicit fractional representation is used, the denominator of the fraction
is 64 if printStyle is halfFraction, 32 otherwise.

printRate(OutputStream stream, Number rate, Boolean loose, Rate-
FunctionSpecifier specifier) printRate
stream: OutputStream The stream to print onto.

rate: Number The rate to print.

loose: BoolearPrint the rate in loose form?

specifier: RateFunctionSpecifiefThe specifier for the rate.

Prints a rate piece on the output stream.

If the printStyle is decimal, then if loose is true, prints r to the natural level of
accuracy of r. If loose is false, prints r using a format of “#0.00".

If the printStyle is fractional or halfFractional then: If loose is true, prints r us-
ing the format “www-nn”, where www is the whole part of r and nn is the numer-
ator of a fraction with a denominator of 32 for fractional and 64 for halfFractional
print styles. If loose is false, prints r using the format “www nn/dd”, where dd is
equal to 32 for fractional and 64 for halfFractional print styles. The numerator is
rounded off.

Number cleanPrice(Number r, SecurityPriceSpecifier specifier) cleanPrice
r: Number The rate to convert.
specifier: SecurityPriceSpecifierThe rate specifier describing this price.
Raises:RateQuotationException

Converts a dirty price into a clean price. If this quotation method is clean,
returns r.

If this quotation method is dirty, then uses the security returned by the specifier
to calculate the accrued interest from the supplied trade date to the next coupon
date of the security for 100 units, face value of this security. Subtracts the resulting
amount from r and returns the result.

Number dirtyPrice(Number r, SecurityPriceSpecifier specifier) dirtyPrice

30

r: Number The rate to convert.
specifier: SecurityPriceSpecifierThe rate specifier describing this price.
Raises:RateQuotationException

Converts a clean price into a dirty price. If this quotation method is dirty,
returns r.

If this quotation method is clean, then uses the security returned by the specifier
to calculate the accrued interest from the supplied trade date to the next coupon date
of the security for 100 units, face value of this security. Adds the resulting amount
to r and returns the result.

4.12 SecurityYieldModel

The price represents an interest-rate style yield for the security. The various forms
of quotation convention that apply to interest rates apply to this yield, although an
annualized yield is the most common convention.

This model represents a true yield to maturity representation. Subclasses im-
plement the various simplifications.

4.12.1 Relationships

Class Description Notes
1 SecurityPriceQuotationMethod-
Model $4.10
| SecurityCurrentYieldModel £13
| SecuritySimpleYieldModel £.14
1r:Inherits|}:Inherited by

4.12.2 Attributes

interestRateQuotation: InterestRateQuotationMethod The quotation conven-
tion for this interest rate. This quotation convention defaults to an annualized
yield.

4.12.3 Operations

Number asCanonical(Number r, RateFunctionSpecifier specifier) asCanonical
r: Number The rate to convert.

specifier: RateFunctionSpecifieThe specifier to use when converting this

rate.

31

Converts a rate in this quotation format to the canonical quotation format.

Let {p1,...,pn} be the payments of 100 units of face value for the security
defined by the supplied specifier. Lét,...,d,} be the payment dates and
{t1,...,t,} be the terms in years between the conversion date anddgaasing
the security’s payment date basis. lygber converted from the interestRateQuo-
tation interest rate quotation method to an annualized, compounding convention.

Calculate

r' =S pi(l+y) "

If this quotation method is a clean price, then returntherwise, uses a dirty
PricePer100FaceValueModel to converto an equivalent clean price.

Number fromCanonical(Number r, RateFunctionSpecifier specifier) fromCanonical
r: Number The rate to convert.

specifier: RateFunctionSpecifieThe specifier to use when converting this

rate.

Converts a rate in the canonical quotation format to this quotation format.

If this quotation method is a clean price, then returns: r. Otherwise, uses a
dirty PricePer100FaceValueModel to convetb an equivalent dirty price;’.

Let {p1,...,pn} be the payments of 100 units of face value for the security
defined by the supplied specifier. Lét,...,d,} be the payment dates and
{t1,...,t,} be the terms in years between the conversion date anddacs-
ing the security’s payment date basis.

Calculate the solution tg so that

r' =3 pi(l+y)7h

y' is in the form of an annualized compounding yield. Returns the conver-
sion ofy’ from an annualized compounding yield to the convention contained in
interestRateQuotation.

Number parse(InputStream stream, Boolean loose, RateFunctionSpec-

ifier specifier) parse
stream: InputStream The stream to read from.

loose: BoolearPerform loose parsing.

specifier: RateFunctionSpecifierThe specifier to use when parsing this

rate.

Raises:ParseException

32

Reads a text representation of a rate and turns it into an appropriately quoted
rate. Delegates to the interestRateQuotation attribute.

printRate(OutputStream stream, Number rate, Boolean loose, Rate-
FunctionSpecifier specifier) printRate
stream: OutputStream The stream to print onto.
rate: Number The rate to print.
loose: Booleanf true then print the rate in loose form
specifier: RateFunctionSpecifiefThe specifier for the rate.

Prints a rate piece on the output stream. Delegates to the interestRateQuotation
attribute.

Number cleanPrice(Number r, SecurityPriceSpecifier specifier) cleanPrice
r: Number The rate to convert.
specifier: SecurityPriceSpecifierThe rate specifier describing this price.
Raises:RateQuotationException

Converts a dirty price into a clean price. If this quotation method is clean,
returns r.

Otherwise, converts r into canonical form, and converts the canonical form into
a quotation method with the same characteristics as this method, but with a clean
price.

Number dirtyPrice(Number r, SecurityPriceSpecifier specifier) dirtyPrice
r: Number The rate to convert.
specifier: SecurityPriceSpecifierThe rate specifier describing this price.
Raises:RateQuotationException

Converts a clean price into a dirty price. If this quotation method is dirty,
returns r.

Otherwise, converts r into canonical form, and converts the canonical form
into dirty form and then a quotation method with the same characteristics as this
method, but with a dirty price.

4.13 SecurityCurrentYieldModel

A security price quoted using the current yield quotation convention.
Current yields only use clean prices, the cleanOrDirty attribute must, therefore,
always be set to clean.

33

4.13.1 Relationships

Class Description Notes
1+ SecurityYieldModel §.12
M:Inherits

4.13.2 Operations

Number asCanonical(Number r, RateFunctionSpecifier specifier) asCanonical
r: Number The rate to convert.

specifier: RateFunctionSpecifiefThe specifier to use when converting this

rate.

Converts a rate in this quotation format to the canonical quotation format.
Lets be the coupon rate for the security supplied by specifier. Returns

100 x ~
T

Number fromCanonical(Number r, RateFunctionSpecifier specifier) fromCanonical
r: Number The rate to convert.
specifier: RateFunctionSpecifiefThe specifier to use when converting this
rate.
Converts a rate in the canonical quotation format to this quotation format.
Lets be the coupon rate of the security supplied by specifier. Returns
o
/100

)

Number cleanPrice(Number r, SecurityPriceSpecifier specifier) cleanPrice
r: Number The rate to convert.
specifier: SecurityPriceSpecifierThe rate specifier describing this price.
Raises:RateQuotationException

Converts a dirty price into a clean price. Returnsr.

Number dirtyPrice(Number r, SecurityPriceSpecifier specifier) dirtyPrice
r: Number The rate to convert.

specifier: SecurityPriceSpecifierThe rate specifier describing this price.
Raises:RateQuotationException

34

Converts a clean price into a dirty price. Current yield quotation methods do
not allow dirty prices; raises a RateQuotationException.

4.14 SecuritySimpleYieldModel

A security price quoted using the simple yield to maturity quotation convention.
Simple yields only use clean prices, the cleanOrDirty attribute must, therefore,
always be set to clean.

4.14.1 Relationships

Class Description Notes
1+ SecurityYieldModel §.12
M:Inherits

4.14.2 Operations

Number asCanonical(Number r, RateFunctionSpecifier specifier) asCanonical
r: Number The rate to convert.

specifier: RateFunctionSpecifiefThe specifier to use when converting this

rate.

Converts a rate in this quotation format to the canonical quotation format.

Let 7 be the coupon rate for the security supplied by specifier. ¢Ltst the
number of years from the conversion date to the maturity date of the security, using
the date basis of the security.

Returns
i+100/t
r+1/t
Number fromCanonical(Number r, RateFunctionSpecifier specifier) fromCanonical

r: Number The rate to convert.
specifier: RateFunctionSpecifieThe specifier to use when converting this
rate.

Converts a rate in the canonical quotation format to this quotation format.

Let - be the coupon rate for the security supplied by specifier. ¢Lmd the
number of years from the conversion date to the maturity date of the security, using
the date basis of the security.

35

Returns 100
i+ T

/100

Number cleanPrice(Number r, SecurityPriceSpecifier specifier) cleanPrice
r: Number The rate to convert.
specifier: SecurityPriceSpecifierThe rate specifier describing this price.
Raises:RateQuotationException

Converts a dirty price into a clean price. Returnsr.

Number dirtyPrice(Number r, SecurityPriceSpecifier specifier) dirtyPrice
r: Number The rate to convert.
specifier: SecurityPriceSpecifierThe rate specifier describing this price.
Raises:RateQuotationException

Converts a clean price into a dirty price. Current yield quotation methods do
not allow dirty prices; raises a RateQuotationException.

4.15 SecurityPriceQuoteModel

A concrete implementation of the SecurityPriceQuote interface. Instances of this
class are restricted to holding SecurityPricePiez& gte pieces.

4.15.1 Relationships

Class Description Notes
1+ RateQuoteModel
1+ SecurityPriceQuoteZ9
{r:Inherits 1:Realizes

4.16 SecurityPriceSpecifierModel

A concrete implementation of the SecurityPriceSpecifier interface. The relevant
parameters are modeled as associations.

36

4.16.1 Relationships

Class Description Notes
1T SecurityPriceSpecifierg10
+ Security security 1..1 —
T:Realizes <«»:Association —:Navigable(:Aggregate¢:Composite

4.16.2 Attributes

date: Date

5 Services

5.1 ImpliedSecuritylnterestRateConstructorService

An example interest rate constructor. Rate pieces are allocated to match the rate
pieces in the source rates.

5.1.1 Relationships

Class Description Notes
1T ImpliedSecuritylnterestRateConstruc-
tor 83.1
+» ImpliedSecuritylnterestRateDeriva- deriver —
tionSpecifier .1
T:Realizes <«s:Association —:Navigable¢:Aggregate$:Composite

5.1.2 Operations

Rate construct(OrderedCollection<Rate> sources) construct
sources: OrderedCollection<Rate>The source rates.
Raises:RateConstructorException

Constructs an implied interest rate. The supplied sources should be a yield
curve and a security price. The currency of the security and the yield curve should
be the same; otherwise, raises a RateConstructorException.

Constructs an interest rate with the currency of the yield curve, a fromdjate,
of the conversion date and a to date of the security’s maturity date. The interest
rate has a party which is the issuer of the security and a location which is country
of the security. The date basis of the interest rate is the date basis of the security.

37

The interest rate has components consisting of the intersection of the compo-
nents of the yield curve and the security price. For each component, makes the
following calculation:

Let {s1,...,smn} be the union of the piece names of both the yield curve and
security price, with yield curve pieces coming before security price pieces. Let
{p1,...,pn} be the remaining payments for 100 face value units of the security,
with each paymeng; being made on the datg. Let Dy, 4, ;——i be the discount
factor between two dated; andds, using only pieceg — —Fk of the yield curve.

For each piecd, Letv; be the component of the security price, using only the
pieces from 1, converted to a PricePerl100FaceValueMcetglL&irty quotation
method. Calculates a residual value of:

—1
r=v— X piDagd;1——1

and an interest rate)
Pn\ 1t
w=(5) -1
wheret is the term in years betweely andd,, calculated using the date basis of
the security.

Constructs a rate component consisting{ 6f;, v; — v;—1)} with each piece
guoted as an annualized yield.

As an example, suppose we have a security with a coupon date of 7% at 14-
Mar-2002 and a maturity date of 14-Mar-2003, with an Actual/Actual date basis
The security price, quoted as a dirty PP100FV, is 102.23(base)-0.56(risk). The
yield curve gives 6%(base) +150bp(country) Actual/Actual at 14-Mar-2002. The
conversion date is 1-Jan-2002. The pieces are calculated as follows:

base r = 102.23 — 7 x 1.06=7%/365 = 95.31 andy = (100/95.31)365/437 — 1 =
4.09%.

country r = 102.23 — 7 x 1.075 72/365 = 95 33 andy = (100/95.33)365/437 —
1 = 4.08%.

risk r = 101.67 — 7 x 1.075-7%/3%5 = 94.77 andy = (100/95.33)365/437 — 1 =
4.59%.

The resulting rate is, therefore, 4.09%(base)-1bp(country)+51bp(risk).

ImpliedSecuritylnterestRateDerivationSpecifier deriver() deriver
The derivation method. Return the associated deriver.

38

InterestRate strip(YieldCurveConstructor yieldCurveConstructor, Col-
lection<InterestRate> baseRates, SecurityPrice securityPrice) strip
yieldCurveConstructor: YieldCurveConstructor The constructor that is
attempting to build the yield curve.

baseRates: Collection<InterestRate>The current collection of interest

rate points.

securityPrice: SecurityPrice The security price to strip.
Raises:RateConstructorException

Strips a security price of coupons and returns an interest rate that reflects the
security price. The input interest rates should be interest rates with the same cur-
rency as the security and with to-dates before the maturity date of the security.
Raises a RateConstructorException if these conditions are not met.

For each component of the intersection of the yield curve and security price
components, builds an interest rate using the following method:

Let {s1,...,sn} be the rate pieces of the interest rates. For each piece,
construct an interest ratg,, with the following properties:

The from-date ofy; is the conversion datdy. The to-date of; is the maturity
date of the security. The currency#fis the currency of the security. The party of
y; is the issuer of the security. The locatiompfs the country of the security. The
date basis ofj; is the date basis of the security.

Let v be the security price expressed as a PricePerl00FaceValueMbil&l §
dirty quotation method, using only piecés— —I of the security price or, in the
case off = m, all pieces of the security prick.

Uses the supplied curve constructor to build a new yield curve consisting of
the supplied interest rates apd using only piece$ — —I of the supplied interest
rates. The curve must have the property that:

v = E?:lpiDdo,di

whered; is the date of thé!" payment,p; is the payment amount for 100 units
face value of the security andy, 4, is the discount factor given by the yield curve
between dated; andds.

Constructs a component consisting{6f;, v; —y;—1) } for the resulting interest
rate.

As an example, suppose the security is an 8% bond paying a coupon on 13-Jun-
2005, maturing on 12-Jun-2006 with an Actual/Actual date basis. The conversion
date is 2-Jan-2005. Supplied interest rates are 5%(base)+100bp(risk) from 2-Jan-
2005 to 2-Mar-2005 and 6%+100bp(risk) from 2-Jan-2005 to 2-Jan-2006, using

% Unallocated security price pieces are bundled into the final piece of the interest rate.

39

an Actual/Actual date basis. The price for the bond is 101.00(base)-1.00(risk)-
0.50(country). A linear yield curve constructor is being used. The interest rates
obey the following formulae:

base 101.00 = 8 x 1.0530162/365 1100 x (1 + y)~526/365 or yy = 5.02%.

risk y = 99.50 — 8 x 1.0630~162/365 1 100 x (1 + 1) 526/365 or gy = 6.19%.

The resulting interest rate is, therefore, 5.02%(base)+115bp(risk).

The example above is a simple example, using linear interpolation and having
a coupon that can be correctly discounted using the supplied interest rates. More
complex construction methods, or coupons beyond the last interest rate will require
more sophisticated root-finding techniques.

5.2 ImpliedSecurityPriceConstructorService

A concrete implementation of the ImpliedSecurityPriceConstructor service inter-
face.

5.2.1 Relationships

Class Description Notes
1T ImpliedSecurityPriceConstructoB8
< ImpliedRateDerivationSpecifier deriver 1..1 —
+ SecurityPriceSpecifierZ10 result —
T:Realizes <«s:Association —:Navigable¢:Aggregate$:Composite

5.2.2 Operations

Rate construct(OrderedCollection<Rate> sources) construct
sources: OrderedCollection<Rate>The source rates.
Raises:RateConstructorException

Constructs an implied security price. The supplied sources should be a single
yield curve, with the same currency as the currency of the security; otherwise,
raises a RateConstructorException.

Let{pi,...,p,} be the outstanding payments for 100 units of face value of the
security, at date$d,,...,d,}. Letd, be the value date for the security, equal to
SecurityPriceQuotationMethod.conversionDate().

40

For each component of the yield curve: let,...,n,,} be the pieces of the
yield curve component. Then
tj = SiopiDFag,d;1—j

whereDFy,;__ is the discount factor derived from the yield curve between
the f andt dates and only including piecéso k.

The component of the security price is constructed from piéegs; —t;—1},
each with a dirty PricePer100FaceValueModél18 quotation method.

As an example, suppose that the security being valued is denominated in GBP,
paying 6dates of 12-Jan-2004, 12-Jul-2004 and a maturity date of 12-Jan-2005.
The valuation date is 12-Dec-2003. The supplied yield curve’s bid component is
5%+100bp(risk) on 12-Jan-2004, and 5.5%+150bp(risk) on 12-Jul-2004 and 12-
Jan-2005, with a 30/360 date basis.

t; =3 x 1.05739/360 4 35 1.0557219/360 4 100 x 1.0557390/360 — 100.26
and
t1 =3 x 1.06739/360 4 35 1,077219/360 4 100 x 1.077390/360 — 98,80
The resulting bid price is, therefore, 100.26-1.46(risk).

RateFunctionSpecifier result() result
The output rate specification. Returns the associated specifier.
ImpliedSecurityPriceDerivationSpecifier deriver() deriver

The derivation method. Returns the associated deriver.

5.3 RelativeSecurityPriceConstructorService

A service implementation of the RelativeSecurityPriceConstructor service inter-
face.

5.3.1 Relationships

Class Description Notes
1T RelativeSecurityPriceConstructo8.8
+» RelativeSecurityPriceSpecifie2 8 deriver 1..1 —
+ RateFunctionSpecifier result 1..1 —
T:Realizes <«s:Association —:Navigable¢:Aggregate$:Composite

41

5.3.2 Operations

ImpliedRateDerivationSpecifier deriver() deriver
The deriver for this rate. Returns the associated deriver.

RateFunctionSpecifier result() result
The output rate specification. Returns the associated specifier.

6 Enumerations

6.1 CleanDirtyEnum

An enumeration indicating whether a securities price is clean or dirty.

6.1.1 Relationships

Class Description Notes
1+ Enum
1:Inherits

6.1.2 Operations

«Static Method» CleanDirtyEnum clean() clean
Returns an instance with an identifier of “clean”.

«Static Method» CleanDirtyEnum dirty() dirty
Returns an instance with an identifier of “dirty”.

«Static Method» Collection<CleanDirtyEnum> elements() elements
Returns a collection consisting of the results of the clean() and dirty() opera-
tions.

6.2 PriceFractionStyleEnum

An enumeration covering the various ways of quoting fractional pieces of a secu-
rities price.

42

6.2.1 Operations

«Static Method» PriceFractionStyleEnum decimal()
Returns an instance of this class with an identifier of “decimal”.

«Static Method» PriceFractionStyleEnum fraction()
Returns an instance of this class with an identifier of “fraction”.

«Static Method» PriceFractionStyleEnum halfFraction()
Returns an instance of this class with an identifier of “half fraction”.

«Static Method» Collection<Enum> elements()
Returns a collection consisting of the results of the decimal(), fraction() and

halfFraction() operations.

7 Associations

decimal

fraction

halfFraction

elements

Table 1: Security Prices— Associations

Association
Role Class Card. Notes
security
security Security 1.1 —
rate specifier SecurityPriceSpecifierModdl & 0..n
base price
base price SecurityPrice® 1.1 —
relative price RelativeSecurityPriceSpecifi@.3 0..n
margins
margin SecurityPriceQuote2® 0.n —
relative price RelativeSecurityPriceSpecifi&.3 0..n
margins
margin SecurityPriceQuote2® 0.n —
relative rate RelativeSecurityPriceSpecifier- 0..n
Model 4.6
deriver
deriver RelativeSecurityPriceSpecifie2.§ 1.1 —
constructor RelativeSecurityPriceConstructorSer0..n

vice &.3

43

Table 1: ... continued

Association
Role Class Card. Notes
result
specifier RateFunctionSpecifier 1.1 —~
constructor RelativeSecurityPriceConstructorSer0..n
vice .3
deriver
deriver ImpliedRateDerivationSpecifier 1.1 —
constructor ImpliedSecurityPriceConstructorSer-0..n
vice .2
result
specifier SecurityPriceSpecifie2 80 —
constructor ImpliedSecurityPriceConstructorSer-
vice &.2
deriver
deriver ImpliedSecuritylnterestRateDeriva- —
tionSpecifier 8.1
constructor ImpliedSecuritylnterestRateConstruc-
torService §.1
sequence
securities Security 1.n —
benchmark sequence SecurityBenchmarkSequence- 0..n ¢
Model 8.8
model
model SecurityBenchmarkSequen@24 1.1 -
wrapper SecurityBechmarkReferenceData- 0..n
Model 8.7
benchmark
benchmark SecurityBenchmarkSequen2et§ 0.1 —
implied specifier ImpliedSecuritylnterestRateDeriva- 0..n
tionSpecifierModel 8.3
period
period Period 0.1 —
implied specifier ImpliedSecuritylnterestRateDeriva- 0..n

tionSpecifierModel §.3

—:Navigable¢:Aggregate¢:Composite

44

7.1 security

Role: security NavigableSecurity, 1..1.
Role: rate specifier SecurityPriceSpecifierModel, 0..n.
The security contract for the security rate specifier.

7.2 Dbase price

Role: base price NavigableSecurityPrice, 1..1.
Role: relative price RelativeSecurityPriceSpecifier, 0..n.
The base price from which a relative security price is calculated.

7.3 margins

Role: margin NavigableSecurityPriceQuote, 0..n.
Role: relative price RelativeSecurityPriceSpecifier, 0..n.

The set of margins over the base price for this security. The components that
make up the margins should have no base piece (ie. be incomplete).

7.4 margins

Role: margin NavigableSecurityPriceQuote, 0..n.
Role: relative rate RelativeSecurityPriceSpecifierModel, 0..n.
The margins to add to the base rate.

7.5 deriver

Role: deriver NavigableRelativeSecurityPriceSpecifier, 1..1.
Role: constructor RelativeSecurityPriceConstructorService, 0..n.
The deriver used to construct the new security price.

7.6 result

Role: specifier NavigableRateFunctionSpecifier, 1..1.
Role: constructor RelativeSecurityPriceConstructorService, 0..n.
The rate specifier for the resulting rate.

45

7.7 deriver

Role: deriver NavigablelmpliedRateDerivationSpecifier, 1..1.
Role: constructor ImpliedSecurityPriceConstructorService, 0..n.
The derivation method for the implied security price constructor.

7.8 result

Role: specifier NavigableSecurityPriceSpecifier.
Role: constructor ImpliedSecurityPriceConstructorService.
The logical rate specifier for an implied security price constructor.

7.9 deriver

Role: deriver NavigablelmpliedSecuritylnterestRateDerivationSpecifier.
Role: constructor ImpliedSecuritylnterestRateConstructorService.
The derivation specification for the constructor.

7.10 sequence
Role: securities NavigableSecurity, 1..n.
Role: benchmark sequenceAggregateSecurityBenchmarkSequenceModel, 0..n.

7.11 model

Role: model NavigableSecurityBenchmarkSequence, 1..1.
Role: wrapper SecurityBechmarkReferenceDataModel, 0..n.
The actual model used by the reference data model.

7.12 benchmark

Role: benchmark NavigableSecurityBenchmarkSequence, 0..1.
Role: implied specifier ImpliedSecuritylnterestRateDerivationSpecifierModel,
0..n.

The benchmark series that is used to derive this interest rate.

7.13 period

Role: period NavigablePeriod, 0..1.
Role: implied specifier ImpliedSecuritylnterestRateDerivationSpecifierModel,
0..n.

46

The period at which to choose a benchmark security.

47

8y

Spoyls\ uoneiond —welbelq sse|D T ainbi4

- -

Price Per 100 Face Value Yield

- Cg -

Current Yield Yield to Maturity Simple Yield to Maturity

o OO

Fraction Quotation Clean/Dirty Price

6V

Tuoneslnads adlld Alunodas —welbeiq sse|) :z ainbi4

<<lInterface>>
RateFunctionS pecifier
(from Basic Rates)

<<Interface>>
SecurityPriceSpecifier

*formalP arameters()
*security()
%actualParameters()
*date()

SecurityPriceSpecifierModel

#pdate : Date

security

<<Interface>>

Security

1 (from Securities)

[(ERITPSI
(@ouduealoy
Oreauouedwol,
(realuouedsey,

020U dAliipy
(@0udues|oy
Oreauouedwol,
(resouedsey

1apowplaIAdldwiSAiunoas

2 PO WPIBIAB UN DAIUNO B

090U Py
(20U due ooy,
()erexnundy
(asiedg
(reodiuouedwWoly,
(resluoueDsey,

PouraWuonEIONO IR YIS 1B 1 UONEIONO 3R YISl INg

[ELETENVAIEEE

[(EETEITY
(90U dueajoy
(erexiuude,
(asiedy,
Orealuoued woue,
Qreduouese,,

(Orewdap wnu

1id : alfiSiuLdeg

|9pONaNBA89RH00T9 dodd

v

WNo = WNUZWNDIOXT © WNDIOX4g

ueso = wnuzkuiques) o : Al

Ouealog
A

Qunoi

(90U dpy,
()80 duea)og,
(1eoIuoUBD <<POLIBIN JNBIS>>4

0Aur@ioues|oy,
Ouibresiy
Oredouedsiy,
()adfiy,

Oxog,

<<adepau>>

poyida WuoneIoNd 891 dAIN28s

(sorey aiseg woy)
poyrawuonejond
<<a0BpA>>

ion2

t

ifica

Spec

Ice

— Security Pr

iagram

: Class Di

Figure 3

50

<<Interface>>
QuotationMethod
(from Basic Rates)

<<Interface>>
SecurityMarginQuotationMethod

®isMargin()
®*isCanonical()
Stype ()
*addMargin()

PriceP erl00FaceV alueMarginModel

®printStyle : PriceFractionStyle Enum = PriceFractionStyleEnum.decimal()

%asCanonical()
*fromCanonical()
*parse()
*printRate()
%addMargin()

Figure 4: Class Diagram— Security Price Specification3

51

(sarey oiseg wouy)
19powadaldarey

e

(saiwy oiseq woi)
Japowarondarey

<<02RIaU[>>

(sa1ey o1seg woy)
EXEIFCY]
<<@oepRUI>>

|apowaiondaslidAiunoas

a10ndaadAinoas
<<do'yAI>>

(sarey oiseg wou)
aondarey
<<do'pAN>>

(sa1ey oiseg woy)
19poaIeYHII0ddISe]

O9sy
0Anae
Opiwy

2oudhinde s
<<ddeuau>>

(sorey oseg woy)

areyiuIod
<<doepa>>

Point Rates

iagram—

: Class Di

Figure 5

52

(saiey aiseg wouy)
Jayroadsuopoun4arey
<<aoBpA>>

T 0

1ay19ds 801 dhundasanne ey
<<ddeyau>>

/

ynsai

Ounsay,
(19nu5py

YEYVET)

<<d0IMBS>>

()s@0in0sy,
Osuibrewy
()aseay,
(19n3Py
(1on11SU04

1019N1ISU0 D091 ANIESIANEIY
<<8IBYBIU| 30INIBS>>

(sarey o1seg woiy)
10PNRSU0DBIRY
<<d0BUAU| BOINIDS>>

a10ndadudAunoas

<<@oRpa>>

0
{O=8/dwoosruibrew jou}
suibrew

0

i |apoIaI0ads a0l JhNa S aAne|aY i

()s@0in0sy,
(Osurbreuws,
()aseay
()1010n15U004

J18y199d S3911dALNd aS AN e 8y
<<adBpa>>

(o orseg wosy)
1aypadsuoneausgaepanduy
<<@oRpaI>>

Security Prices

ve

Relat

iagram—

: Class Di

Figure 6

53

ad $8911dAi1in0 85
<<a0RpIBII>>

(soey g

say0adsuon areapaiduy
<<aoepiaU>>

ynsal

sanuap

(12nu3p4

(ronnsuooy,

39101351010015U0 02011 df1n23 S PaNd Wl
<<admias>>

Qannopioiky i
|

v

0ssonosy
(soniang
0hnoase
(unsosq
Oronasuose

101971500 999U FAIIN28 SPaIfd |
<<@08J13lU] 2INIDS>>

(sawy 150G woy)

sooinose,
unoplalfe,
Qioonasuooy

Jay10adSUONEAIE GaoU dAINda S padw
<<ooEia1>>

(sawy 150G woy)

3y 8d Suonentiaq are dpayy dui

Class Diagram— Implied Security Prices

Figure 7

54

<<Interface>>
ImpliedRateDerivationSpecifier
(from Basic Rates)

<<Interface>>
ImpliedSecurityinterestRateDerivation Specifier

%yieldCurve()
%securityPrice()
%sources()
%constructor()

ImpliedSecurityinterestRate DerivationSpecifierModel

%yieldCurve()
*securityPrice()

benchmark

<<Interface>>
SecurityBenchmarkS equence

<<Interface>>
Period
(from Dates)

Figure 8: Class Diagram— Implied Interest Rates1

55

J8y108dS uonBALID 3)e H1S8181ulA11IN28S palld w|
<< d2e}Iau|>>

1

VEYVIET)

(Odinse
[IEIVIETN
(19n1SU04,

90IA18S1010NIISU0 D aleyIsalafiunoaspanduwy
<<dINIB S>>

(disy
()s@2in0s,,
[VENVE]N
(unsaly
(19n1SU0D4,

1019N13SU0 D d)e H1Sa1djulA1inoaspaid wy
<<32BU3U| DINIDS>>

(sajey oiseg woiy)
Jojonjsuopoajey
<<3JeHU3U 3IINBS>>

Class Diagram— Implied Interest Rates2

Figure 9

56

(orepleny
«"T "0 (@ouanbasg,
(s8131n29S wouiy)
A1unoas .
<<89eya>> oousnbas Bus : Jaynuapieg

|9 PO IR dB0oUdIB}a Y Ie WY28gAllNdeS

<0 B

|opoN8ouUanbasyeWyoUs gAIINDDS

sammnN woy)

O

” s|qelepieA

VAN (10Andasy
(Aouainog,
1 (104A11IN03S,,

|apow

(ere@ 2ouala)ey Woy)
|apoNeIR gadUualalay

()@ouanbasy,

9ouanbasyie wyouagAiinias
<< 92e}IBUI>>

(semnn wouy)

9 geynuapi
<<ddeyau>>

Figure 10: Class Diagram— Benchmark Sequences

57

References

[1] Robert SteinerMastering Financial CalculationsPitman Publishing, 1998.

58

	Use Cases
	Price Per 100 Face Value
	Yield to Maturity
	Fraction Quotation
	Yield
	Simple Yield to Maturity
	Current Yield
	Clean/Dirty Price

	Interfaces
	ImpliedSecurityInterestRateDerivationSpecifier
	Relationships
	Operations

	ImpliedSecurityPriceDerivationSpecifier
	Relationships
	Operations

	RelativeSecurityPriceSpecifier
	Relationships
	Operations

	SecurityBenchmarkSequence
	Relationships
	Operations

	SecurityMarginQuotationMethod
	Relationships
	Operations

	SecurityPrice
	Relationships
	Operations

	SecurityPricePiece
	Relationships

	SecurityPriceQuotationMethod
	Relationships
	Operations

	SecurityPriceQuote
	Relationships

	SecurityPriceSpecifier
	Relationships
	Operations

	Service Interfaces
	ImpliedSecurityInterestRateConstructor
	Relationships
	Operations

	ImpliedSecurityPriceConstructor
	Relationships
	Operations

	RelativeSecurityPriceConstructor
	Relationships
	Operations

	Classes
	BasicSecurityPriceModel
	Relationships

	ExOrCumEnum
	Operations

	ImpliedSecurityInterestRateDerivationSpecifierModel
	Relationships
	Operations

	ImpliedSecurityPriceDerivationSpecifierModel
	Relationships
	Operations

	PricePer100FaceValueMarginModel
	Relationships
	Attributes
	Operations

	RelativeSecurityPriceSpecifierModel
	Relationships

	SecurityBechmarkReferenceDataModel
	Relationships

	SecurityBenchmarkSequenceModel
	Relationships
	Attributes
	Operations

	SecurityPricePieceModel
	Relationships

	SecurityPriceQuotationMethodModel
	Relationships
	Attributes

	PricePer100FaceValueModel
	Relationships
	Attributes
	Operations

	SecurityYieldModel
	Relationships
	Attributes
	Operations

	SecurityCurrentYieldModel
	Relationships
	Operations

	SecuritySimpleYieldModel
	Relationships
	Operations

	SecurityPriceQuoteModel
	Relationships

	SecurityPriceSpecifierModel
	Relationships
	Attributes

	Services
	ImpliedSecurityInterestRateConstructorService
	Relationships
	Operations

	ImpliedSecurityPriceConstructorService
	Relationships
	Operations

	RelativeSecurityPriceConstructorService
	Relationships
	Operations

	Enumerations
	CleanDirtyEnum
	Relationships
	Operations

	PriceFractionStyleEnum
	Operations

	Associations
	security
	base price
	margins
	margins
	deriver
	result
	deriver
	result
	deriver
	sequence
	model
	benchmark
	period

